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Abstract 
This paper proposes a new method combining Empirical Mode Decomposition (EMD) and Singular Value 
Decomposition (SVD) for bearing fault diagnosis. The method includes three steps. First, the signal is 
decomposed using EMD. Secondly, the instantaneous amplitudes are computed for each component using 
the Hilbert Transform (HT). Lastly, the Singular Value Vector is applied to the matrix of Cross-Power 
Spectral Density (CPSD) of the instantaneous amplitude matrix and the SVD versus frequency is analysed. 
The proposed method is first validated by using various noisy simulated signals. The results show that the 
proposed method is robust versus the noise to detect the bearing frequencies that are representative of the 
defect even in a very noisy environment and that the amplitude of the first SVD at each bearing frequency is 
very sensitive to the defect severity. The proposed method is also applied to two different experimental cases 
on bearings with very low degradation. The results show that the proposed method is able to detect bearing 
defects at an early stage of degradation for both experimental cases.  
 
Keywords: Bearing fault, Empirical Mode Decomposition (EMD), Hilbert transform (HT), Cross-Power 
Spectral Density (CPSD), Singular Value Decomposition (SVD). 
 
1. Introduction 
 

Bearing wear can be considered as a major cause of defects in rotating machinery. Unexpected failures 
in bearings may cause significant economic losses. Empirical Mode Decomposition (EMD) is an interesting 
technique for fault diagnosis of rotating machinery. EMD can decompose the signal into several components 
called Intrinsic Mode Functions (IMFs) [1]. With EMD, the principal “modes” representing the signal can be 
identified. This method has attracted much attention for signal processing and engineering applications over 
the past decade [2]. The fundamental idea when using the EMD method is to decompose the vibratory signal 
into multiple components and the suitable IMF allows for computing the envelope spectrum and analyse 
their statistical features. Hybrid methods based on EMD and other techniques, like the Wavelet Packet 
Transform (WPT), the Support Vector Machine (SVM), Spectral Kurtosis (SK) and the Teager-Kaiser 
Energy Operator (TKEO), have also been applied to bearing fault diagnosis [3–7].  
 

After performing EMD on a signal, some IMFs are associated to bearing faults, others with information 
unusable for diagnosing such faults. The useful IMF (if it exists) can be selected to perform the Hilbert 
spectrum. A few studies focus on developing an indicator to select automatically this useful IMF. Wenliao et 
al.[8] used the Wigner-Ville distribution to select the optimum IMFs and the filter bandwidth . Ricci et al [9] 
proposed a new indicator, named Merit Index, to select the appropriate IMF. The Merit Index is a linear 
combination between the periodicity degree of the IMF and its absolute skewness value.  Yi et al.[10] 
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proposed a new indicator called Confidence Index based on combination of correlation coefficient, skewness 
and kurtosis. Jacek et al.[11], Peng et al. [12], Wang et al. [13], and Guo and Tse [14] utilized the correlation 
coefficient as an indicator analysis to select the candidate IMFs.  
 

However, it is well known that the repetitive impacts due to the defect excite all bearing natural 
frequencies. If only the best IMF is selected, information included in other IMFs excited by the fault is then 
lost. Selecting all IMFs excited by the fault appears thus more suitable. In [15-16], the authors propose to 
select all the IMFs excited by the fault. A hybrid method based on EMD and run-up excitation is proposed to 
select the useful IMFs. By using a swept excitation when running up a rotating machine, the resonance 
frequency bands of the mechanical system is obtained from the spectrogram of the signal.  In [17-18], the 
authors proposed to select all IMFs selected by the fault for early detection of the defect. The selection is 
made through an indicator-based kurtosis.  
 

 In this study, a new approach exploiting all IMFs of the signal to improve fault diagnosis is proposed. 
To compress all information extracted from each IMF, Singular Value Decomposition (SVD) is used in this 
paper. The SVD method has been widely used in fault feature extraction and identification for mechanical 
systems [19–21]. Before performing SVD, a matrix obtained from the original one-dimensional signal must 
be constructed. Various matrices exist, for example: the Toeplitz matrix, cycle matrix and Hankel matrix. To 
improve fault feature extraction, a new approach exploiting the instantaneous amplitude of each IMF 
obtained by EMD is proposed. The matrix is defined as the Cross-Power Spectral Density (CPSD) of all 
instantaneous amplitudes of the obtained IMF. Cross-spectral analysis is a powerful tool for investigating the 
relationship between signals in the frequency domain. Inspired by the frequency domain technique [17], the 
power spectral density matrix for each frequency is decomposed by applying SVD to the matrix.  The 
singular value plot of the spectral density matrix concentrates information from all spectral density functions. 
The first singular value should approximately equal the sum of the terms on the diagonal of the PSD matrix. 
This means that the power of the signals at this frequency can be attributed to the vibratory signature [22]. 
The following sections give details of the proposed method used for rolling bearings fault diagnosis. The 
paper first presents the theoretical background of EMD and the proposed approach in Section 2. To validate 
the approach, the method is applied to a simulated signal and real data from damaged bearing in sections 3 
and 4. Section 5 concludes the paper. 
 
2. The proposed approach 

 
2.1  A brief description of EMD 

 
The EMD method can decompose signal in a multiple intrinsic mode functions (IMFs). The 

decomposed signal may be written as [1-2]: 

( ) ( )
1

( )
N

i N
i

x t C t r t
=

= +∑                                                                                                                     (1) 

where ( )iC t  is the ith IMF and ( )Nr t is the residual signal.  

This method could suffer of a mixing mode problem and derived methods such as EEMD, CEEMD, 
CEEMDAN could also be used in this case, but it is not always necessary. 
 

2.2  The proposed approach based on SVD and EMD 

 

The approach proposed for diagnosing faults on rolling bearings is illustrated in Figure 1.  In this paper, 
the signal matrix  obtained from EMD is constructed as follows:  

https://www.hindawi.com/journals/sv/2016/1248626/#B8
https://www.hindawi.com/journals/sv/2016/1248626/#B10
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1 2 3[ ; ; ;... ]nC C C C                                                                                                                            (2) 
 

The first step is to compute the instantaneous amplitude of each intrinsic mode function ( )iC t . The 
instantaneous amplitude (IA) is computed by means of the Hilbert Transform. The analytical signal is given 
by the following expression: 
 

( )( ) ( ) C(t) ( ) i tz t C t j a t e j= + =                                                                                                       (3) 

where ( )a t  is the amplitude function given by the expression:  

( )2 2( ) ( ) ( )i i iIA t a t C C= = +                                                                                                        (4) 

 
The signal matrix of instantaneous amplitudes is constructed as follows:  

 

1 2 3[ ; ; ;... ]nM IA IA IA IA=                                                                                                                (5) 
 

The second step is to compute the cross-power spectral density of matrix M. The cross-power 
spectral density is defined by [23]: 
 

( ) ( ) jw
xy xy

m
P w R e ττ

∞
−

=−∞
= ∑                                                                                                           (6) 

where { }( ) ( ) ( )xyR E x t y ttt = + with  [ ]E ⋅  denoting the expectation operator on t .                             (7)                                                      

 
The diagonal elements of the matrix represent the auto-power spectral density (the same IA). The off-

diagonal elements are the complex cross-spectral densities between two different IA . 
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                                                                          (8) 

 
The flow chart of the proposed method is shown in Fig. 1. 
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Figure 1: Flow chart of the proposed method 

Assuming that ( )iP w  is an n n×  matrix, the power spectral density matrix for each frequency (wi) 

is decomposed by applying SVD to matrix ( )iP w .  
 

( ) T
iP w U V= ∑                                                                                                                              (9) 

where U  and V  are orthogonal and Σ  is a diagonal matrix of the singular values 
( 1,1 2,2 3,3 0σ σ σ≥ ≥ ≥

and , 0k jσ =  if k j≠  ). 
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                                                                            (10) 

 
As mentioned in the introduction, the first singular value should approximately equal the sum of the 

terms on the diagonal of the PSD matrix [22]. The plot of the first singular value versus frequency is thus 
used to identify the features extracted from the signal. 
 
  



5 
 

3. Validation with simulated data 
 

3.1  Fault detection 

In order to validate the proposed method and evaluate its effectiveness, a simulated numerical bearing 
signal is used. The simulated signal is similar to the signal used in [17-18]. The mathematical expression of 
the signal is given as:  

( ) ( )sin 2 ( )n
tx t Ae f t n tα π− ′= +                                                                                                     (11) 

where 

1,
m

t mod t
F

 
′ =  

 
                                                                                                                          (12) 

Resonant frequency nf  is set to 1,800 Hz. The BPFO is set to 100 Hz. Amplitude A  is set to 1.  Sampling 

frequency sF  is set to 12,000 Hz. A random signal ( )n t  with variance 2 0.01σ =  is added to x(t) . 

 

Figure 2 illustrates the simulated roller bearing signal. Figure 3 shows the 12-IMF obtained by the 
EMD method. It can be seen from this figure that the shocks related to defect are distributed across the first 
eight IMFs. As discussed in Section 2, all IMFs are considered in the proposed approach. The result is 
presented in Figure 4. Figure 4 exhibits the plot of the first singular value versus frequency.  The 
fundamental of the BPFO (100 Hz) and its harmonics up to 1,200 Hz are clearly identified. The initial 
conclusion is thus that the proposed method can effectively detect the defect. No need to select the useful 
IMFs to accomplish the diagnosis.  

 
Figure 2: Simulated signal 
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Figure 3: EMD of the simulated signal 

 
Figure 4: Result obtained for the simulated signal 

 
It is well know that the amplitude of vibration due to bearing defects increases as the fault worsens 

and high peak levels may be observed. To confirm the efficiency of the method and its sensitivity to the 
severity of defect-induced vibrations, the simulated signal given by Equation (11) is simulated with A  set to 
1, 1.3, 1.6 and 1.9. The resulting waveforms are given in Figure 5. 
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Figure 5: Simulated signal for different levels of A  

 
Figure 6 shows the results obtained by the new approach for different levels of A . The magnitude of 

the BPFO and number of bearing frequency harmonics increase as the value of A  increases. As seen in 
Figure 7, when 1.3A = , the magnitude of the BPFO increases by 6 dB. The same conclusions may be drawn 
from the cases shown in Figure 7A. Therefore, the method is sensitive to the severity of the shocks. BPFO 
magnitude and the mean of all harmonics can be used as an indicator to track the severity of the defect.  

 

Figure 6: Results obtained for different levels of A  
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Figure 7: (A) Change in  BPFO (B) Change in mean amplitude of all harmonics in Figure 6 

 

The noise level in the simulated signal above is fairly low, though any industrial application would 
probably involve additive noises, potentially masking the signature of the defect, especially in the case of 
early bearing degradation. Another test was thus conducted to prove that the proposed method is able to 
detect the defect even if the noise level is higher.  
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defect-related shocks are masked by noise for 2 0.1,  0.2 and 0.4σ = .  The four noisy signals were 
processed using the proposed method and the results obtained from all signals are exhibited in the Figure 9. 
Note that even when the noise is very high, the method is able to identify the BPFO, while other tested state 
of the art methods were not available at this high noise level.  
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Figure 8: Simulated noisy signals: (A) 2 0.05σ = ; (B) 2 0.1σ = ; (C) 2 0.2σ = ; (D) 2 0.4σ =  

 
Figure 9: First singular value in frequency domain: (A) 2 0.05σ = ; (B) 2 0.1σ = ; (C) 2 0.2σ = ; (D) 
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4. Experimental data 
 

The proposed method was investigated on two different history cases with different low levels of 
severity. 
 

4.1  First case study  
 

In the first case study, two defected bearings (SKF 1210 EKTN9) with very low severity levels are 
investigated. The test bench is shown in (Figure 10A). The first defected bearing noted D1, has an artificial 
defects about 200 µm deep with a groove width (W) of 50 µm and the second (D2) with W = 100 µm.  The 
data were recorded when rotating at 600 rpm, using an accelerometer with a sensitivity of 100 mV/g. The 
frequency of the BPFO is about 76.46 Hz. The sample frequency is set to 12500 and 64,000 samples are used 
(acquisition time of 5 seconds).  
 

 
Figure 10: Test bench 

 
Figure 11 shows the time signal of the acquired data. For the healthy bearing (Figure 11-A), quasi-

random shock signals are observed. Defect D1 (50 µm) is at early stage of degradation. The time signal of 
defect D2 (Figure 11C) shows a series of impulse responses at BPFO and the amplitude is modulated 
periodically at the shaft speed. The shocks caused by defect D2 are more perceptible in the D2 signal than 
those due to defect D1, which are masked by noise. 
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Figure 11: (A) Healthy bearing, (B) Defective bearing D1, (C) Defective bearing D2 

The signals were processed using the proposed method. The defective bearing (50 µm) very clearly 
shows the BPFO (72.46 Hz) and its harmonics (Fig. 12).  For defect D2 (100 µm), the BPFO harmonics are 
clearly identified and an increase in amplitude is observed (Fig. 13). The amplitude of the BPFO increases by 
12.43 dB. This reveals that defects are more clearly identified and well-defined using the proposed approach.  

 
Figure 12: First singular value in frequency domain: Defect D1 (red), healthy bearing (blue) 

 

 
Figure 13:  First singular value in frequency domain: Defect D2 (red), healthy bearing (blue) 
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4.2  Second case study  
 

In this case, bearing (SKF 6205-2RS JEM ) with defects in different locations are investigated. The 
vibration data are available in [24]. The test bench is shown in Figure 14. The first defect has a simulated 
single-point fault on inner race and the second defect has a simulated single-point fault on outer race. The 
fault size is 0.007" in diameter and 0.011" in depth..  The vibration data was collected when rotating at 1796 
rpm. The frequency of the BPFO is about 107.6 Hz and the BPFI is 161.4 Hz. The sampling frequency (Fs) 
is 12,000 Hz and 60,000 data samples are used. 

 

 
Figure 14: Test bench 

 
Figure 15: (A) Healthy bearing, (B) Inner ring fault (C) Outer ring fault 
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time signal of outer ring fault is shown in Figure 15C. Unlike that of the inner ring defect, the time signal of 
the outer ring fault should reveal a series of uniform impulse, but the signal is modulated at the shaft speed. 
The result obtained by the proposed method is shown in Figure 17. A series of harmonics of the BPFO are 
detected. As explained in [25], this modulation suggests a rotating load caused probably by mechanical 
looseness. 

 
Figure 16: First singular value in frequency domain: Inner race fault (red), healthy bearing (blue) 

 
Figure 17: First singular value in frequency domain: Outer race fault (red), healthy bearing (blue) 

 

5 Conclusion  
 

A new feature extraction method for bearing fault diagnosis is presented in this paper. In the proposed 
method, there is no need to select the useful IMF to accomplish the diagnosis. The matrix of cross-power 
spectral density of all IMFs is decomposed in the frequency domain using SVD to extract defect-related 
information. The method was first validated by means of a simulated signal. The results have shown that this 
method may be used even in a very noisy environment. The proposed method can effectively detect defects 
even if the induced shocks are completely masked by noise and that the features extracted are sensitive to 
defect shock amplitude, making them useful indicators to track defect severity. Two test cases are presented 
to verify the efficiency of the method. Bearings in an early stage of degradation with two levels of defect 
severity (50 µm and 100 µm) and defects in different locations are investigated. The results show that the 
method can effectively extract all information related to the defect. In this study, we validated the proposed 
method using rolling bearings. Future work will extend and generalize the method for fault diagnosis of other 
rotating machinery, such as gears. 
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