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Abstract 

Despite rarely being made explicit, signal models (and assumptions) for gear vibration have been fundamental 

in the development of both condition monitoring and operational modal analysis techniques. The analysis (for 

condition monitoring) or the removal (for OMA) of the dominant gear-meshing component is in fact dependent 

on the assumption on the number, location and patterns of the corresponding spectral harmonics. This paper 

discusses in detail the common modelling choices and their consequences for condition monitoring and OMA. 

The traditional gearmesh-carrier/shaft-modulated model is analysed and two main limitations of current 

models are highlighted: the additive assumption on the two gear modulating functions and the regularity of 

their effect on different gearmesh harmonics. The paper uses experimental gear signals to prove the validity of 

the newly introduced assumptions and to assess their practical significance. 

 

1 Introduction 

Gearbox condition monitoring has often been based on simple signal models. Empirical signal models are used 

as a first approximation of the vibration signal to justify and guide the development of diagnostic signal 

processing techniques. For this purpose, they are preferred to more detailed physical models (e.g. FEM or 

lumped parameters) due to their generality and ease of implementation. Empirical signal models aim at 

reproducing the overall properties of vibration signals, retaining the main time and frequency features that are 

observed in real signals and can be used for condition monitoring. Despite not requiring the fine-tuning of 

structural and geometric parameters typical of detailed physical models, correct assumptions on the phenomena 

generating the vibration are fundamental in developing appropriate empirical signal models. 

In the case of spur gears, the main source of vibration comes from the time-varying meshing force generated 

at the contact point between the pinion and driven gear teeth. The most widely accepted gear-signal model is 

therefore represented as [1] 

 

 𝑦(𝑡) = ℎ(𝑡) ⊗ 𝑔(𝑡) (1) 

 

where the gear-related component 𝑦(𝑡) of a measured vibration signal results from the convolution 

(symbol ⊗) of the system impulse response ℎ(𝑡) with the gear-meshing forcing function 𝑔(𝑡). As usual in 

rotating machines [2], the true nature of this signal has a hybrid time-angle definition. However, for nominally 

constant speed, the approximation of linearity between time and angular domain is often assumed. In this case, 

the easiest way to represent the signal in the frequency domain is probably to define (with approximation) the 

system transfer function 𝐻(𝑓) = ℱ{ℎ(𝑡)} in an equivalent shaft-order domain, adopting the approximate 

relationship 𝑓 ≈ Ω𝑓1 where 𝑓1 is the average (and almost constant) shaft speed of a reference gear (in this study 

we will always use the pinion/input shaft) and Ω is the order coordinate of the same shaft. In this case we can 

rewrite eq. (1) in the order domain as: 

 

 𝑌(Ω) = 𝐻(Ω𝑓1) ⋅ 𝐺(Ω). (2) 

 

In the case of perfect and healthy teeth, the contact force 𝑔(𝑡) is theoretically expected to show a gearmesh 

fundamental frequency (i.e. for a pinion with 𝑍1 teeth 𝐺(Ω) ≠ 0 only for Ω = 𝑘𝑍1), but in practice even 

imperfections in the manufacturing stage result in tooth-to-tooth variations. These variations are expected to 

be even more accentuated in the case of localised gear faults (e.g. tooth crack) and are modelled as gear-

synchronous modulations of the gearmesh harmonics. 



  
 

 

The excitation 𝑔 is usually modelled in time or in the angular domain 𝜃 of the reference shaft (in this case 

shaft 1) as an amplitude/frequency modulated signal, where the carrier is represented by the dominant 

gearmesh harmonics and the two modulating functions are synchronous with the two shafts. Actual explicit 

mathematical expressions of AM/FM signal models are rare, and many studies focus on the simpler AM case 

only. In this paper we will mainly focus on the implications that arise for condition monitoring and OMA in 

considering an AM/FM model. A full analytical discussion will be provided for AM-only models, including 

limitations of common assumptions and further issues encountered when dealing with actual signals. However, 

considerations on FM and AM/FM models will be provided, without the explicit formulation of full AM/FM 

signal models (due to their cumbersome expression), but keeping in mind all the major and minor spectral 

components arising from the combination of all modulating functions. 

 

2 Secondary sidebands 

The simplest model of the gear force (often implicitly considered in many condition monitoring studies) 

includes two purely amplitude modulation components: 

 

 𝑔(𝜃) = 𝑐(𝜃) ⋅ {𝑎(𝜃) + 𝑏(𝜃)} (3) 

 

where: 

 𝑐(𝜃) is the gearmesh-periodic dominant effect of the tooth-meshing 

 

 𝑐(𝜃) = ∑ 𝐶ℎ𝑒𝑗ℎ𝑍1𝜃

ℎ

 (4) 

with 𝑍1 representing the number of teeth of the gear on shaft 1, 

 

 𝑎(𝜃) and 𝑏(𝜃) are a shaft-periodic amplitude modulation functions due to irregularities among the 

teeth of shaft 1 and 2 respectively (and/or geometric/misalignment issues on the same shaft) 

 

 𝑎(𝜃) = ∑ 𝐴𝑘𝑒𝑗𝑘𝜃

𝑘

    and     𝑏(𝜃) = ∑ 𝐵𝑘𝑒𝑗𝑘𝜏𝜃

𝑘

 (5) 

where 𝜏 = 𝑍1 𝑍2⁄  is the gear ratio. 

Such AM signal is usually represented as: 

 

 𝑔(𝜃) = ∑ ∑ 𝐶ℎ𝐴𝑘𝑒𝑗(ℎ𝑍1+𝑘)𝜃

𝑘ℎ

+ ∑ ∑ 𝐶ℎ𝐵𝑘𝑒𝑗(ℎ𝑍2+𝑘)𝜏𝜃

𝑘ℎ

. (6) 

 

This formulation shows the main feature of AM gear models: the presence of sidebands around the 

gearmesh harmonics at orders ℎ𝑍1 + 𝑘 (effect of shaft 1) and ℎ𝑍1 + 𝜏𝑘 (effect of shaft 2). 

Such a simplified model already poses risks for OMA. In fact, the removal of these harmonics is often 

considered straightforward by means of established synchronous averaging techniques, using encoders 

installed on both shafts (or at least on a reference shaft). In most cases, shaft-1 and shaft-2 sidebands are thus 

removed separately by synchronous averaging over the respective periods. Even in a number of highly rigorous 

approaches, only one or a few combined periods of the two gears are used for these synchronous averaging 

operations. This “grand-period” is defined as the interval between the meshing of the same tooth pair, and 

equivalent to 𝑍2 periods of shaft 1 or 𝑍1 periods of shaft 2. 

However, considering the physical nature of the AM functions 𝑎(𝜃) and 𝑏(𝜃), a multiplicative model is 

much more justified, i.e. there is no reason why carrier and modulations should be treated differently and a 

three-term multiplication is more appropriate. This results in the modification of eq. (3) into the following: 

 



  
 

 

 𝑔(𝜃) = 𝑐(𝜃) ⋅ 𝑎(𝜃) ⋅ 𝑏(𝜃) (7) 

 

with a consequent proliferation of sidebands: 

 

 𝑔(𝜃) = ∑ ∑ ∑ 𝐶ℎ𝐴𝑘𝐵ℓ𝑒𝑗(ℎ𝑍1+𝑘+𝜏ℓ)𝜃

ℓ𝑘ℎ

. (8) 

 

Under this modelling assumption – and actually also for model (3) –, the fundamental period of the signal 

is the “grand-period”. However, differently from model (3) the signal shows a vast number of secondary 

sidebands ℎ𝑍1 + 𝑘 + 𝜏ℓ, with 𝑘, ℓ ≠ 0 (in addition to the ℓ = 0 and 𝑘 = 0 primary sidebands present also in 

the previous model). These secondary sidebands are expected to have (in the spectrum of the excitation) a 

lower amplitude (as the zero-frequency component of the modulation signals must be dominant to ensure 

positive-only modulating functions), but they could still significantly compromise OMA attempts based on the 

assumption that noise dominates the spectrum of the vibration signal, once the primary sidebands are removed. 

An experimental test to verify the extent of this effect has been carried out on the UNSW spur-gear test-

rig. The test-rig is composed of a speed-reducing spur gear pair (𝑍1 = 27 and 𝑍2 = 44) powered by an electric 

drive and connected to a magnetic particle brake. The set of gears (module 2 with 5 mm face width) are built 

in mild steel, and surface hardened. A gear crack was simulated by means of an artificial slot on the pinion 

starting at the base of the tooth and reaching the centreline with an angle of 45°. The test rig was operated with 

constant speed and load (10 Hz /10 Nm on the input shaft) and a vibration signal was measured by means of a 

B&K4396 accelerometer, installed on the top of the casing in proximity of the DE input-shaft bearing. The 

signal was sampled at a rate of 100 kSamples/s for a duration of 101 s, sufficient to ensure the observation of 

22 “grand-periods”. In addition, a phase-reference signal was obtained synchronously to the vibration signal, 

thanks to an encoder with 1000 pulses/rev installed on the NDE of the pinion shaft. 

The vibration signal was order-tracked ensuring that an integer number of samples 𝑁𝐺𝑀 was taken within 

a gearmesh period, thus also ensuring integer numbers of samples 𝑍1𝑁𝐺𝑀 in a revolution of shaft 1 and 𝑍2𝑁𝐺𝑀 

in a revolution of shaft 2. Residuals were obtained following two synchronous averaging (SA) procedures: the 

first was the traditional approach which removed all harmonics of shaft 1 and shaft 2 (primary sidebands of 

the gearmesh harmonics), whereas the second used the entire grand-period as reference for the synchronous 

averaging, thus removing all primary and secondary sidebands. 

The results are shown in Figure 1. The raw order-tracked spectrum clearly shows a significant amount of 

gearmesh harmonics and sidebands, which are only partly removed by the traditional SA approach. Whereas 

the low-frequency range (up to 10-15 gearmesh harmonics) seems mostly unaffected by the presence of 

secondary sidebands, in the range from 15 to 30 gearmesh harmonics the removal of the primary harmonics 

still leaves a large quantity of discrete components, which are identified as secondary sidebands. 

 



  
 

 

(a) 

 
(b) 

 
Figure 1. Result of the removal of primary-only (red) and primary + secondary (blue) sidebands from a 

gear vibration signal (black): (a) frequency range 0-30 gearmesh harmonics, (b) zoom of the most affected 

area. 

Adding frequency modulation to the model, the considerations made so far become even more relevant. 

Even taking pure frequency modulation, the signal consists of 

 

 𝑔(𝜃) = 𝑐(𝜃 + 𝜙(𝜃) + 𝜓(𝜃)) (9) 

 

where 𝜙(𝜃) and 𝜓(𝜃) are the phase modulations introduced by shaft 1 and 2, respectively: 

 

 𝜙(𝜃) = ∑ Φ𝑘𝑒𝑗𝑘𝜃

𝑘

       and       𝜓(𝜃) = ∑ Ψ𝑘𝑒
𝑗𝑘

𝑍1
𝑍2

𝜃

𝑘

 (10) 

 

This signal can be expressed as a Fourier Series as: 

 

 𝑔(𝜃) = ∑ 𝐶ℎ𝑒𝑗ℎ𝑍1(𝜃+𝜙(𝜃)+𝜓(𝜃))

ℎ

= ∑ 𝐶ℎ𝑒
𝑗ℎ𝑍1(𝜃+∑ Φ𝑘𝑒𝑘𝜃

𝑘 +∑ Ψ𝑘𝑒
𝑗𝑘

𝑍1
𝑍2

𝜃
𝑘 )

ℎ

 (11) 

 

The Bessel expansion of such signal (too cumbersome to report in this paper and whose details are of little 

significance) is composed of a large series of harmonics, at all the multiples of the fundamental frequency 

obtained from the “grand period”. Moreover, whereas the bandwidth of AM sidebands is expected to keep 

constant for each carrier harmonic, the bandwidth of FM sidebands grows proportionally to the harmonic order 

of the carrier [3], potentially amplifying this phenomenon at high orders. 

A detailed analysis of the motivation (AM, FM or mixed) of the high-frequency location observed for 

strong secondary side-bands is outside the scope of this paper, but a preliminary sensitivity analysis (varying 

shaft speed) indicates that the phenomenon has a stable location in the frequency domain (independent of 



  
 

 

speed), rather than in the order domain. This suggests that the relevance of the secondary harmonics is linked 

to a dynamic amplification due to the system transfer function, rather than an FM bandwidth problem. 

 

3 Irregularity of the sideband patterns 

According to the AM model of eq. (3), each sideband-pattern should repeat identically at each carrier 

harmonic. This is simply explained by the convolutive nature of the spectrum of an amplitude modulated 

signal. For instance, simply dividing each set of sidebands 𝐺(ℎ𝑍1 + 𝑘) = 𝐶ℎ𝐴𝑘 by the corresponding carrier 

harmonic 𝐶ℎ, the following equivalence should be obtained: 

 

 
𝐺(ℎ𝑍1 + 𝑘)

𝐶ℎ
=

𝐺(ℎ′𝑍1 + 𝑘)

𝐶ℎ′
 ∀ℎ, ℎ′ ∈ ℤ (12) 

 

This ideal property is explicitly at the basis of Ref. [4], which proposed a multi-carrier demodulation 

method, but partially and implicitly adopted by most studies which arbitrarily use the first or second harmonic 

for demodulation. 

This concept is challenged in this section using a vibration signal measured on the same gearbox as 

discussed in the previous section, albeit with healthy 20 mm face width gears and a transmission ratio of 19/52. 

The test was operated at 20 Hz with a load of 20 Nm (all measured on the pinion/input shaft). The sampling 

frequency was set at 100 kHz for a total duration of the acquisition of 10 s.  

The order-tracked signal was split into frequency bands corresponding to the neighbourhood of the first 4 

gearmesh harmonics and the different sidebands patterns were shifted to overlap with each other. All sideband 

amplitude coefficients were divided by the corresponding gearmesh harmonics amplitude coefficient, in order 

to compute an amplitude ratio. The amplitude ratio of those patterns is reported in Figure 2. 

 

 
Figure 2. Sideband amplitude patterns of the first 4 gearmesh harmonics. 20 Nm - 20 Hz test. 

This result shows how the patterns are massively different even disregarding their phase, which should 

also coincide after normalisation by the carrier harmonics. Two possible explanations for such behaviour were 

suggested: amplifications due to the system transfer function, or dominant frequency-modulation effects. 



  
 

 

The first option was further investigated trying to remove the transfer function effect by means of cepstral 

liftering [5], [6]. An exponential lifter was applied, with a cut-off angular quefrency of 0,7 radians,to the 

original spectrum and the result was used to remove the short-quefrency transfer function effects. The result 

of the liftering operation and the “normalised” spectrum are shown in Figure 3 (a-b) respectively. 

 

(a

) 

 
(b

) 

 
Figure 3. Removal of the TF effect: (a) short-pass liftering operation, (b) normalised spectrum. 

 

Despite the good result in terms of spectral liftering, the problems observed in Figure 2 continue to be as 

severe in the normalised spectrum harmonics reported in Figure 4. 

 



  
 

 

 
Figure 4. Sideband amplitude patterns of the first 4 gearmesh harmonics after cepstral liftering. ~1.5 Nm 

- 20 Hz test. 

As the shape of the FM patterns of a multi-carrier modulated signal do not seem to match with the ones 

observed in Figure 2 and Figure 4, the authors are of the opinion that, despite possibly contributing to the 

difference among the sideband patterns, other phenomena (unmodelled in the current approach) must be 

influencing the vibration signal. FM multi-carrier modulation in fact usually results in sideband patterns 

showing a similar “shape”, yet with a bandwidth proportional to the carrier harmonic order. 

A possible explanation of the differences in the sideband patterns could be found in the different roles 

played by two different root-cause mechanisms resulting in gear vibration: geometric and static transmission 

error (each potentially resulting in a separate AM/FM modulated signal, with different carrier and modulation). 

The first is due to profile irregularities, whereas the second is due to the angular dependence of the gear-

meshing compliance under load. An additional test was therefore executed at very low load (~1.5 Nm, just 

enough to maintain contact between the gear teeth) and speed (2 Hz), where geometric transmission errors 

were expected to dominate. Since under these operating conditions significant electrical noise was present in 

the lowest frequency range, in this case harmonics 2-5 were analysed.  

 



  
 

 

 
Figure 5. Sideband amplitude patterns of the first 4 gearmesh harmonics. Low load – low speed test. 

 

The patterns shown in Figure 5 are much more consistent, even if discrepancies are still present, thus 

supporting the idea of a potential two-mechanism root-cause of the observed pattern inconsistency. 

 

In order to investigate more deeply the origin of the pattern inconsistencies observed in the vibration signal, 

the sideband distribution of the transmission error signal is also studied, in a low-speed and low-load test. As 

illustrated in Figure 6, the pattern distributions have been plotted for the two cases of a heathy and a faulty 

gear. The transmission error is computed as the relative difference between the rotation of the input and output 

shafts. The pattern shown for the sidebands of the healthy gear is almost as consistent as that obtained with the 

vibration signal, although differences persist in the amplitudes of the sidebands. However, in the case of the 

faulty gear, the distribution of the sidebands is quite similar for all the sidebands of every gearmesh harmonic. 



  
 

 

 

Figure 6: Sideband amplitude patterns of the first 4 gearmesh harmonics of the TE signal. Low load – 

low speed test. 

 

4 Conclusions 

This study has highlighted two major limitations in the current modelling (and assumptions) of gear 

vibration signals. Neglecting secondary sidebands has been shown to be not always reasonable, and strong 

discrete components were still observed in the spectrum of a gear signal after removing the primary sidebands 

by means of traditional synchronous averaging procedures. This problem, which could bias the identification 

of system transfer functions with OMA approaches, is easily solved if it is possible to observe a sufficient 

number of “grand-periods”. In practice this could be possible for a series of machines operating at reasonably 

constant speed, but might be impractical for complex transmissions with more than one stage or planetary 

arrangements (very long grand-period). 

Experimental evidence also casts doubts on the validity of AM and even AM/FM models of gear vibration 

signals, and suggests the possibility of multiple forcing functions (with different spectral distribution) acting 

simultaneously to create complex modulations. In particular, the geometric vs static transmission error 

components seem to be potential candidates for future investigations. 

Significant investigative efforts are required to clarify these issues and give rise to more reliable models, 

in turn enabling new and more effective condition monitoring and OMA approaches. 
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