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Abstract
Rolling element bearings are critical parts of rotating machinery, as they support the loads applied to the ro-
tating components. Therefore, continuous monitoring of the health state of the operational bearings is applied
in order to detect early damages before any unexpected breakdown of the rotating machinery occurs. Bearing
diagnostics is a field of intensive research, focusing nowadays mainly in complicated machinery (e.g. plane-
tary gearboxes, multi-stage gearboxes, etc.) operating under varying conditions (e.g. varying speed and load),
as they still provide challenges in terms of accuracy and time of detection/diagnosis. One of the most com-
mon methods for bearings diagnostics is the Envelope Analysis. A filter is usually applied around an excited
frequency band (by impulsive damage) and the signal is enveloped, thus obtaining the Squared Envelope Spec-
trum. For the detection of the filtering frequency band, several band selection tools have been proposed in the
past that extract the optimal band in a semi-autonomous or fully autonomous manner. The most widely used
tool for band selection is the Kurtogram, where the band that returns the highest Spectral Kurtosis value is
selected as the optimal band for demodulation. However, as the bearing damage may excite several frequency
bands simultaneously, band-pass filtering around only one frequency band may not be sufficient for the detec-
tion of the bearing fault under the presence of noise. One proposed method to circumvent this case is to filter
around several bands that carry the Signal of Interest (bearing damage signature). Recently, multi-band filtering
based on the Autogram feature values, used as a pre-step in order to extract the Combined Squared Envelope
Spectrum (CSES) has been presented, providing better detection performance of faulty bearings compared to
the extraction of the SES after filtering over a single optimal band returned by the Autogram. Recently, a par-
ticular interest had been target to the Cyclic Spectral Correlation (CSC) and to the derived methods, due to their
effectiveness in describing second-order cyclostationary signals. One of such methods is the Cyclic Spectral
Coherence (CSCoh) which is a normalized version of the CSC bivariable map. Both methods are represented
in the frequency-frequency domain. It has been shown that the integration of the bivariable functions over
discrete spectral frequency bands is analogous to band-pass filtering. The IESFOgram has been proposed as a
band selection tool, based on either the CSC or CSCoh, in order to extract the optimal frequency band. The
integration on the frequency band of the bivariable map further enhances the detectability of faulty bearings on
the resulting Improved Envelope Spectrum (IES). However, the method has been proposed with the integration
of one single band. In this paper the method is extended towards the extraction of the Combined Improved
Envelope Spectrum (CIES), performing a multi-band integration of the bivariable map around multiple reso-
nant frequencies that are carriers of the bearing damage signature. The proposed method is applied, tested and
evaluated on experimental data and the results are compared with other state-of-the-art band-selection tools.

1 Introduction

Rolling element bearings are critical components of rotating machinery and their failure can cause sudden
breakdown of the system, leading to time-loss and increased costs. Condition monitoring is the field where
rotating machinery is analysed, including bearings and gears and damages that may be present on the structures
can be detected. Therefore, maintenance and faulty component repair can be performed before breakdown. The
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diagnostics of bearings continues to be a challenge however, as their signatures are usually masked under noise
and other stronger component signatures (e.g. gears). Specifically, condition monitoring of complex machinery
has seen increased research, due to their wide application on critical mechanisms and to their high difficulty to
diagnose caused by their many components signatures.

One of the most well established methods is the Envelope Analysis, where the signal is demodulated after
band-pass filtering around the resonant frequencies excited by the damage impulses, obtaining in the end a
filtered Squared Envelope Spectrum (SES). The main idea is to obtain an optimal filter band which presents a
high Signal-to-Noise ratio (SNR) leading to a SES after demodulation where the fault harmonics are enhanced
[1, 2]. The selection of this frequency band for demodulation is a frequency and continuous topic present in the
field. The main reason is because some sort filtering processing is common to most of condition monitoring
applications, and the band can either be selected by engineering knowledge, or by a methodology that selects the
band in a (semi-)automated manner. The most widely used of these band selections tools is the Fast Kurtogram
(FK) [3], which is an automated band selection tool based on the maximum kurtosis level. Aside from this
tool there are other band selection tools that have been developed to obtain the SES. The Optimised Spectral
Kurtosis (OSK) [4] selects the band with the maximum kurtosis as well, while retaining a narrow bandwidth
in order to by-pass electro-magnetic interference noise on the signals. The Sparsogram [5] is based on the
sparsity level on different bands based on the wavelet-packet, and the Infogram is utilizes the negentropy as
a feature to detect the impulsive bands of the signal for demodulation. Moshrefzadeh and Fasana proposed
the Autogram [6], a tool also based on the maximum kurtosis, but unlike the FK, it is calculated from the
unbiased autocorrelation of the squared envelope of the demodulated signals. Instead of a classical filter (e.g.
Butterworth filter), the undecimated wavelet packet transform (MODWPT) is used instead to split the signal in a
series of frequency bands. The band of the autocorrelated squared envelope with the highest Kurtosis is selected
as the optimal one, and is shown to have higher diagnosis performance than other stat-of-the-art band selections
tools. One conclusion of the method is that band selection tools select only one node as the optimal, and often
other unused nodes may contain useful information that is negleted. As such, they introduce the concept of
multi-band integration to the Autogram, where several filtered SES, corresponding to the highest kurtosis of
each level, are all combined into one spectrum denominated as Combined Squared Envelope Spectrum (CSES).

The Cyclic Spectral Correlation (CSC) and the Cyclic Spectral Coherence (CSCoh) have been proposed
in the last two decades as an alternative for the SES-based methods [7, 8, 9]. The main advantage of this
method falls on its ability to reveal hidden periodicities of second-order cyclostationarity, like bearing signals
that are masked under stronger signals. They are represented in bi-variable maps in the frequency-frequency
domain, from which its spectral axis can be integrated to obtain either the Enhanced Envelope Spectrum (EES)
or the Improved Envelope Spectrum (IES). These spectra, the EES and IES, have been seen to improve the
detection of cyclostationary faulty signals. However, to obtain the optimal band of demodulation for the CSC
or CSCoh, its bi-variable map needs to be analysed in order to select the optimal band for integration along
the spectral axis. The IESFOgram [11] as been previously proposed as a band selection tool to be applied on
the bi-variable maps of CSC or CSCoh, in order to take advantage of its good perfomance in extracting the
cyclistationry information of the signals. It also displays a color-mapped 1/3 binary tree like the FK and is
seen to provide an optimal band of integration resulting in an IES allowing the detection of the fault frequency
harmonics. However, as information of the damage can be present in other bands beside the optimal band, the
authors propose an approach to combine the spectra of different bands into one Combined Improved Envelope
Spectrum (CIES).

The objective of this paper is the proposal of extending the IESFOgram methodolgy by adding the infor-
mation of other bands into a combined spectrum, the CIES. The methodology is validated on real signals of
two datasets (one with roller bearing damage under variable speed and load conditions [10] and one from a
planetary gearbox with electromagnetic interference [4]). Furthermore, the performance of the methodology
is compared with the band pass filtering selection based on the Fast Kurtogram-based SES and the Autogram-
based CSES. Figure 1 depicts a scheme of the used methodologies. The rest of the paper is outlined as follows.
In Section 2, the background theory deemed needed for the application of the proposed method is detailed. In
Section 3 the proposed methodology itself is presented. In Section 4, the methodology is tested, validated and
compared with state of the art methodologies. The paper closes in Section 5 with some conclusions.
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Figure 1: Schematic description of diagnostic methods based on Fast Kurtogram, Autogram, and IESFOgram

2 Cyclostationary signals

Rotating mechanical components are likely to generate cyclic transient signatures which are periodic in
nature if the rotational speed is kept constant during the acquisition of signals. These signals often carry
information on the health of its components, and signal processing and feature extraction are widely used in
order to track the health condition of its components. Following the cyclostationary theory, the signals of
interest acquired from rotating machinery can be defined into two orders of cyclostationary signals. Signals of
first order of cyclostationarity (CS1) are signals whose first-order statistical moment is a periodic function of T
that complies with the condition of Eq. 1.

C1x(t) = E{x(t)}=C1x(t +T ) (1)

where E denotes the ensemble averaging operator, and t stands for time. In rotating machinery, CS1 vi-
brations signals are periodic waveforms related to components phase-locked with the rotor speed( e.g. shaft
misalignment, spalling on meshing gears, etc). A second-order cyclostationary (CS2) signal is a signal whose
second order statistical moment is periodic [13]. In particular, if its autocorrelation function is periodic with
period T as described in Eq. 2.

C2x(t,τ) = E{x(t)x(t− τ)∗}=C2x(t +T,τ) (2)

where τ corresponds to the time-lag variable. Bearing vibration signals are often described as CS2, due to
having a hidden periodicity related to the shaft speed. Finally, an nth- order cyclostationary (CSn) is a signal
whose nth-order statistical moment is periodic, but signal with higher order than CS2 are not taken into account,
as CS1 and CS2 describe well the signals of interest generated by rotating machinery.

The Cyclic Spectral Correlation (CSC) is a tool in which the CS1 and CS2 signals are well described in the
frequency-frequency domain. The method is represented as a distribution function of two frequency variable:
the cyclic frequency α linked to the modulation; and the spectral frequency f linked to the carrier signal.
The tool can be described also as the correlation distribution of the carrier and modulation frequencies of the
signatures present in the signals, defined in Eq. 3.

CSC(α, f ) = lim
W→∞

1
W

E{FW [x(t)]FW [x(t + τ)]∗} (3)

where FW [x(t)] stands the Fourier transform of the signal x(t) over a finite time duration of W . Processing
the CSC results in the bi-variable map which reveals the hidden modulations, making it a robust tool for
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detecting the cyclostationarity in vibration signals [8, 9].
In order to minimize uneven distributions, a whitening operation can be applied to the CSC. This extended

tool, named the Cyclic Spectral Coherence (CSCoh), describes the spectral correlations in normalized values
between 0 and 1, and is defined as in Eq. 4 :

CSCoh(α, f ) =
CSCx(α, f )√

CSCx(0, f )CSCx(0, f +α)
(4)

Both the CSC and the CSCoh bi-variable maps can be integrated along the spectral frequency axis in order
to obtain a regular spectrum, resulting in a one dimension spectrum function of the cyclic f requencyα . The
band of spectral frequencies to be integrated can be defined as the full available band, from zero to the Nyquist
frequency, resulting in a spectrum that exhibits all modulations present in the signal. On the other, the band
can be defined as the one that maximizes the cyclic characteristic frequency of interest while minimizing the
background noise and the other frequency components that may mask the frequency of interest. In this manner,
the integration over a specific band on the bi-variable map can improve the detection rate of the characteristic
frequency related to the present damage on the signal. The resulting spectrum is then named Improved Envelope
Spectrum (IES) and it is obtained from the frequency-frequency domain according to Eq. 5 :

IES(α) =
1

F2−F1

∫ F2

F1

|CSCohx(α, f )|d f (5)

3 Proposed methodology

Diagnosis using the bi-variable maps requires a deep understanding of the map in order to exploit its infor-
mation. Analysis of one dimensional spectra is far more widely applied in the academia and industry and easier
to anaylise. It has been seen that integration of the bi-variable function along its spectral variable results in a
one dimensional spectrum, which would be a good tool on itself for diagnostics purposes. On the other hand,
the diagnostics information could still be masked under the noise and other components signatures. Integration
of the specific band that carries the signal of interest can further enhance the spectrum and increase the perfor-
mance in the detection of the frequencies of interest. The detection of the optimal band of integration on the
bi-variable map is not always straight forward.

The Improved Envelope Spectrum via Feature Optimization-gram (IESFOgram)[11] is one such band se-
lection tool to be applied in the bi-variable map as placed in the scheme depicted Fig. 1.

The proposed method tries to optimize a Normalized Diagnostic Feature (NDF) based on the cyclic char-
acteristics of interest (e.g. rolling element bearing characteristic fault frequencies/orders) on the demodulated
spectrum resulting from the integration of the bi-variable map. The method is thought to be general enough
to be applied to either the CSC or the CSCoh. The scheme representing the IESFOgram procedure and the
extraction of the NDF is shown in Fig. 2, and step-by-step details for its extraction as described as follows.

Step 1: In the first step, the bi-variable map is extracted from the signal. The estimators of the CSC(α, f )
can be based on the Averaged Cyclic Periodogram, Cyclic Modulation Spectrum or any other numerical method
[14] to extract the CSC bi-variable map previously described in Eq. 3. The CSC can also be in its normalized
version CSCoh(α, f ). The user can define on its own discretion which method to use in order to obtain the
bi-variable map CSC(α, f ). The reader is forwarded to the references [15, 16], suggested as providers of the
numerical implementation of the CSC in the Order-Frequency domain, and the reference [8] to the Frequency-
Frequency domain CSC, if it is applied to the order tracked signal as a function of angle results in the Order-
Order domain CSC.

Step 2: The next step consists in dividing the map along the spectral axis f according to the 1/3-binary
tree that is also applied to the Fast Kurtogram [3]. Each is defined by a series with a decreasing bandwidth bw
and incremental steps of center frequency c f which define the upper and lower limit f1 and f2 described in the
integration of Eq. 5. Each band is then integrated and results in a demodulated spectrum IESc f ,bw(α).

Step 3: From each processed IESc f ,bw(α), one Diagnostic Feature DF(c f ,bw) is extracted. This feature
is based on the cyclic fault frequency/order of interest. Therefore, to calculate this feature, as well as the
IESFOgram, this cyclic component needs to inserted into the method as input. The feature DF(n) is defined
as the sum of the N-harmonics of the characteristic fault frequency/order α f ault normalized by the noise level
estimated in a bandwidth 2× fb, as described in Eq. 6.
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Figure 2: Schematic description of the IESFOgram procedure for extraction of CIES.

DF(c f ,bw) =
N

∑
k=1

IESc f ,bw(k×α f ault)

1
2 fb

[∫ k f f ault+ fb
k f f ault− fb

IESc f ,bw(α)dα− IESc f ,bw(k×α f ault)
] (6)

The normalization procedure is important to be taken into account. This is due to some bands having high
peak values of noise, and the direct absolute value at the fault frequencies can be higher than at the optimal
band. Normalizing with the background noise level at the peaks solves this problem, making high values of the
DF to correspond to bands where the frequency peaks of interest are present.

Step 4: The objective of this step is to find the the weight value to be applied on each band for integration of
the bi-variable. To quantify the presence of a cyclic component in each band, the library of features DF(c f ,bw)
is used. The higher the value of DF, the higher the presence of the component of interest is present. Thus, the
optimal band OB is identified as the arguments which maximizes DF(c f ,bw), as described in Eq. 7.

OB = argmax
c f ,bw

[ DF(c f ,bw) ] (7)

Colormap presentation of the values of DF as function of (c f ,bw) in a 1/3-binary tree is called the IESFO-
gram, and its maximum value corresponds to the selected optimal band for integration.

Step 6: The representation of DF(c f ,bw) as function of center frequency c f and bandwidth bw is trans-
formed to a representation function of the spectral frequency f and the level, as DF( f , level). To be used as
a proper weight on the bi-variable map, the DF(c f ,bw) is summed along its level (SDF(c f ,bw)), and then
normalized between 0 and 1 (NDF(c f ,bw)):

SDF( f ) =
N

∑
level=1

[ DF( f , level) ] (8)
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NDF( f ) =
SDF−min(SDF)

max(SDF)−min(SDF)
(9)

Step 7: The final step is to integrate the bi-variable map along the spectral axis on and weight each band
with normalized diagnostic feature NDF( f ) in order to obtain the Combined Improved Envelope Spectrum
CIES(α). This step can be considered not be part of the IESFOgram procedure, but as the extraction of the
CIES with highest Signal-to-Noise Ratio (SNR) for diagnostic purposes.

CIES(α) =
f s/2

∑
f=0

CSCoh(α, f )∗NDF( f ) (10)

To define if the extracted amplitude value on the spectra of the cyclic component are statistically relevant,
a threshold is also calculated, and visualized on all spectra of this paper. The threshold is the same as the
one presented by the authors in [13], based on 3 times the Moving Absolute Deviation (MAD) of its spectra.
The window defined on all spectra corresponds to the total number of samples of each corresponding spectrum
divided by 27. All values above the threshold are considered to be statistically relevant for detection of the
frequency.

4 Experimental application and results

In order to test and validate the proposed methodology, vibration data captured from two separate test rigs
are used as case studies. One dataset corresponds to damage on the roller of a bearing under variable speed and
load conditions. The second dataset corresponds vibration signals with damage in the outer race of the bearing
with high electromagnetic interference present in the signals.

4.1 Case 1 - Roller damage under variable speed and load conditions

The first studied case of this paper is performed on the rolling bearing testing rig developed at the DIRG
lab of Politecnico di Torino, where a high-speed spindle drives a shaft supported by a couple of identical
bearings. Different damage conditions have been imposed on one of the bearings, and accelerations have
been recorded in different positions and directions, under various load and speed conditions. The evaluation
of the local damage on a roller has also been evaluated by monitoring the bearing under the same speed and
load conditions for about 230 hours. A selection of the acquired records can be downloaded from ftp:
//ftp.polito.it/people/DIRG_BearingData/ [10] .

The test rig is composed of three bearings (B1, B2 and B3) mounted inline on the output shaft of a high-
speed spindle motor and a precision sledge applying radial load on the bearing on the middle, as depicted in
Fig. 3.

The speed of the spindle is set through the control panel of an inverter but can not be actively controlled:
not only the spindle has no keyphasor transducer or tachometer to detect its actual speed but also there is no
feedback to the controller of the inverter. As a direct consequence, the actual speed of the shaft is always lower
than the ideal one and the difference increases with the applied load. A static load cell allows for measuring the
resulting force, whose direction is purely radial.

The main geometrical properties of the three bearings, specifically manufactured for this high speed aero-
nautical applications, are listed in Table 1.

Bearing reference Pitch diameter D (mm) Rollers diameter d (mm) Rolling elements
B1 & B3 40.5 9.0 10

B2 54.0 8.0 16

Table 1: Main properties of the roller bearings [10].

The dataset corresponding to the variable conditions has 7 cases: three with indentation on the inner ring
of the bearing; three with indentation on a roller of the bearing; and one with no damage (healthy). Each
damage corresponds to indentation damages diameter of 450,250 and 150µm. The case depicted in this paper
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Figure 3: Test rig (up) general view, (left) position of the two accelerometers, (right) shaft with the three
accelerometers [10].

corresponds to the damage on the roller with a diameter of 150µm. Each case contains signals acquired during
20 seconds at 51.2 kHz under speeds of: 100, 200, 300, 400 and 500 revolutions per second. Furthermore,
the acquired signals are under 4 radial load conditions: 1000 N, 1400 N, 1800 N, and no load. The damaged
bearing corresponds to bearing B1, and its characteristic frequencies under the different speed conditions are
described in Table 2.

Motor speed (Hz) FTF (Hz) 2xBSF (Hz) BPFO (Hz) BPFI (Hz)
100 38.9 427.8 388.9 611.1
200 77.8 855.6 777.8 1222.2
300 116.7 1283.3 1166.7 1833.3
400 155.6 1711.1 1555.6 2444.4
500 194.4 2138.9 1944.4 3055.6

Table 2: Characteristic frequencies of bearing B1 under different steady speed conditions.

From the two triaxial accelerometers, the signals used to diagnose the roller damage are on the radial
direction of the accelerometer mounted on the damaged bearing B1, or in other word, the radial output of
accelerometer A1 is used.

The speed reference is provided along with the signals, but the description details that the speed is in reality
lower than the provided one. Upon analyzing the signal in the bivariable map from the CSCoh, it is defined that
the shaft speed frequency is clear at around 90% of the theoretical one and can be extracted from the spectra
under null applied load. Figure 4 shows the CSCoh map exemplifiying the clear shaft frequency at 288 Hz, for
the case of speed 300 Hz and a load of 0 N.

When load is applied to the bearing, the FTF harmonics of bearing B1 become the prominent ones, as can
be seen from the CSCoh map in Fig. 5 for the case of speed 300 Hz and a radial load of 1000 N.

These peaks at 90% of the given speed and the FTF were used as reference for the real speed of the test rig.
With this, the frequencies at the 2xBSF can be correctly defined to determine if they are indeed present in the
spectra.

The frequency at 2xBSF and its two next harmonics are then used as inputs to calculate the IESFOgram,
and the weight of the different bands that will enhance the peak extraction at those frequencies, as shown in
Fig. 6.

7



Figure 4: CSCoh bi-variable map around the first 3 FTF harmonics of the damaged bearing and shaft frequency
speed of signal under no radial load.

Figure 5: CSCoh bi-variable map around the first 3 FTF harmonics of the damaged bearing and shaft frequency
speed of signal under 1000 N of radial load.

Figure 6: Signal under 300 Hz speed and 0 N load: (left) IESFOgram, (right) Combined IESFOgram.
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Figure 7: CIES for the signal under 300 Hz speed and 0 N load.

Figure 8: CSES for the signal under 300 Hz speed and 0 N load.

The IESFOgram shows high feature values at high frequencies, mainly around 20 kHz. Applying the
resulting weighted function (Combined IESFOgram) to the integration of the CSCoh, the 2xBSF can be clearly
extracted from the CIES seen in Fig. 7.

The Autogram applied to the same signal has a similar result, with high feature values for around high
frequency bands. The Combined SES based on the Autogram is successful in extracting the peak at the 2xBSF
above the threshold, along with the shaft frequency harmonics, as shown in Fig. 8.

The Fast Kurtogram detects the center frequency 10.1 kHz with a bandwidth of 1067 Hz with the highest
kurtosis. The resulting SES based on the Fast Kurtogram does not provide any valuable diagnostic information,
as illustrated by Fig. 9.

Following to the case of radial load of 1000 N at 300 Hz of shaft speed, the IESFOgram shows high feature
values around 12 kHz. Applying the weighted function based on the IESFOgram, the 2xBSF and its harmonics
are clearly detected from the Combined IES seen in Fig. 10.

For this case, the radial increases the impulses due to the roller damage, making it easier to detect the fault
frequencies. The harmonics of the FTF that modulate the roller characteristic frequency also became dominant
under the radial load.

The Autogram applied to the same signal has a similar result, with high feature values for around high
frequency bands. The CSES based on the Autogram is also successful in extracting the peak at the 2xBSF
above the threshold, as well as the FTF harmonics, as shown in Fig. 11.

In the cases with high load applied, the FTF and 2xBSF harmonics are so dominant on the signals that
both the FK-based SES as well as the classical SES with no filtering detect these above the threshold. As
a final remark, for the other speeds, the same pattern is found, where in high radial loads the damage related
frequencies are dominant while in the no load cases they are masked in the noise level. For avoiding redundancy
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Figure 9: FK-based SES for the signal under 300 Hz speed and 0 N load.

Figure 10: (left) IESFOgram and (right) CIES for the signal under 300 Hz speed and 1000 N of radial load.

Figure 11: (left) Autogram and (right) CSES for the signal under 300 Hz speed and 1000 N of radial load.
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Figure 12: Test rig (left) inside view, (right) schematic representation [4].

on the results, these figure results are not shown here.

4.2 Case 2 - Outer race damage under electromagnetic interference (EMI)

The following case vibration data was acquired from the planetary gearbox test rig with applied torque is
presented in Fig. 12. The gearbox torque is provided by a hydraulic system driven by a three-phase induction
motor. A torque transducer is attached to measure the applied torque on the gear set while the speed of the
driving shaft is controlled by a VFD. The gear ratio of the planetary stage is 1:3 (speed up) consisted of a 40
tooth sun gear, three 20 tooth planetary gears and a 80 tooth ring gear. The planet carrier is the input of the
planetary stage, the sun gear is the output while the ring gear is fixed. The overall transmission ratio of the
test rig is approximately 1:1 as an initial 90:32 reduction stage is attached. An accelerometer is mounted on
the planet carrier to measure acceleration in the axial direction focusing towards the investigation of internal
vibration measurements. The vibration signal is finally transmitted to the signal conditioner by the use of a
slip ring. Faults have been seeded in the inner race and the outer races of the planet gear bearings using spark
erosion. needle roller bearings are used, containing 15 rollers of 2 mm diameters and a pitch diameter of 18
mm. The depth of the faults is 0.4 mm while the width is 1.2 mm for the outer race and 1.0 mm for the inner
race respectively. The measurements have been realised for each type of defect (inner and outer race) at a
constant input shaft speed of 6 Hz for three torque loads 30, 50 and 70 Nm. The sampling frequency has been
selected equal to 131,072 Hz, the switching frequency of the VFD was set at 14 kHz, and the control frequency
of the VFD was 24 Hz (giving a nominal 6 Hz shaft speed for the 8-pole motor). The PWM carrier and the
PWM message are equal respectively to 14000 Hz and 24 Hz. Based on the geometry of the bearing and its
speed, the BPFO is equal to 55 Hz and the BPFI is equal to 69 Hz, but only the BPFO case is demonstrated in
this paper.

Applying the Autogram to the signal with outer race damage and with a applied torque of 50 Nm, the band
with the maximum Kurtosis with center frequency of 44 kHz and a bandwidth of 2048 Hz is selected as the
optimal. This is the correct band with the carrier of the outer race damage. However, the impulsive bands of
the carrier of the EMI have also high values of kurtosis, and the resulting CSES shows the peaks at noise level
and bellow the threshold, as shown in Fig. 13.

This is the principal obstacle in detecting bearing damage with EMI noise, as both signatures have a im-
pulsive nature which are represented with high kurtosis. The Fast Kurtogram selects the bands related to EMI
as the ones with the highest kurtosis, as it as been concluded on this signal by the authors in [4, 12]. In this
case, the SES based only on one band with the maximum kurtosis level of the Autogram would provide better
performance.

The IESFOgram and its CIES are presented in Fig. 14, and the peaks of the BPFO are seen to be detect
with clarity, well above the threshold. The case of BPFI not shown here the IESFOgram extracts the peaks of
BPFI, however the CSES version also allows detection of fault.
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Figure 13: (left) Autogram and (right) CSES for the signal under 50 Nm of torque.

Figure 14: (left) IESFOgram and (right) CIES for the signal under 50 Nm of torque.

5 Conclusion

This paper proposes a new method for demodulation on multi-bands of frequencies using the bi-variable
maps based on the Cyclic Spectral Correlation and Coherence. Initially, the IESFOgram related to the damaged
bearing characteristic frequency is calculated in order to extract the spectral frequency bands that have high
information content on the fault. The Normalized Diagnostic Feature as a function of frequency is defined as
the normalized sum of feature values of the IESFOgram. The last step is to perform a multi band integration
with the enhanced bands with high Normalized Diagnostic Feature values, and finally obtaining the Combined
Improved Envelope Spectrum that allows a correct bearing diagnosis.

The methodology shows good performance in detecting the characteristic frequencies when they are present
on the signals, by enhancing the bands with more relevant information on the fault and performing a multi band
integration with higher weigthed values on those bands. The method was compared mainly with the Combined
Squared Envelope Spectrum based on the Autogram, which also showed higher performance than the Fast
Kurtogram on the detection of the bearing characteristic frequencies by also performing a multi band filtering
procedure. When the signals contain a high impulsive signal with the same nature as a bearing damage, such as
electromagnetic interference, the CSES-based on the Autogram shows to keep the peak frequencies of interest
bellow the noise level in case of high impulsive noise spread over several bands. The CIES shows to be able
to extract clearly the fault frequency peaks above the noise level while ignoring the bands dominated by the
impulsive noise. This is shown to be the case because the IESFOgram is targeted at the frequencies of interest,
while the Autogram is blind. Indeed, the main disadvantage of the IESFOgram compared to the Autogram and
the Fast Kurtogram is that it is not a blind method.

The methology was tested and validated on two experimental datasets: the first under variable speed and
load condition, and the second on signals with high electromagnetic interference contamination. The results
show the method can diagnose with confidence bearing damages on vibration signals.
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