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Abstract 
Rotating machines are widely used in manufacturing industry, where sudden failures of key components such 

as bearings may lead to unexpected breakdown of machines and cause economic loss and human casualties. 

In addition, machines usually are operating under different working conditions leading to the dynamic changes 

of fault characteristic, thus presenting big challenges of reliable and accurate fault diagnosis. Data-driven based 

Deep Learning (DL) fault diagnosis methods are powerful tools to capture hierarchical features from raw input 

to classify fault patterns by stacking multiple non-linear transformation layers. It constructs and trains deep 

models relying on huge historical data and requiring less expert knowledge to obtain decision-making. These 

techniques present effectiveness and advantages in many intelligent fault diagnosis tasks. However, many DL 

methods are developed for the diagnosis of single fault type without considering the correlations of fault modes. 

In this paper, we develop a novel fault diagnosis method based on cyclostationary tool and Convolutional 

Neural Networks (CNN) to tackle these problems. The proposed method presents three characteristics: 1) 

Cyclic Spectral Coherence (CSCoh) is adopted to provide bearing discriminative patterns for specific type of 

faults. 2) A fault occurred on the same component (fault pattern), but having different fault severity levels can 

be regarded a multi-label classification problem, where the fault pattern and the fault severity level are 

considered to be two specific faults. 3) A novel CNN is constructed by introducing a sigmoid activation output 

and binary-cross entropy loss function to conduct the multi-label classification task. Specifically, CSCoh is 

adopted to capture correlation features of periodic phenomenon in the frequency domain. CSCoh is a bi-

variable map of two frequency values, which could be used to enhance signatures masked by strong noise, 

characterizing the fault vibration signals obtained from the rotating machinery under different operating 

conditions. Then a CNN is developed for multi-label fault classification, which includes fault patterns and fault 

severity levels identification. The proposed method is evaluated in the experimental study of rolling element 

bearing fault diagnosis, in which data are collected under different working conditions. The experiment results 

demonstrate that the proposed method could presents good classification performance and superiority 

compared with other approaches. 

 
 Introduction 

Rotating machines play important role in manufacturing industry. Rolling element bearings, as the key 

components of machines easily suffer from the sudden failures due to the long operating under the harsh 

conditions. This unexpected breakdown of machines may lead to economic loss and even human casualties. 

Thus, it is essential to develop the condition monitoring techniques for the early and accurate defect detection 

of such components.  

Recently, data driven based-DL intelligent fault diagnosis methods have achieved increasing attentions, 

due to the powerful feature leaning capability from raw input. DL algorithms refer to deep neural networks, 
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where multiply non-linear transformation layers are stacked to construct the hierarchical architectures. Each 

layer can be regarded as a data pre-processing unit, where the input is converted into abstract features. With 

the increase of the layers, the high-level layer can learn more discriminative representations which are helpful 

for the diagnosis tasks [1]-[2]. The typical DL algorithms, such as Auto Encoder (SAE), Deep Belief Network 

(DBN), Convolutional Neural Network (CNN) and Long Short-Term Memory network (LSTM), have been 

applied for the fault diagnosis and detection [3]-[5]. 

 Wang [6] took advantages of the CNN to learn features automatically from the raw vibration signals. Then, 

Hidden Markov Models (HMM) were employed as strong stability tools to classify rolling element bearing 

faults. Chen [7] proposed a SAE-DBN method for fault diagnosis by utilizing the multiply sensor information. 

In the first step, eighteen statistic indexes were extracted from the raw vibration signals, which were fed into 

sparse autoencoders for feature fusion. Finally, the fused features were input into DBN for fault diagnosis. 

Janssens [8] extracted the frequency spectra from two vibration accelerometers, and then a 2D CNN with one 

convolutional layer was designed to learn useful features for bearing fault detection. The proposed method 

demonstrated its advantages compared to that with hand-crafted features. Sun [9] presented a sparse Deep 

Stacking Network (DSN) to improve motor diagnosis performance, where the output label of DSN was coded 

as binary 0 and 1, which leads to more accurate and robust classification results. Chopra [10] adopted SAE for 

unsupervised features extraction from the engine data, and the majority voting based criteria was used to 

determine the engine fault type. Althobiani [11] utilized both the Teager Kaiser energy operator and statistical 

measures to reveal the fault patterns contained in collected signals, and then further adopted DBN for diagnosis 

of reciprocating compressor. The proposed method provided highly reliable and applicable. Tamilselvan [12] 

applied DBN for aircraft engine health diagnosis and electric power transformer health diagnosis, which 

obtained high classification accuracy and presented good generalization performance. In addition, Ince [13] 

developed a 1D CNN to conduct end-to-end motor fault diagnosis from raw signal input. Jia [14] proposed a 

normalized CNN for improving the bearing diagnosis performance under imbalanced data by embedding 

normalized layers and weighted Softmax loss. 

From those works mentioned above, different measurements, such as raw time-series signals, frequency 

spectra, time domain and frequency domain statistical indexes, were adopted as the input of the DL algorithms, 

which obtained high diagnosis results. However, most of the studies are focusing on distinguishing different 

fault patterns while ignoring the diagnosis of fault severity levels. The fault severity identification is 

meaningful to detect the early fault occurrences and guide the decision-making. 

Gan [15] adopted the Wavelet Packet Transform (WPT) to extract representative features and then 

designed a two-layer Hierarchical Diagnosis Network (HDN) for rolling bearing faults. In this study, different 

DBNs are stacked together, respectively, for classifying fault patterns and fault severity levels. However, 

multiply DBNs should be designed and trained for meeting the classification tasks. In addition, Wen [16] 

proposed a Hierarchical Convolutional Neural Network (HCNN), which can be used to recognize the fault 

patterns and fault severity levels at the same time. In this work, two fully-connected branches are designed at 

the end of pooling layer to conduct diagnosis. The first branch is used for the diagnosis of fault patterns, and 

the second branch is used for the recognition of fault severity levels. However, the drawback is that each branch 

should be constructed with an independently loss function, and a parameter was introduced to balance the 

trade-off of two losses of HCNN, which requires much expertise knowledge and computational cost for 

training. 

Inspired by previous works, a novel approach integrating CNN and CSCoh is proposed for the multi-label 

fault classification of rolling element bearings. Firstly, CSCoh is adopted to capture correlation features of 

periodic phenomenon in the frequency domain, which provides a good discriminative input for CNN. Then a 

novel CNN is constructed for implementing multi-label fault classification by introducing a novel activation 

function and loss function. Compared to the other methods, the proposed method only requires a CNN to obtain 

the fault patterns and fault severity levels at the same time. In addition, compared to other methods, the 

proposed only replaces the activation function and loss function, without introducing extra parameters and 

computational cost, which is more suitable for the real industrial applications. 

The remaining part of the paper is organized as follows. In Section 2, the theory of the cyclic spectral 

analysis and the CNN are provided. The diagnosis procedure using the proposed method is introduced in 
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Section 3. In Section 4, a comprehensive experimental description and the analytical are introduced. Section 5 

describes the conclusion of this paper. 

 

 Introduction to cyclic spectral analysis and Convolutional Neural 

Networks 

 cyclic spectral analysis 

In rotating machines, the bearing defects usually generate modulated signals by the characteristic 

frequencies of the bearings. Such signal, though not periodic, usually can be described as cyclostationary, 

whose statistical properties vary periodically with time [17]-[18]. The common spectral analysis technique is. 

Fast Fourier Transform (FFT). It is based on the assumption that the analysed signals are stationary, which can 

not accurately describe the cyclostationary. To deal with the problems, the cyclic spectral analysis techniques 

are developed to detecting and identify the hidden periodic behaviour of signals [19]-[20].  

For a cyclostationary signal x(t), the second-order moment of cyclostationarity can be defined as an 

instantaneous AutoCorrelation Function (ACF) with a cyclic T, which is defined as: 

 
*( , ) ( , ) { ( + / 2) ( - / 2) }xx xxR t R t T E x t x t        (1) 

Then, the second-order statistical descriptor of cyclostationarity, called the Cyclic Spectral Correlation 

(CSC), can be estimated by implementing the double Fourier transform on the ACF, which is given by: 

 
2 ( )CSC( , )= ( , ) j t ff R t e dtd     
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The CSC is a bi-variable map of two frequency values. The parameters f and α are called the spectral 

frequency and cycle frequency, respectively. Contrary to the classic spectral analysis, it provides an additional 

frequency dimension, revealing both the carriers and their modulations. Spectral frequency f is linked to the 

carrier component, and the cyclic frequency α is linked to its modulation. It can be observed that for α is equal 

to zero, it is the classical power spectrum. Furthermore, for α is not equal to zero, it is the power spectrum for 

that specific cyclic component. Then the Cyclic Spectral Coherence (CSCoh) can be used to measure the 

degree of correlation between two spectral components given estimated by: 
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The CSCoh can be interpreted as the CSC of a whitened signal, which tends to equalize regions with very 

different energy levels, magnifying weak cyclostationary signals [20]. 

 

 Convolutional Neural Network 

CNN as a category of multi-layer neural network has achieved great success in areas such as image 

recognition, image classification, object detections, recognition faces [21]. A typical CNN usually is 

constructed by the four main operations, convolutional layer, activation layer, pooling or sub sampling layer, 

and fully-connected layers. Different kinds of layers play different roles. By stacking multiply convolutional, 

pooling and fully-connected layers, CNN can learn from low-level features to high-order or more abstract 

features. The layer types considered in this work are introduced. 

 

2.2.1 Convolutional layer 

Convolution is the first layer of CNN. The primary purpose of convolution is to extract the features by 

implementing the convolution operation on raw input data with learned convolution kernel/weights [22]. For 

each input xi and convolution kernel kj, the output feature map can be calculated as follows, 

 
, ( )
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i j j i j if

f
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x x x
  (4) 

where, * denotes the convolution operation, k and b are the value of the kernel and the bias. f( ) is the activation 

function, which is usually selected as the Rectified Linear Unit (ReLU) to enable better training of CNN. 

 

2.2.2 Pooling layer 
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In the second step, the pooling layer is followed, which is used to reduce the spatial dimension and gain 

computation performance and some translation invariance. This is achieved by summarizing the feature 

responses in a region of neurons in the previous layer. For an input feature map xi, the output feature map is 

obtained, 

 max( )i i
r r

y x   (5) 

where r is the pooling size, and the common pooling operation adopted is known as max-pooling, which slides 

a window, and gets the maximum on the window as the output.  

 

2.2.3 Fully-connected layer 

In the fully-connected layer, the neurons are fully connection to all activations in the previous layer, and a 

Softmax classifier is usually attached to compute the class score. For the input vector zi (i=1, 2, …, N), where 

N is the number of samples. the Softmax computes the exponential of the given input vector, and the sum of 

exponential values of all the values in the inputs. Then the ratio of the exponential of the input value and the 

sum of exponential values is the output of the Softmax function, which can be defined as,  

 
exp( )

( )
exp( )

i
i

ij

Softmax 


z
z

z
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The output corresponds to the probabilities of each class, and the target class will have the high probability. 

Softmax will enforce that the total sum of all the probabilities equals to one. That means, in order to increase 

the probability of a particular class, the module will correspondingly decrease the probability of at least one of 

the other classes. Thus, the final output will only have one true label. In order to effectively update the neural 

network, the Cross-Entropy (CE) loss  can be adopted by minimizing the loss function between the probability 

output and the true target class, which is defined as, 
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 where y is the true label of the data set, ŷ is the Softmax output, and C is the number of class.  

 

 The proposed CSCoh-CNN fault diagnosis framework 

 The architecture of the proposed CNN 

In this section, the architecture of the proposed CNN is designed. Compared to the traditional CNN 

architecture, the proposed architecture introduces a new activation function in the output layer and a new loss 

function of CNN. 

 

3.1.1 Sigmoid activation function 

In the traditional CNN, the Softmax is usually regarded as the final fully-connected layer to predict the 

classes. While in the proposed CNN, it is replaced with Sigmoid activation function, which can be defined as, 
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For each value of the Sigmoid input, the Sigmoid function returns an independently real-valued output, 

which can be used to estimate the true output. For the Softmax output, the high value will have the higher 

probability than other values. That means for a classification problem, there is only one right class output, the 

outputs are mutually exclusive. While for the Sigmoid output, since the output are independently, it allows to 

have high probability for all of the classes, and the high value will have the high probability but not the higher 

probability. That means, for a multi-label classification, Sigmoid can output multiply correct classes, once a 

probability of one of the output nodes is above the threshold which is usually set to 0.5.  

In order to better explain the differences of Softmax and Sigmoid, a fault diagnosis case is taken for 

example, presented in figure 1. When a Ball Fault with defect diameters of 14 mil (BF14) of rolling element 

bearing occurs, it can be observed that the traditional Softmax can correctly predict the BF fault with a 

probability of 85%. But it can only provide a true class output, which fails to diagnosis the severity level at the 
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same time. On the contrary, for the Sigmoid activation output, it not only can obtain the fault pattern: BF with 

a probability of 92%, but also the fault severity level which is estimated with a probability value of 84%. 

 

 
Figure 1: The differences between Softmax and Sigmoid activation function 

 

3.1.2 Binary Cross-Entropy Loss 

In order to optimize the CNN with multi-label classification tasks, the Binary Cross-Entropy (BCE) loss 

is adopted by splitting a multi-label classification problem in C binary classification problems. Unlike the CE 

loss, BCE is independently for each class, meaning that the loss computed for every output component is not 

affected by other output class. The loss function can be defined as, 

 
1

ˆ ˆoss log( ) (1 )log(1 )
C

BCE i i i i

i

L


   y y y y   (9) 

where the update of the weight can be easily implemented by Back-Propagation (BP) algorithm, which is the 

same as that of the traditional CNN. 

 

 Fault diagnosis based on the proposed CSCoh-CNN 

In this section, a multi-label fault diagnosis framework combining CSCoh and CNN is constructed as 

presented in figure 2. Inspired by the typical LeNet-5 [22], the proposed CNN architecture is designed by 

stacking two convolutional layers, two pooling layers, one fully-connected layer, and one Sigmoid 

classification layer.  

In the convolutional layer configurations, a small kernel size (3ⅹ3) is applied in each convolution layer 

to capture the detail information and reduce the number of parameters. The convolution stride is fixed to 1 

pixel. The number of filters is set equal to 6 in the first convolutional layer and the second one is doubled (12) 

to increase the feature learning capability. In the pooling layers, the max pooling is carried on the input over a 

(2ⅹ2) pixel window with stride 2. Therefore, the feature map size is halved to reduce the time complexity. 

Then the fully-connected architectures is set to 100 neurons. The number of Sigmoid output nodes correspond 

to the number of predicted classes. 

The specifically training procedure can be summarized as follows, 

Step 1: The raw vibration data are collected from the test rig, which are pre-processed by cyclic spectral 

analysis to obtain 2D CSCoh maps. The maps are further downsized to size 112×112 by balancing the 

computational cost and accuracy.  

Step 2: The CNN is constructed by stacking multiply convolutional and pooling layers. Especially, 

Sigmoid activation function is adopted to predict the independently probability of each class. Accordingly, the 

BCE is adopted for measuring the distribution between the multi-label output and the target output. 

Step 3: CNN network is updated by minimizing the BCE loss to improve the performance of the model in 

each epoch. The training procedure is the same as that of the traditional CNN. 

Step 4: At the testing phase, the testing samples are fed into the trained CNN model to obtain the final 

diagnosis result. 
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Figure 2: The fault diagnosis framework of the proposed method 

 

 Experiment verification 

 Experiment Setup 

The experimental data of rolling element bearings have been acquired from the public bearing data center 

provided by Case Western Reserve University (CWRU), which is regarded as a benchmark dataset. The test 

rig is mainly composed of an induction motor, a transducer and a dynamometer. The vibration data are 

collected near the driving end of motor with a sampling frequency of 48 kHz. The motor bearings were seeded 

with faults using electro-discharge machining (EDM). In addition to the Normal Condition (NC), bearings 

with defect diameters of 7 mil, 14 mil and 21 mil have been introduced separately at the inner raceway, ball 

and out raceway. Each bearing is tested under four different loads (0, 1, 2 and 3 hp). Thus, the faults with two 

different diagnosis levels (‘Level 1’ and ‘Level 2’) can be detected. ‘Level 1’ means to discriminate the bearing 

with different fault patterns. While ‘Level 2’ denotes to further diagnosis the bearing with different severity 

levels, such as BF7 and BF17 cases, which is more challenge. The detailed description of data is listed in Table 

1. 

 

Level 1: Fault pattern Level 2: Fault severity levels (mil) Class encoding 

Normal Condition (NC) 0 [1,0,0,0,0,0,0,0,0,0,0,0,0] 

Ball Fault (BF) 

7 [0,1,0,0,1,0,0,0,0,0,0,0,0] 

14 [0,1,0,0,0,1,0,0,0,0,0,0,0] 

21 [0,1,0,0,0,0,1,0,0,0,0,0,0] 

Inner race Fault (IF) 

7 [0,0,1,0,0,0,0,1,0,0,0,0,0] 

14 [0,0,1,0,0,0,0,0,1,0,0,0,0] 

21 [0,0,1,0,0,0,0,0,0,1,0,0,0] 

Outer race Fault (OF) 

7 [0,0,0,1,0,0,0,0,0,0,1,0,0] 

14 [0,0,0,1,0,0,0,0,0,0,0,1,0] 

21 [0,0,0,1,0,0,0,0,0,0,0,0,1] 

Table 1: Description of the bearing health conditions 

 

 Analysis of the CSCoh 2D maps 

In order to obtain the 2D CSCoh maps from the vibration measurements, 24000 data points (time duration 

of 0.5 seconds) are considered from the time-series signals to form one sample. There are 20 samples obtained 

from each health condition under every working load. In addition, it should be noted that, due to the limited 

sampling time, there are only 14 samples obtained for IF14 under the load 1. 

When defects of bearings occur, the bearing fundamental fault frequencies can be detected to analyse their 

dynamic behaviors. In order to validate the effectiveness of CSCoh in revealing the discriminative information 

of different fault types, four health conditions including the NC, IF with defect diameter of 7 (IF7), OF with 

defect diameter of 7 (OF7) and BF with defect diameter of 14 (BF14) are presented in figure 3. 

It can be seen that the CSCoh maps provide unique representations for given fault types. In figure 3 (a), 

the fundamental shaft frequency (fr) and its harmonic presents in the lower frequency are clearly observed, 

which is consistent with the dynamic behavior of the normal condition. In figure 3 (b) and figure 3 (c), Ball 

Pass Frequency of Inner-race (BPFI) and the Ball Pass Frequency of Outer-race (BPFO) and its harmonic can 
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be clearly captured respectively, corresponding to the occurrence of the specific faults. It should be noted that 

in the case of BFs, presented in figure 4 (d), the weak amplitude of the Fundamental Train Frequency (FTF) 

and the Ball Spin Frequency (BSF) can be detected only in a few of samples of BF14, which reveal the 

existence of the ball fault. This demonstrates that the proposed is able to provide a good discriminative features 

when defects of bearings occurred. 

 

  
(a) Normal Condition (NC) (b) Inner-race Fault with diameter of 7 mil (IF7) 

  
(c) Outer-race Fault with diameter of 7 mil (OF7) (d) Ball Fault with diameter of 7 mil (BF14) 

Figure 3: The 2D CSCoh maps of different health conditions 

 

 A Fault diagnosis using the proposed method 

4.3.1 Effect of training sample ratio on classification performance 

In order to study the influence of the training sample size on the classification rate, two datasets (dataset 

A and dataset B) are constructed to evaluate the performance. In dataset A, 20% of the samples are taken as 

the training data, while the rest for testing. In dataset B, 50% of samples are taken as training, and the rest for 

testing. Dataset A is constructed to simulate the insufficient training for the network. While dataset B is 

designed to sufficient training of network. 

 For CNN training, Adam algorithm is utilized to adjust the network weights with a batch size of 50. The 

epoch is set to 100, Ten trials are implemented to reduce the random. And the loss curves are shown in figure 

4. From the figure 4, it can be seen that the training losses in both datasets are smooth, and remain stable, when 

they reach a certain number of iterations. It reveals that the models are well trained under the two training data. 

In the test stage, the loss curve in dataset A decreases slowly than that of the train stage, and it is close to a 

fixed value, and keep stable. It is possible that CNN with a large number of parameters trained on the 

insufficient training data suffers from the overfitting problem. By adding more training samples, the loss curve 

as shown in figure 4(b), are obviously decreasing.  

In addition, the diagnosis results of ten trials are presented in figure 5. “Level 1” denotes the classification 

accuracy of the fault patterns, where NC, BF, IF and BF are correctly recognized. “Level 2” reflects the total 

recognition accuracy, where the fault patterns and fault severity levels are all correctly classified. 

From the results, it can be observed that, the results of all ten trials present relative high accuracy in both 

datasets. In addition, ‘Level 1’ is much higher than ‘Level 2’, since the former only needs to diagnosis the 

specific fault patterns, while the later requires to discriminative the fault severity levels of each fault patterns. 

Moreover, CNN with dataset A is much lower than that of dataset B, especially in ‘Level 2’. This is because 

that ‘Level 2’ contains more discriminative classes, which is more difficult for diagnosis. Therefore, the results 

of dataset B is able to obtain better classification performance compared to that of dataset A, since more of the 

training samples are contained. 
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(a) Loss curve of CNN using dataset A (b) Loss curve of CNN using dataset B 

Figure 4: The loss curve of CNN with different datasets 

 

 

  
(a) Results of 10 trials using dataset A (b) Results of 10 trials using dataset B 

Figure 5: The results of ten trials of different datasets 

 

4.3.2 Comparison with other methods 

Wavelet Transform (WT), which decomposes the signals into wavelets, is usually considered as an 

effective tool for pre-processing nonstationary and transient signals [23]. The two-dimensional time frequency 

representation of WT provides a high resolution in both the time-domain and frequency-domain, which 

provides good information about the health conditions of rotating machinery. 

In this section, a comparison of the WT scalograms and the CSCoh maps is carried out. Morelet wavelet 

basis is adopted to implement the time-frequency transformation. In order to provide a relative fair comparison, 

all the pre-processing data are fed into CNN for training, and the results are conducted with ten trials. Final 

results are averaged. The training and testing accuracy of different methods are shown in figure 6.  

It can be seen that, the training accuracies of the proposed method in both datasets are 100.0%. While the 

training accuracies of WT are relative lower, and present larger standard deviations. In addition, the testing 

accuracy, especially, in ‘Level 2’, the proposed method also obviously performs better than that of WT-CNN.  

 

  
(a) Result comparison of different methods using 

dataset A 

(b) Result comparison of different methods using 

dataset B 

Figure 6: Result comparison of different methods 
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Furthermore, the testing accuracy of each types under different severity levels are further listed in Table 2 

and Table 3, respectively. It can be observed that WT-CNN achieves average testing accuracy of 76.7% and 

92.8%, in dataset A and dataset B, respectively. On the contrast, the proposed method achieves average testing 

accuracy of 92.2% and 97.9%, respectively, which is better that that of the WT-CNN. In addition, the diagnosis 

accuracies of the BF7 and the BF14 are obviously lower that of the other fault types. This is because that the 

characteristic frequencies in those cases are not obvious in the 2D CSCoh maps, which makes CNN difficulty 

to obtain good classification performance. From the analysis, it can be concluded that the proposed method is 

effective in extracting discriminative features and conducting the multi-label classification tasks. 

 

Methods Accuracy (%) of each fault severity level using dataset A  

 NC BF7 BF14 BF21 IF7 IF14 IF21 IF7 IF14 IF21 AVG 

WT-CNN 100 52.7 71.7 64.2 100.0 59.8 99.5 93.4 39.5 86.5 76.7 

Proposed 100 100.0 79.0 58.4 100 96.1 95.9 100.0 96.4 96.5 92.2 

Table 2: The average testing accuracy of each fault severity level using dataset A 

 

 

Methods Accuracy (%) of each fault severity level using dataset B  

 NC BF7 BF14 BF21 IF7 IF14 IF21 IF7 IF14 IF21 AVG 

WT-CNN 100.0 95.7 85.0 82.3 100.0 92.0 100 95.4 79.5 98.0 92.8 

Proposed 100.0 100.0 95.7 89.6 100.0 96.5 98.3 100.0 99.0 99.4 97.9 

Table 3: The average testing accuracy of each fault severity level using dataset B 

 

 

Conclusion 

In this work, a new DL-based fault diagnosis framework, combining CSCoh and CNN is proposed for 

multi-label fault classification. Firstly, CSCoh is considered, as a pre-processing step, to reveal the fault nature 

of each fault types. Then, a novel CNN is constructed for conducting fault classification with multiply labels 

by introducing the Sigmoid activation function and BCE loss function. The proposed method is verified on the 

data collected from the CWRU motor bearing test rig. Two different datasets including the insufficient training 

and sufficient training data are designed to evaluate the effectiveness of the methodology. It has been 

demonstrated that the proposed method not only achieves high classification performance, but also presents 

better generalization performance compared to WT-CNN fault diagnosis method. 
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