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Abstract 
Performing condition monitoring under time-varying operating conditions is challenging. The varying 

operating conditions impede the ability of conventional fault diagnosis methods to detect damage on rotating 

machine components such as bearings and gears. This paper investigates a new method for identifying 

diagnostic rich frequency bands under time-varying operating conditions. This method uses the order-

frequency spectral coherence and a feature, which is dependent on the cyclic order of interest and the 

frequency resolution of the spectral coherence, to decompose the signal into a feature plane. Thereafter, the 

spectral frequency and the spectral frequency resolution that maximise the feature plane are used to design a 

bandpass filter. The bandpass filter extracts a diagnostic rich signal, which can be analysed by using the 

squared envelope spectrum or the synchronous average. The proposed method is compared to the fast 

kurtogram on a numerical gearbox dataset as well as on an experimental gearbox dataset, with very 

promising results obtained. 

 

1 Introduction 

Effective fault diagnosis techniques are important for expensive assets such as wind turbines, because this 

can result in early detection of faults, their characteristics can easily be understood (e.g., which component is 

damaged) and subtle changes in the damage (i.e. deterioration) can be monitored. Many rotating machines 

inherently operate under time-varying operating conditions, which impede effective fault diagnosis. Hence, it 

is important to use condition monitoring techniques that are able to diagnose damaged machine components 

under time-varying operating conditions.  

Damaged rotating machine components such as bearings result in periodical excitations of the structure 

at a rate dependent on the kinematic characteristics of the component (e.g. ball pass order of the outer race, 

shaft rotation). This angle-dependent periodical excitation of the time-invariant structure generates signals 

that can be approximated as angle-time cyclostationary [1]. Abboud et al. [1, 2, 3] extended the suite of 

conventional time and angle cyclostationary techniques to time-varying speed conditions with tools such as 

the Order-Frequency Spectral Coherence (OFSCoh) being one of the most powerful fault diagnosis 

techniques for bearings under varying speed conditions.  
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However, in condition monitoring it is usually desired to utilise simple metrics or representations for 

making decisions (e.g. a spectrum is preferred instead of a time-frequency spectrum). Hence, the enhanced 

envelope spectrum and the even more powerful Improved Envelope Spectrum (IES), both calculated from 

the spectral coherence or the spectral corelation, can be used to diagnose the machine. For the IES, it is very 

important to select carefully the integration band to ensure that the IES has an optimal signal-to-noise ratio. 

This means that it is important to be able to identify frequency bands that are rich with diagnostic 

information. Identifying diagnostic rich frequency bands is also important for calculating the synchronous 

average and the squared envelope spectrum [4].  

The spectral kurtosis and the related kurtogram are effective for identifying frequency bands with much 

impulsive information [5, 6]. This is very appropriate for diagnostics, because bearing damage [4, 5] and 

gear damage [7] result in vibration signals containing bandlimited impulses. However, the kurtogram is 

sensitive to transients not related to the condition of the machine and it is not possible to investigate the 

optimal frequency band to detect damage associated with a specific cyclic order. Recently, new methods 

such as the infogram [8] and the IESFOgram [9] have been proposed for identifying frequency bands that are 

rich with diagnostic information by improving the shortcomings of the kurtogram.  

A new method is investigated in this paper that is able to identify a frequency band that contains 

diagnostic information related to a specific machine component under time-varying operating conditions. 

This has a significant advantage over conventional methods, because incipient damage components that are 

normally masked by other dominant signal components and distorted by time-varying operating conditions, 

can be extracted from the signal and used to diagnose the machine. The performance of this method is 

compared to the Fast Kurtogram on numerical gearbox data as well as on experimental gearbox data, both 

acquired under time-varying operating conditions.  

The outline of this paper is as follows: In Section 2, the proposed method is presented, whereafter it is 

investigated on phenomenological gearbox data in Section 3 and experimental gearbox data in Section 4. In 

the last section, Section 5, some conclusions are extracted and some recommendations are made for future 

investigations.  

 

2 Methodology 

2.1 Overview of the methodology 

An overview of the methodology is presented in Figure 1. The measured vibration signal and the 

corresponding rotational speed (or phase) is given as inputs, whereafter an Order-Frequency Spectral 

Coherence (OFSCoh) is calculated for a specific window length. A feature is extracted from each frequency 

band of the calculated OFSCoh. This process is repeated for the set of window lengths under consideration, 

whereafter a feature plane is constructed. The feature plane contains the value of the feature for different 

combinations of centre frequencies and window lengths (or frequency resolutions). Thereafter, the feature 

plane is maximized to obtain the parameters of a bandpass filter. This bandpass filter is used to extract a 

signal that is rich with diagnostic information from the original signal, whereafter the filtered signal can be 

analysed to infer the condition of the machine component. 

 

 
Figure 1: The proposed method for identifying frequency bands that are rich with diagnostic information. 

The subsequent sections give detailed information on each step in the proposed method. 
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2.2 Order-Frequency Spectral Coherence (OFSCoh) 

The impulses generated by components such as bearings are periodic in the angle domain, while they 

manifest in the time-invariant frequency bands. This means that the OFSCoh can be used to identify the 

resonance bands that are excited at specific cyclic orders. The OFSCoh [2] 

 

(1) 

provides a two-dimensional view of the modulating frequencies (i.e. cyclic orders) and their carriers (i.e. 

spectral frequencies) in the signal x(t). The Order-Frequency Spectral Correlation (OFSC) [2] 

 
(2) 

is used to calculate the OFSCoh in Equation (1). The expectation operator is denoted E, the Fourier 

transform is denoted Fw and Φ(W) denotes the phase of the shaft during the measurement time period W. The 

instantaneous phase of the shaft is denoted θ. It is easier to detect non-dominant components by using the 

OFSCoh as opposed to the OFSC.  

Estimators need to be used to calculate the OFSCoh for the measured data, with the Welch estimator as 

proposed in Ref. [2], used in this work. The Welch estimate of the OFSCoh is denoted γxx(α, f ; Δf ), where Δf 

is the frequency resolution that is used to obtain the estimate. 

 

2.3 Frequency Band Identification (FBI) 

It is possible to use a one-dimensional metric such as the kurtosis to identify the frequency band of 

interest. However, one-dimensional metrics do not allow different signal components to be distinguished 

from one another, which may result in a frequency band to be identified that is not necessarily of interest. 

Hence, a more advanced metric is required. 

  

2.3.1 Feature extraction 

Ref. [4] uses a metric to quantify the quality of the Squared Envelope Spectrum (SES). If their metric is 

large, it means that the diagnostic information is dominant with respect to the noise level in the SES, while a 

small metric indicates that it could be difficult to detect the cyclic components in the SES. The authors 

estimated the noise level with the median because the median is robust to outliers generated by the cyclic 

components in the SES.  

We used this metric as inspiration for designing the feature to identify the frequency band of interest, 

with the following feature obtained for the cyclic order set {αf}: 

 
(3) 

The numerator contains the squared magnitude of the spectral coherence for a specific window length Δf. 

The denominator contains the median function, which is calculated for the squared magnitude of the spectral 

coherence and is used to estimate the noise level in the OFSCoh. The following points are important 

considerations when calculating the feature for practical signals: 

1. The analytical cyclic orders may be different from the actual cyclic orders due to slip and therefore 

the maximum of a range of  [0.9αf, 1.1 αf] is calculated to estimate the numerator. 

2. The median of the squared magnitude OFSCoh cannot be calculated at α=αf and therefore it needs to 

be estimated from the discrete OFSCoh data. Hence, the median of the squared magnitude of the 

OFSCoh in the range of [αf -1, αf +1] is used to estimate the denominator. 

This feature also has similarities to the feature used by the IESFOgram [9]. In the latter method the ratio 

of the signal components in the IES are calculated with respect to the mean of the IES in the predefined 

bandwidth.  

 

 

 

 



4 

2.3.2 Feature plane construction and maximisation 

The feature is calculated for each frequency band in the OFSCoh. The Welch estimator of the OFSCoh 

depends on a number of parameters, namely, the window length, the window overlap as well as the number 

of points used to calculate the FFT. It is best to use an overlap longer than 75% of the window length, 

however, the window length needs to be determined prior to the analysis. It is also necessary to estimate the 

frequency bandwidth and not only the centre frequency for designing the bandpass filter parameters. Hence, 

the following procedure is used to simultaneously optimise the centre frequency and frequency bandwidth of 

the frequency band of interest: Firstly, the OFSCoh is calculated for a specific window length, whereafter the 

feature is calculated for each spectral frequency band in the OFSCoh. This process is repeated for each 

window length under consideration, whereafter the feature plane is obtained. The frequency band parameters 

are identified by finding the centre frequency and frequency bandwidth that maximise the feature plane. This 

is a very similar procedure to the kurtogram and the infogram, but instead of using the short-time Fourier 

transform, the OFSCoh is used, and instead of maximising a scalar value (e.g. spectral kurtosis), the 

maximisation is done for a set of cyclic orders. This allows the optimal frequency band to be determined to 

detect a set of cyclic orders.  

The identified frequency band parameters can be used to calculate the IES or to extract a bandlimited 

signal. In this work, we used the frequency band parameters to design a bandpass filter, whereafter the 

bandpass filtered signal is interrogated. The bandpass filtered signal can subsequently be analysed with 

techniques such as the Synchronous Average (SA) [10] and the Squared Envelope Spectrum (SES) [3]. 

 

2.4 Computational aspects 

Even though real-time condition monitoring is rarely required in practice, it is still necessary to provide 

answers in a reasonable time. The Welch-based estimator of the OFSCoh has very good bias and variance 

properties, but is very expensive to calculate for large datasets, especially for high rotational speed 

applications. If the cyclic orders of interest are known a priori, it is possible to only estimate the OFSCoh for 

specific cyclic orders; however, even this may be impractical for complex gearboxes found in wind turbines 

and helicopters, which may have many cyclic orders of interest. Fortunately, there has been very exciting 

developments in this field, where fast (and faster) estimators of the spectral correlation are proposed, which 

could make this method significantly faster to be calculated [11, 12].  

 

3 Numerical gearbox data 

In this section, we investigate the method and compare it to the kurtogram on data generated from a 

phenomenological gearbox model. In the next section, an overview is given of the model and the generated 

data, whereafter the Fast Kurtogram (FK) is used on the dataset in Section 3.2. The results of the proposed 

method are presented and discussed in Section 3.3.  

 

3.1 Phenomenological Gearbox Model (PGM) 

The Phenomenological Gearbox Model (PGM) proposed in Ref. [3] is used to generate a casing vibration 

signal. The casing vibration signal 

 (4) 

contains a bearing component xb(t), a random gear component xrg(t) and a broadband noise component xn(t). 

The generalised synchronous average can be used to attenuate the deterministic gear components attributed 

to the meshing of gears as described by Abboud et al. [3] and therefore they are not included in this model. 

The bearing component is generated by bearing damage on the outer race 

 
(5) 

where Tk denotes the time-of-arrival of the kth bearing impulse, which incorporates the varying speed 

conditions and the slip. The amplitude of the kth impulse, denoted Ak, is sampled from a uniform distribution. 

The raw bearing impulses are filtered through the structure, which is assumed to have an impulse response 
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function of a single degree-of-freedom system hb. The modulating function M(ω(t)) = ω2 is used to simulate 

the varying amplitude induced by time-varying operating conditions and is assumed to be the same for all 

signal components for the sake of simplicity.  

The random gear component 

 

(6) 

is attributed to gear damage and contains the random variable ε(t) which is sampled from a zero mean, unit 

variance normal distribution, and Bk and φk are, respectively, the amplitude and the phase of the kth harmonic 

of the component. There are Krg harmonics in the vibration signal. The noise component 

 (7) 

is generated by a zero mean Gaussian distribution with its amplitude dependent on the rotational speed of the 

system. The natural frequency of the impulse response function of the bearing and the gear components are 7 

kHz and 1.3 kHz respectively. The fundamental cyclic order of the distributed gear damage is 1.0 shaft order, 

while the fundamental cyclic order of the outer race bearing damage component is 4.12 shaft orders.  

A single dataset is investigated in this paper with the time-varying speed profile ω(t) and the different 

signal components shown in Figure 2. This system operates under constant load conditions.  

 

  

  

Figure 2: The speed profile, the casing vibration signal and the bearing and random gear components of the 

phenomenological gearbox model are presented. 

 

The varying speed conditions result in the amplitude and the instantaneous frequency of the signal 

components to be dependent of time. The relative magnitudes of the components were chosen so that the 

dominant distributed gear damage component impedes the ability to detect the bearing component. Hence, 

the focus of the subsequent investigations is to highlight how the proposed method can be used to detect 

weak components in the presence of dominant components and to show that it is possible to distinguish 

between the two. In the next section the kurtogram is investigated on the generated dataset. 

 

3.2 Application of the Fast Kurtogram (FK) 

The Fast Kurtogram (FK), developed in Ref. [6], is a faster estimator of the kurtogram than the conventional 

short-time Fourier transform-based estimator and is used in this work. The kurtogram is based on the spectral 

kurtosis [5], a very useful technique to identify frequency bands that contain transient information (as 

typically seen by bearing and gear damage). The FK is applied to the casing vibration signal (see Equation 

(4)) of the PGM with the result shown in Figure 3.  
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The FK is maximum at a frequency band with a centre frequency of 1328.12 Hz. This is the frequency 

band associated with the distributed gear damage component. The frequency band of the bearing damage at 

7.0 kHz can also be seen in Figure 3; however, its magnitude is significantly smaller than the magnitude of 

the gear component.  

 

 
Figure 3: The kurtogram of the PGM’s vibration signal. 

 

The implication of this is that without careful consideration, only the dominant impulsive frequency band 

will be detected by the FK, with a non-dominant frequency band easily missed in the condition interrogation 

process.  

This is corroborated by the results of the Squared Envelope Spectrum (SES) seen in Figure 4. The SES of 

the raw signal (i.e. without bandpass filtering the signal) and the SES of the filtered signal contains the same 

information. The fundamental component of the distributed gear damage at one shaft order and its harmonics 

are clearly seen in both spectra, while the bearing component is not seen.  

 

(a) Raw signal (b) Bandlimited signal 

  

Figure 4: The Squared Envelope Spectrum (SES) of the raw vibration signal and of the bandlimited signal 

obtained with the Fast Kurtogram (FK) for the PGM. 

 

It is important to emphasise that due to the statistical characteristics of the distributed gear damage 

component, it is not possible to remove it using cepstrum pre-whitening or the generalised synchronous 

average [3]. The proposed method is investigated in the next section. 

 

3.3 Application of the proposed method 

The proposed method is applied with the procedure discussed in Section 2, with the bearing and gear 

being monitored for damage. Therefore, the feature, calculated with Equation (3), is calculated for the gear 

with {αf}={1.0, 2.0, 3.0} (denoted α=1.0 in the figures) and for the bearing with {αf}={4.12, 8.24, 12.36} 

(denoted α=4.12 in the figures), which result in two feature planes that are maximised independently. The 

feature plane of the gear and the bearing are shown in Figure 5(a) and Figure 5(b) respectively.  

It is evident that the feature plane is clearly very dependent on the cyclic order that is used. Large values 

are obtained in Figure 5(a) in the region of 1.3 kHz, while large values are obtained in Figure 5(b) in the 
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region of 7 kHz. The optimal value for the gear in Figure 5(b) differs slightly from the analytical value, 

because the gear component is very dominant, which results in the different blocks to have features with very 

similar values, i.e. any of the blocks, could be used for detecting the gear. 

The SES of the raw and bandlimited signals of the two signal components are shown in Figure 6. The 

SES of the bandlimited gear signal, presented in Figure 6(b), does not improve the SES of the raw signal, 

presented in Figure 6(a), because the gear component is already very dominant in the SES.  

 

(a) α = 1.0 (b) α = 4.12 

  

Figure 5: The feature plane obtained with the proposed method for the gear component (a) and the outer race 

bearing component (b) of the PGM. The colour scales are not the same in the two plots. 

 

A significant improvement can be seen for the SES of the bearing component. The bearing component 

cannot be detected in Figure 6(c), but after identifying the appropriate frequency band with the proposed 

method, it is possible to obtain a SES that clearly highlights the damaged bearing component as seen in 

Figure 6(d). 

 

(a) Raw signal (b) Bandlimited signal (α = 1.0) 

  

(c) Raw signal (d) Bandlimited signal (α = 4.12) 

  

Figure 6: The Squared Envelope Spectra (SES) of the raw and bandlimited signals are shown for the gear 

component in (a) and (b) and for the outer race bearing component in (c) and (d) for the PGM. 
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This highlights the benefit of using the proposed method; if the signal component is dominant in the 

spectrum then the kurtogram can lead to similar results (as seen when comparing the results in Figure 4(b) 

and Figure 6(b)). However, the proposed method has sufficient flexibility to identify frequency bands for 

signals with low signal-to-noise ratios as well. 

 

4 Experimental investigation 

In this section, the proposed method is investigated on an experimental dataset. A brief overview of the 

experimental data is given in Section 4.1, whereafter the FK is applied to the dataset in Section 4.2 and the 

proposed method is investigated in Section 4.3. 

 

4.1 Overview of the experimental dataset 

The method is applied and verified in this section on an experimental gearbox dataset that has been 

acquired in the Centre for Asset Integrity Management (C-AIM) laboratory at the University of Pretoria. The 

experimental setup contains three helical gearboxes, an alternator and an electrical motor. The alternator and 

the electrical motor were used to induce the time-varying speed and load conditions shown in Figure 7 on the 

monitored gearbox. One of the helical gearboxes was damaged with the damaged gear shown in Figure 8(a) 

and operated for approximately 20 days whereafter the tooth failed as shown in Figure 8(b). A vibration and 

a tachometer measurement, taken after approximately five days of testing, are used in this paper. The gear 

rotates at 1.0 shaft order, while the pinion rotates at 1.85 shaft order. More information on the experimental 

setup can be found in Ref. [13].  

 

  
Figure 7: The operating conditions during the measurement period. 

 

 

 
Figure 8: The gear of the helical gearbox with the seeded fault before the fatigue experiment (a) and after the 

fatigue experiment was completed (b). 
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4.2 Application of the Fast Kurtogram (FK) 

The FK is applied on the dataset with the decomposition shown in Figure 9. Very large values are seen in 

the higher frequency bands. This is attributed to the presence of bandlimited transients that manifest at the 

frequency band 8-12 kHz at a cyclic order of approximately 5.5 shaft orders.  

  

 
Figure 9: The kurtogram of the experimental gearbox dataset.  

 

The SA is used to interrogate the presence of damage on the gear in Figure 10. The SA of the raw and the 

bandlimited signals are shown in Figure 10(a) and (b). It is not clear from the raw signal in Figure 10(a) what 

the condition of the gear is, but the transients that are retained by the bandpass filtering process dominate the 

synchronous average and make it especially difficult to infer the condition of the machine from the result in 

Figure 10(b). 

 

(a) Raw signal (b) Bandlimited signal 

 
 

(c) Raw signal (d) Bandlimited signal 

  

Figure 10: The Synchronous Average (SA) and the Squared Envelope Spectrum (SES of the raw and the 

bandlimited signals are shown as obtained with the Fast Kurtogram (FK). The damaged gear tooth is located 

at approximately 135 degrees in the SA plots.  

 

The SES of the raw and the bandlimited signals are also investigated in Figure 10. Three peaks are 

observed in the SES of the raw signal; the components at 5.72 and 11.44 shaft orders are attributed to the 
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transients in the signal and the component at 9.12 shaft orders is attributed to the alternator’s shaft being 

slightly unbalanced which resulted in periodical excitations. After, the filtering process, only the transient at 

5.72 shaft orders and its harmonics are retained. Hence, it is evident from the results that the kurtogram fails 

to recognise the important frequency band for diagnosing the gear.  

 

4.3 Application of the proposed method 

The proposed method is applied on the same signal as investigated in the previous section. The gear and 

the pinion are monitored and therefore the decomposition is performed for {αf}={1.0, 2.0, 3.0} shaft orders 

(denoted α=1) and {αf} = {1.85, 3.7, 5.55} shaft orders (denoted α=1.85), respectively. The feature plane is 

shown in Figure 11 for the two monitored components, where it can be seen that the feature planes are 

dependent on the cyclic order of interest, however, the identified frequency bands may not necessarily be 

completely separated. It is completely reasonable that the same cyclic order band is optimal for different 

mechanical components and therefore care should be taken to interpret the statistics (e.g. kurtosis) of the 

bandlimited signals.  

 

(a) α = 1.0 (Gear) (b) α = 1.85 (Pinion) 

  

Figure 11: The feature plane obtained with the proposed method. The feature plane of the gear is shown in 

(a) and the feature plane of the pinion is shown in (b). 

 

The SA in Figure 12 do not clearly reveal damage on either the gear or pinion with only small peaks seen 

at 135deg for the gear. This is attributed to the fact that the damage is still small and that helical gears are 

used with large contact ratios. Hence, the synchronous average is ineffective for detecting the incipient gear 

damage. 

The SES of the raw and bandlimited signals in Figure 13 perform significantly better than the SA for the 

gear and the pinion. It is possible to see that there is a clear 1.0 shaft order component, which is attributed to 

the damaged gear. In contrast, the SES of the healthy pinion does not contain any dominant components at 

1.85 shaft orders, which is indicative that the pinion is healthy. Hence, it is possible to use the proposed 

method and the SES to detect the incipient gear damage in the presence of dominant frequency components 

and time-varying operating conditions. 

 

5 Conclusions 

In this paper, a new method is investigated for identifying frequency bands that are rich with diagnostic 

information. The method uses the spectral coherence and a very carefully designed feature to allow specific 

frequency bands to be detected which can be analysed using the squared envelope spectrum and the 

synchronous average. 

The method is evaluated on two datasets; the first one is a numerical gearbox dataset that simulates 

bearing damage and gear damage under time-varying speed conditions. The results indicate that it is possible 

to identify the appropriate frequency band to identify the cyclic components of interest, while the fast 

kurtogram only identifies the frequency band with the most impulsiveness. Similar results are obtained on 

the experimental dataset where incipient damage was present on the gear of a helical gearbox. The fast 
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kurtogram maximised on frequency bands with strong impulsive content, with the incipient gear damage 

only detected by using the proposed method. It was also found that the synchronous average is not very 

effective for incipient gear damage detection and the squared envelope spectrum performs significantly 

better. 

 

(a) Raw signal (b) Bandlimited signal (α = 1) 

  

(c) Raw signal (d) Bandlimited signal (α = 1.85) 

  

Figure 12: The Synchronous Averages (SA) of the raw and the bandlimited signals, obtained with the 

proposed method, are shown. The result for the gear is shown in (a) and (b), while the result of the pinion is 

shown in (c) and (d). 

 

(a) Raw signal (b) Bandlimited signal (α = 1) 

  

(c) Raw signal (d) Bandlimited signal (α = 1.85) 

  

Figure 13: The Squared Envelope Spectra (SES) of the raw and the bandlimited signals, obtained with the 

proposed method are shown. In (a) and (b) the results for the gear are shown, while the results for the pinion 

are shown in (c) and (d). 

 

In future investigations, the method will be compared to the more recent developments in the informative 

frequency band identification field (e.g. infogram) and the suitability of this method for fault diagnosis under 

time-varying operating conditions will be investigated on more datasets. It is also suggested that the spectral 
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coherence needs to be estimated with the fast or faster spectral correlation instead of the Welch estimator 

used in this work. This would improve the computational efficiency of the proposed method. 
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