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Abstract 
Based on the idea that multidimensional data is better summarized as a shell rather than a cloud, we have 

developed a surveillance approach that can detect with high sensitivity behaviour changes in a monitored 

process and alert the operator. Our methodology uses the time series of a high number of monitored 

indicators which we cluster together dynamically as a function of operating conditions. These clusters 

represent groups of similar realizations used to characterize a multidimensional manifold that can be 

interpolated to assess each new realization of the process behaviour. We evaluated the methodology on the 

data from a hydroelectric turbine. The event of interest was the loss of the turbine propeller runner cone. The 

results are good and the approach is able to detect the abnormal behaviour months before the event 

happened. We are currently looking at larger scale deployment to benchmark the approach’s performance.   

 
1 Introduction 

One of the primary objectives of monitoring is the early detection of changes in a monitored system or 

process. Some of these changes can stem from modifications with time of operating conditions (i.e. system 

input) or changes in the behaviour (system response or output). Usually, changes in the monitored system 

inputs are intentional hence already known. Generally, we are interested in detecting changes in the system 

response. The objective of this paper is to account at the same time for changes in the expected behaviour 

and associated dispersions for any number of monitored inputs in order to detect significant changes while 

being able to explain in detail the contribution from each of these inputs. 

The basis for the proposed approach has been put forward by Léonard and Gauvin, 2013 [1]. They 

studied the sphere-hardening phenomenon in multidimensional signal projection problems. In fact, this is not 

a new concept and was first proposed by Shannon, 1949 [2]. While common in communication theory, it 

seems relatively unknown in the field of equipment and process monitoring. By looking at the cumulative 

combined random response and measurement noise of a given process over a high enough number of 

variables in an experiment 𝑹 repeated many times (𝑹𝑖, 𝑖 = 1, … , 𝑀), a shell will be formed at a given 

distance μ⊥𝑆  from the expected value 𝑺 as shown in Figure 1 for the two-dimensional case.  This means that 

looking at a deviation from the shell (𝑑𝑖 − μ⊥𝑆) rather than the deviation from the expected value (𝑑𝑖) of the 

noisy process in multidimensional space is more efficient. 

 

 
Figure 1: Multidimensional shell from noisy data 
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However, we cannot do statistics with only one realization of a given event and when monitoring 

equipment in operation, a difficulty arises since the exact same conditions usually never repeat themselves. 

The operating conditions of the equipment are always changing hence the need to group similar events 

together in order to use the sphere hardening concept. Monitored events in similar operating conditions need 

to be clustered together. Our approach uses a dynamic clustering approach [3] similar to the k-mean 

methodology [4]. Furthermore, since monitoring cannot be restrained to events that are members of a limited 

number of known clusters, we need to interpolate in-between the clusters and properly account for the 

uncertainty induced to prevent false alarms that would lead to unwanted downtime and maintenance costs.   

The concepts of shell hardening, clustering and interpolation are used to build the monitoring 

methodology put forward in this paper. To our knowledge, the approach is novel for situations where many 

channels or indicators are considered simultaneously. Similar to other monitoring approaches, our 

methodology starts by modelling the equipment response, then estimates the response under the current 

operating conditions and finally determines the deviation of the current observed response. Dynamic 

clustering is used to first model the response while also modelling the dispersion. Then, we use kriging to 

obtain the behaviour across all possible operating conditions. Finally, we assess the deviation in the obtained 

multidimensional subspace. 

Our paper is structured as follows. We start with the concept of a multidimensional shell resulting from 

noisy data. Next, the full methodology proposed is explained. Then a study case is presented to illustrate the 

capability of the proposed methodology. Finally, we discuss some of the limitations of the proposed 

approach.     

 

2 Noisy data and multidimensional shell 

At the root of the proposed methodology is the concept that noisy data over a large number of monitored 

dimensions generate a multidimensional shell with relative thickness that is inversely proportional to the 

number of dimensions as proposed by Shannon, 1949 [2], see also [5]. If we consider the information in the 

form of an equipment signature 𝑺 that we transmit over 𝑁 dimensions contaminated by noise, the received 

signal is given by: 

 

 𝑹 = [𝑆1 + 𝜀1,  𝑆2 + 𝜀2, … ,  𝑆𝑁 + 𝜀𝑁 ] = 𝑺 + 𝜺  (1) 

 

where 𝑹 is the received signal and 𝜺 the random noise vector. However, notice that in the case where the 

monitored signature is unknown it needs to be estimated using a sample of received signals; relying on the 

mean as an estimate, one has: 

 

 𝑺̂ =
1

𝑀
∑ 𝑹𝑖

𝑀
𝑖=1   (2) 

 

Furthermore, since the signature transmitted is constantly changing with the operating conditions of the 

equipment, the signature 𝑺 is a manifold rather than a single location as shown in Figure 2. This point is 

discussed further in the following sections.  
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Figure 2: Multidimensional shell and manifold 

 

In this multidimensional space, the distance μ⊥𝑆 between the received signal 𝑹 and the transmitted 

signature 𝑺 at any given location on the manifold can be defined as the average of the realizations at this 

location as follows: 

   

 μ̂⊥𝑆 =
1

𝑀
∑ ‖𝑹𝑖 − 𝑺̂‖𝑀

𝑖=1 =
1

𝑀
∑ 𝑑𝑖

𝑀
𝑖=1   (3) 

 

where 𝑺̂ is the estimate of the transmitted signature of interest 𝑺, a location on the manifold. In a similar 

manner, the dispersion can be obtained with: 

 

 σ̂⊥𝑆
2 =

1

𝑀
∑ (𝑑𝑖 − μ̂⊥𝑆)2 𝑀

𝑖=1  (4) 

 

where σ⊥S represents the standard deviation or half-shell thickness. In the present case, where the manifold is 

also estimated, as shown in Figure 2, the quadratic sum of the manifold dispersion σM
2  and shell dispersion 

σ⊥S
2  can be used to assess the likeliness of a given data point 𝑹𝑖. Note that the shell wraps around the 

manifold when N is greater than the number of operating condition indicators. 

 

3 Methodology 

In applications, the use of the multidimensional shell concept is not that simple. As shown in Figure 3, 

realizations need to first be assembled in clusters. Then, we need to interpolate and extrapolate in the 

hyperspace between clusters. Finally, a fast estimate of the likeliness of a given new realization needs to be 

made in order for the information about an alert to be relevant in the context of equipment monitoring. 
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Figure 3: Monitoring methodology 

 

3.1 Data acquisition 

The first step is to ensure the data quality before using our algorithm because any error in the data might 

trigger unwanted alarms. Such preliminary processing is highly dependent on the context of the study and 

will not be discussed here. For the purpose of this study, let us define the input data as a time series of 

snapshots 𝑿𝑖 ≡ 𝑹𝑖 ∪ 𝑶𝑖 where 𝑹𝑖 is a set of response indicators and 𝑶𝑖 is a set of operating condition 

indicators. These 𝑿𝑖 cannot be used directly and first need to be formatted and filtered properly to remove 

unwanted input operating conditions and/or output values. Then, each 𝑹𝑖 needs to be normalized in order to 

ensure that all indicators are represented on similar scales. 

 

3.2 Clustering 

Having filtered and normalized the 𝑿𝑖 vectors, our goal is to generate clusters of similar 𝑶𝑖 to estimate 

the multidimensional manifold 𝑺. Initially, for the creation of the clusters, it is important to have a reference 

dataset of validated history of 𝑿𝑖 that cover most operating conditions 𝑶𝑖 with corresponding responses 𝑹𝑖. 

Afterwards, with each new 𝑿𝑖, it is the dynamic clustering methodology that will determine if a new 𝑿𝑖 

should be included in the clustering data history. The clustering is dynamic in the sense that the centroid 

locations are updated every time a new 𝑿𝑖 enters the data history. Figure 4 shows the typical process every 

new 𝑿𝑖 is subjected to.  
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Figure 4: Data snapshots processing flowchart 

 

The clustering process for a new snapshot 𝑿𝑖 looks like this: 

 If the number of clusters 𝑘 < 𝑘𝑚𝑎𝑥 then the centroid location is 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 = 𝑶𝑖 and the 

population 𝑝𝑘 = 1  which processes the new snapshot 𝑿𝑖 

 If the number of cluster 𝑘 ≥ 𝑘𝑚𝑎𝑥 then find the smallest distance to an existing cluster 𝑐𝑚𝑖𝑛 

 

 𝑐𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑘‖𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 − 𝑶𝑖‖ (5) 
 

 If 𝑐𝑚𝑖𝑛 > 𝑐𝑚𝑎𝑥 then merge the two closest clusters together, 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 = 𝑶𝑖 , 𝑝𝑘 = 1  and 
process the new snapshot 𝑿𝑖.  
 

 𝑐𝑚𝑎𝑥 = 𝑐
1

𝐾
∑ ‖𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 − 𝑶𝑖‖𝐾

𝑘=1   (6) 

 
 If 𝑐𝑚𝑖𝑛 ≤ 𝑐𝑚𝑎𝑥 then merge snapshot 𝑿𝑖 to the nearest cluster, update the population 𝑝𝑘 and 

location  𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘  

 

Here, in equation 6, 𝑐 is an arbitrary decision level usually set between 1 and 3. Furthermore, note that 

any abnormal 𝑿𝑖 above the alert thresholds will be rejected and not used for the clustering data history (see 

section 3.4 for the alert threshold definition). More details about the clustering algorithm used in this study 

can be found in [5]. 

 

3.3 Interpolation 

Having clusters of similar data over a large set of different operating conditions 𝑶𝑘 with estimated 

expected response vectors 𝑬(𝑶𝑘) and standard deviation vectors 𝑪(𝑶𝑘) enables us to use a multidimensional 

interpolator to estimate the response vector for any new operating condition 𝑶𝑖 . The interpolated 𝑬(𝑶𝑖) with 

corresponding 𝑪(𝑶𝑖) can then be used to set an alert threshold and assess abnormal behaviour of the 

monitored system. For simplicity and to limit the computational cost of this interpolation step, the dual 

kriging formulation was chosen [6]. Kriging is a well-known and extensively used interpolation method. The 

two traditional formulations which assume a wide sense stationary field, known expected value and variance 

are the simple kriging formulation and the dual kriging formulation. Implementation of the simple kriging 

formulation can be either a 𝑂(𝑀𝑁3) + 𝑂(𝑀𝑁) or 𝑂(𝑁3) + 𝑂(𝑀𝑁2) process depending on the 

implementation compared to the dual kriging formulation which is a 𝑂(𝑁3) + 𝑂(𝑀𝑁) process for an 𝑁 
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positions over 𝑀 dimensions problem [6]. Furthermore, because the number of clusters is limited to 𝑘𝑚𝑎𝑥 

during clustering, we ensure that the numerical cost of the interpolation does not become unmanageable. 

 

3.4 Comparison metric 

With the estimated vectors of the expected response 𝑬(𝑶𝑖) = 𝑺̂𝒊 (in the notation of section 2) and 

standard deviation 𝑪(𝑶𝑖) at any new operating condition 𝑶𝑖, it is possible to establish an alert threshold 

above which the behaviour of the monitored process is considered different from past typical responses. Our 

metric is based on the distance 𝑑𝑖 between the snapshot response 𝑹𝑖 and the expected response at the 

operating condition 𝑬(𝑶𝑖) : 

 

 𝑑𝑖 = ‖𝑹𝒊 − 𝑬(𝑶𝑖)‖ = √∑ (𝑟𝑖,𝑛 − 𝑒(𝑶𝒊)𝑛)
𝟐𝑁

𝑛=1  (7) 

 
More precisely, the alert threshold defines the acceptable relative deviation 𝑤𝑖 with regards to the 

expected value of a given ensemble of similar operating condition as shown in Figure 5. However, to have a 

faster algorithm, we recommend initially using a single average deviation for all the operating conditions. 

This can be refined as needed. The average distance 𝑑̅ and relative deviation 𝑤𝑖 are expressed as follow: 

 

 μ̂⊥𝑆 = 𝑑̅ =
1

∑ 1𝑗∈𝑨
∑ 𝑑𝑗𝑗∈𝑨  with 𝑗 ∈ 𝑨 if 𝑶𝒋 ≈ 𝑶𝒌 (8) 

  𝑤𝑖 = 𝑑𝑖 − 𝑑̅ (9) 
  

 
Figure 5: Illustration of the comparison metric 

 

The alert threshold is a function of the global standard deviation of the ensemble of snapshots 𝑑𝑖 which 

accounts for the interpolation standard deviation σ̂M = ‖𝑪(𝑶𝑖)‖ and standard deviation of the relative 

deviation 𝑤𝑖 as follows: 

 

 𝜎′ = √σ̂⊥𝑆
2 + σ̂M

2  (10) 

 σ̂⊥𝑆
2 =

1

∑ 1𝑗∈𝑨
∑ 𝑤𝑗

2
𝑗∈𝑨  with 𝑗 ∈ 𝑨 if 𝑶𝒋 ≈ 𝑶𝒌 (11) 

 

For the case study given next, we have used an alert threshold of 4𝜎′. 

 

4 Case study 

In this paper, we focus on a case study which is the loss of a hydroelectric turbine propeller runner cone. 

Figure 6 shows a view of the runner before and after the loss of the cone. The cone structure minimizes 

hydraulic losses and improves efficiency. Without the cone, we should expect reduced efficiency (around 

0.6%) and increased vibration due to the vortex rope which is normally dampened by the cone’s presence. 
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Here, the question is not if we can detect the loss of the cone but rather how early we can alert the operator 

that something is happening to the runner. The earlier we can detect a problem related to the cone, the more 

time is available for maintenance outage planning which reduces the unexpected downtime. In this case, we 

have used approximately two years of snapshots history prior to the event and limited the study to the 

following indicators: 

 Mean spiral case pressure (∈ 𝑹) 

 Water temperature  

 Peak to peak thrust bearing axial acceleration (∈ 𝑹) 

 RMS thrust bearing axial acceleration (∈ 𝑹) 

 RMS generator guide bearing radial displacement X (∈ 𝑹) 

 RMS generator guide bearing radial displacement Y (∈ 𝑹) 

 Mean turbine guide bearing radial displacement X (∈ 𝑹) 

 RMS turbine guide bearing radial displacement X (∈ 𝑹) 

 Peak to peak turbine guide bearing radial displacement Y b(∈ 𝑹) 

 Mean turbine guide bearing radial displacement Y (∈ 𝑹) 

 RMS turbine guide bearing radial displacement Y (∈ 𝑹) 

 Excitation tension  

 Wicket gates opening (∈ 𝑶) 

 Mean power output (∈ 𝑹) 

 

  
Figure 6: View of the propeller runner cone, before (left) and after (right) the loss 

 

5 Results 

With our methodology, we observe seven different phases in the behaviour of the hydroelectric turbine 

and two types of transient events (see Figure 7). In phase 1, the snapshots serve as reference data for the 

algorithm to dynamically define the clusters’ centroid and dispersion. We observe that the uncertainty bands 

gradually stabilize. In phase 2, the method is ready to be used to alert the user of unexpected behavior. 

Notice that the sudden increase in dispersion after phase 1 is artificial and helps highlight the transition 

between the learning and monitoring regimes. In phase 3, we systematically observe deviations above the 

alert level. The deviations increase gradually at each subsequent phase until phase 7 is reached and the cone 

is lost at the end of the snapshots’ time history. One can notice some holes in the time history because some 

snapshots were unsuitable for the methodology and automatically removed during the data acquisition step. 

Furthermore, two types of transient events are clearly visible in Figure 7. The first, event 8, is the largest of a 

family of such events that are due to a cooldown period where the monitored unit was stopped. When the 

unit is restarted, the generator temperature needs to first stabilize then the surrounding structure temperature 

also needs to stabilize. This generates a transient state that is not a real alert in the sense that the unit is 

working as expected; this type of event could easily be filtered out if needed. The second, event 9, is simply 

due to the initialization of the methodology and one can see that the alert bands rapidly stabilize after a 

sufficient number of data points have been processed. 
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Figure 7: Multidimensional deviation 

 

An advantage of the proposed methodology is that we have access to the contribution of each snapshot 

response 𝑹𝑖 for a given relative deviation 𝑤𝑖. This is of high importance to do a diagnostic of the alert and 

justify appropriate maintenance outage. In Figure 8, we present an excerpt of the evolution of the individual 

response contributions for timestamps in each phase from 2 to 7. At first, in phase 3, we observe a highly 

localised contribution with a slow but gradual increase in contribution from the other response indicators as 

we move towards phase 5. In subsequent phases, a sudden increase across many of the indicators becomes 

manifest. 

 

 
Figure 8: Screenshots for a given timestamp of the relative multidimensional deviation for each channel. 

From left to right: phase 2, 3, 4, 5, 6 and 7 

 

In comparison, if we look at the time series of certain selected response indicators, by for example 

intuitively selecting the ones related to the guide bearing which are the closest to the propeller cone, we get 

the results shown in Figure 9. The problem becomes noticeable only at the end of March 2015 in phase 5, 

even if the selected indicators are the closest to the propeller cone. By using a larger ensemble of indicators, 

the approach proposed in this paper is able to alert the operator of an abnormal behaviour more than three 

months beforehand in phases 3 and 4. 
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Figure 9: Selected individual responses prior to the propeller runner cone loss 

 

6 Discussions 

The case study shows that the sphere hardening principle is applicable to equipment monitoring and 

performs well in practice. For this application, the method alerts the user months before the actual failure 

was detected. However, no comparison was made with other mathematical approaches to detect abnormal 

operational behaviours. Moreover, we simplified the problem by limiting the number of data input to reduce 

the validation burden. In the proposed approach no difference is made between a change in the behaviour of 

the sensor and a change in the monitored system. The high sensitivity of the approach to deviations from 

previous behaviour relies on having data of good quality to avoid false alarms. 

Furthermore, no effort was made to optimize the methodology; our initial goal was speed and ease of 

implementation. In fact, we might be able to optimize the clustering approach to improve kriging 

performance. Even then, numerical performance might not be the right criteria. The numerical cost of the 

interpolation might not be a limitation if computational possibilities such as parallelization are considered, 

given that the necessary infrastructure is becoming more easily available. The same might be true for the 

alert threshold that could be assessed using conditional numerical simulations.  

 

7 Conclusions 

We demonstrated that the data gathered over a group of indicators can be reduced to a single global 

metric that can be used to monitor equipment behaviour and alert an operator of abnormal equipment 

behaviour months before an actual failure. The approach is statistically based and is highly sensitive to any 

deviation from normal past behaviour. An important advantage of the approach is that we can easily track the 

contribution of each individual indicator and thus explain an alert to establish a diagnostic. We are currently 

looking at implementing the proposed approach on our hydroelectric turbine fleet in order to benchmark its 

performance.  
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