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Abstract
The purpose of this paper is to investigate the possibility of estimating Francis hydroelectric turbine modal
parameters in transient conditions by focusing on resonance regions generated by the interaction of a structural
mode with a frequency-variant harmonic pressure pulsation. Especially when numerous modes are in the
same bandwidth, this method separates them by exciting only matching mode shapes. To extract a specified
harmonic from the signal, the resonance retrieval is done using Order Tracking method. A classical ambient
modal identification algorithm is then used to feature the isolated mode. Furthermore, using the phase-shift
between measured locations, modes can be localized and shape determined.

List of Symbols

i Complex unit
diag[AAA] Diagonal matrix of vector AAA
<AAA|BBB > Complex inner product of AAA,BBB

AAAT Transpose of AAA
AAA∗ Conjugate of AAA
|AAA| Determinant of AAA
δr Kronecker Symbol
NS Number of sensors
N f Number of frequency samples

ΦΦΦ (NS×n) Global modal matrix for a system of n modes
MAC Modal Assurance Criterion

MACthr Threshold MAC in E-FDD
θθθ r (4+NS×1) Parameter vector of mode r
θθθ (4+NS×1) Modal parameter vector as a variable

L (θθθ) Negative Log-Likelyhood Function

ωk Discrete pulsation k ∈ J1,N f K
X̂XXk (NS×1) Estimated frequency response in ωk (C)
XXXk (NS×1) Theoretical frequency response in ωk (C)
hr,k Modal transfer function of mode r in ωk (C)
pk Scaled FFT of modal Excitation in ωk (C)
εεεk (NS×1) Scaled FFT of channel noise in ωk (C)
EEEk (NS×NS) Theoretical density matrix in ωk (C)
s1,k First singular value of Ek

ϕϕϕr (NS×1) Theoretical mode shape of mode r (C in FDD)
ϕ̂ϕϕr (NS×1) Estimated mode shape of mode r
βr Characteristic real scalar value of mode r
ωr Natural pulsation of mode r
ξr Damping Ratio of mode r
Sr Modal force of mode r
Ser PSD Error for mode r

1 Introduction

Design and exploitation of hydroelectric turbines relies on the knowledge of their dynamic behavior. This
enables one to generate and validate models to either get a good assessment of life duration or plan predictive-
based maintenance. Two sources of information are useful to properly characterize the mechanical behavior of
a structure: numerical simulations and experimental data processing. Giving high computing power, the first
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source could give a whole and detailed analysis of the behavior in any expected regime through Computational
Fluid Dynamics (CFD) and Finite Element Analysis (FEA) but needs to be validated by the second to be
reliable. It is a straightforward consequence of the strong assumptions made to reduce computational burden
and model the highly turbulent characteristics of the flow. The second approach relies on in-situ measurements
to extract dynamic features [1].

The increase of computational power over years allows getting more accurate simulations for startup
regimes [2, 3], no-load or part-load configurations [4, 5, 6] and even hydrodynamic damping estimations [7].
However, the results still show discrepancies in structural parameters due to deviations from real operating con-
ditions: rotating machinery [8], fluid-structure interaction added mass, damping and stiffness [9, 10], cavitation
influence [11, 12, 13] or boundary condition sensitivity [14]. On the other hand, experimental characterization
is highly fragmented, but in general closer to reality for a given measured operating condition. The features ob-
tained from experimental data relie on statistical models [15, 16], indirect measurements [17], time-frequency
analysis [18], but can also be obtained by modal parameter identification using Operational Modal Analysis
(OMA) [19] or Experimental Modal Analysis (EMA) [20]. In addition, the experimental hydraulic instabil-
ity study can be used to compare different computational turbulence models [21, 22, 23]. Typically, the two
sources of information (simulations and experiments) are crossed to obtain a hybrid representation of the dy-
namic behavior, which is used to obtain accurate load levels and allow a better prediction of fatigue [24]. Those
predictions are used to assess the runner life duration and reliability of the capacity [25, 26, 27].

One of the problems with experimental analysis is the cost of data acquisition. To reduce financial burden
of measurements, the idea is to extract a maximum of information from transient records instead of several
stationary records, which would make the measurement less time-consuming. Furthermore, the processing
of transient records allows obtaining real structural parameters of highly damaging regimes [23, 28] (what
numerical analysis still struggles to perform, as aforementioned). Our goal is to determine whether a signal
processing methodology is able to extract precise and suitable features from these transient measurements.
For this, a combined methodology using Order Tracking, OMA and Phase-Shift Analysis is implemented and
performed on a case study. The case study data come from a medium-head Francis Turbine in Quebec (Canada).
The paper first presents the theoretical background, including literature and the different OMA tools to be used.
Afterwards, the model is tested on the case study of an operational runner prototype.

2 Resonance Detection Using Phase-Shift Diagrams

Resonances are usually found with the study of experimental correlograms where the amplified regions
are treated as Operating Deflecting Shape (ODS). But there is another alternative to detect resonances with
more confidence: Phase-Shift Analysis (PSA) [29, 30]. Resonance amplitudes are time-dependent and phases
are relative to a reference in experimental data, but the modal phase-shift from one sensor to another is a
theoretical time invariant absolute quantity that is specific to each mode. Especially, when a harmonic (time-
variant pulsation) and a mode (almost constant pulsation) intersect with the same phase-shift, the observed
ODS is very likely the resonance of the only excited mode. This resonance can be extracted and processed with
OBMA through a Single Degree of Freedom (SDoF) formulation (Section 3 & 4). Once the mode has been
detected, it is possible to feature its shape: the mode shape is assumed to be the nodal diameter that fits the best
the modal phase-shift (e.g. [18] in which a self-excited vibration of a hydroelectric runner is studied during
load rejection). It is also possible to determine the shape by identifying the pattern of the exciting harmonic,
particularly if this last comes from a well-known phenomenon (vortex rope [27, 31, 32, 33, 34], Rotor-Stator
Interactions (RSI) [26, 27, 31, 35, 36]).

3 Order Tracking Procedure

Once PSA and resonance mapping is achieved, it is still required to extract accurate damping ratios and
frequencies, and eventually other modal properties (modal force etc.). In order to do this, identification algo-
rithms are implemented to process multi-channel resonance signals. The first pre-processing step is to extract
the resonance component and isolate it from the rest of the signal. This is the purpose of Order Tracking.
This class of method gathers all the tools able to extract one harmonic from the signal by shifting the time
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domain to a harmonic one, called order domain. Orders, measured in times per revolution, are analog to fre-
quencies. Order Tracking is a classical and very used diagnosis tool for rotating machineries. There are four
main techniques that are commonly used: direct method using Fourier Transform of a time series (FS), Angular
Resampled-based Order Tracking (AD), Time-Variant Discrete Fourier Transforms (TVDFT) and Vold-Kalman
filters (VK).

FS extracts the n− th harmonic from a signal by tracking the X̂XX [nω0,k] response with a short-time Fourier
transform at each time step, where ω0,k is the runner angular velocity at time step k. This procedure is highly
biased due to tapering, leakage effects and bandwidth control. In the classical approach with constant time
intervals, low rotating frequencies are less accurate than higher ones. If time intervals are non-constant, some
power spectral density rescaling issues rise and must be taken into account.

Another technique relies on an adaptative Fourier transform with settable kernel [37]: the kernel of the an-
alytic exponential function tracks the frequency of interest. Consequently, a precise targeted order is extracted.
In early works, the kernel orthogonality was lost and a compensation matrix had to be introduced to partly fix
the problem. This issue is now easily fixed by introducing a change of variable in the integration domain, and
gives a Velocity Synchronous Fourier Transform [38]. Vold-Kalman (VK) Bank Filters can extract orders from
a signal with an instantaneous analysis instead of an averaging procedure [39]. Consequently, VK filtering is the
most accurate technique in terms of resolution but entails a heavy computational burden, that is irreconcilable
with industrial applications.

AD is a resampled-based method that avoids any leakage effect and phase issues [40]. The asynchronous
time series are turned into synchronous time series (constant ∆α instead of ∆t) by the means of interpolation
and tachometer record (Computed Order Tracking [41]). Then, a short-time Fourier transform is performed
on the resampled signal, with intervals corresponding to one runner revolution (so that the spectrum resolution
coincides with orders). Intervals are neither overlapped nor windowed. An order spectrum is obtained for each
studied revolution. Each of those revolutions is converted into frequency by averaging the rotational speed
over the lap. It can be noticed that the lower the studied dynamic, the weaker the quasi-static assumption over
a revolution, the higher the response estimation quality. The bias of AD comes from both interpolation and
synchronous interval split. Interpolation bias is due to interpolating method (e.g. linear, quadratic, splines)
and shaft torsion that induces tachometer signal fluctuations. The issue with synchronous interval split is that
each interval must represent exactly one revolution, that is not necessarily the case. Most of those biases can
be reduced if data are recorded with a extensively high sampling frequency compared to the structure natural
frequencies. For the purpose of this paper, the classical COT-based AD will be used, because the data sampling
frequency is far higher than the natural frequencies of studied modes.

4 Operational Modal Analysis

Few has been done in the field of OMA for hydroelectric runner dynamic featuring. Gagnon et al. used this
technique to characterize guide-vane behavior for different operating conditions [19]. The same point is made
for EMA for which the study achieved on a runner obtained results that were in well agreement with simula-
tions, but for experimental setting not representative of actual operating conditions [20]. Moreover, in many
cases EMA cannot be implemented and when it is possible, suffers from major drawbacks like experimental
set-up cost or structural size and complexity. The point of OMA is to extract modal parameters from output-
only measurements containing both unknown excitation and response of the system. When those signals are
extracted with Order Tracking, the procedure is called OBMA (Order Based Modal Analysis) [40, 42, 43, 44].
OMA is of interest for several reasons: it is fast in terms of computing effort and measurement (mere sensors
replace excitation set-up), ambient excitation is appropriate to linearize the dynamic behavior and so on.

OMA techniques are divided into different classes: they can process in the time domain (TD) or frequency
domain (FD), and can be parametric or non-parametric [45]. TD approaches are straightforward, and are
generally parametric. They mainly study the auto-regression degree with (AR)MA-(X) models [46] and Sub-
space Identification technics [47] or the output correlations between channels (Polyreference, LSCE, Subspace
Identification, ERA) [48]. Frequency approaches can be parametric (Polymax or Polyreference) [49] or non-
parametric (Pick- Peaking, (E)-FDD) [50, 51]. Non-parametric methods often rely on Single Degree of Free-
dom (SDoF) theory, so that a pre-processing step is mandatory to separate modal contributions.

In OBMA, Polymax model has typically been implemented as identification support [40, 42]. However,
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Polymax does not seem to be the best candidate for such an identification, because parametric models always
generate spurious modes (due to noise and numerical bias). Furthermore, the model order is always difficult
to define (methods are based on stabilization diagrams or parsimony principle through the minimization of
criteria, e.g. Akaike and Bayesian Information Criterion, AIC or BIC). In order-tracked signals, it is easy
to know in advance the number of excited modes, which allows using non-parametric methods. Thus, the
authors propose to perform the following procedure: different modes are decomposed into SDoF responses and
bandlimited using a partial E-FDD procedure. Then, each mode is identified using a classical ambient SDoF
transfer function with a maximum likelihood estimator.

4.1 SDoF Separation

SDoF separation is performed using a modal coherent criterion applied on the singular vectors of the dis-
crete spectral density matrix. The classical input-output relation of density matrices under the condition of
white-noise input, low damping and uncoupled modes, can be developed according to the Heaviside partial-
fraction expansion theorem in the vicinity of its modal pulsations [52, 53].

EEEk|ωk≈ωr ≈ΦΦΦ
∗diag

[
βr

(ξrωr)2 δr

]
ΦΦΦ

T (1)

Eq. 1 shows that the excitation density matrix is diagonal, and thus the output density matrix E is equivalent
to a diagonal one. The change of basis is done with the modal matrix ΦΦΦ = (ϕϕϕ1, ...ϕϕϕn). The diagonal matrix
contains only one non-zero term expressed as the contribution of the investigated mode through (βr,ξr,ωr),
respectively a characteristic scalar value, the damping ratio and the natural pulsation of mode r. The Kronecker
symbol δr is 1 for the r− th position of the diagonal matrix, else 0. In the vicinity of a natural pulsation, the
associated mode is the only contributor to the global dynamic of the system. The associated mode shape is
ϕϕϕr, r− th column of ΦΦΦ. In other terms, it is shown that the Singular Value Decomposition of the experimental
density matrix in the vicinity of a mode returns only one dominant singular value. The associated singular
vector in ωk = ωr (within the limit of frequency resolution) is the mode shape estimator. The set of the first
singular values {s1,k} is called Complex Modal Identification Function (CMIF) and is a unilateral representation
of the previous spectral density functions. The resonance function of each SDoF is identified from the CMIF
thanks to a discriminating criterion, the Modal Assurance Criterion (MAC) [54]. MAC varies from 0 to 1 as
the modal coherence increases. It compares the degree of agreement of two vectors:

MAC(ϕϕϕ i,ϕϕϕ j) =
<ϕϕϕ i|ϕϕϕ j >

2

<ϕϕϕ i|ϕϕϕ i ><ϕϕϕ j|ϕϕϕ j >
(2)

This criterion is able to separate two uncoupled close modes and discriminate spike noises. Brinker et
al. set the threshold to MACthr = n/

√
NS, where n is an integer so that MACthr is close but lower than 1, and

NS the number of studied sensors [55]. If MAC(ϕ̂ϕϕr,ϕϕϕ j) > MACthr, where ϕ̂ϕϕr is the shape estimator and ϕϕϕ j a
singular vector of the CMIF, then s1[ω j] belongs to the resonance function of the SDoF. This ensures to select
a bandwidth with high modal coherence. Figure 1 shows an example of the use of MAC. The E-FDD theory
shifts back in time domain to make the identification. But this procedure is a bad damping estimator, especially
in the case of short signals [56]. For this reason, the identification support is different and presented in the next
subsection.

A last point can be raised about the E-FDD limits: this procedure is only proper to separate uncoupled
signals. In the case of coupled modes, it is unable to differentiate modal contributions. In future works, a
Frequency-Domain Blind Source Separation developed by Castiglione et al. should be used instead [57]. FD-
BSS is able to separate coupled modes with an impressive accuracy, and relies on a more rigorous mathematical
approach.

4.2 Identification Using Maximum Likelyhood

After being extracted using AD method and bandlimited with MAC, the NS experimental frequency re-
sponses are concatenated into a vector X̂̂X̂Xk and are modelled with the classical SDoF response described in
eq. (3, 4), where XXXk is the theoretical response vector, hr,k is the modal transfer function depending on modal
parameters (ωr,ξr) and pk,εεεk are the normalized Fourier transforms of excitation and noise respectively.
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Figure 1: Modal contributions are framed using MAC, which compares the agreement level between two mode
shapes.

XXXk =ϕϕϕrhr,k pk +εεεk (3)

hr,k =−
1

ω2
k −ω2

r −2iξrωrωk
(4)

The associated Negative Log-Likelihood Function (NLLF) is given in eq. (5), where N f is the number of
point per channel, EEEk[θθθ ] the theoretical SDoF density matrix arising from eq. (3) and |EEEk[θθθ ]| the determinant
of the density matrix ; the analytical determination of both determinant and inverse matrix of EEEk[θθθ ] is far from
being trivial, and described in [58]. θθθ r = (ωr,ξr,Sr,Ser,ϕϕϕr) is the parameter vector, including natural pulsation,
damping ratio, modal force, PSD error and mode shape. θθθ is the parameter variable, used to estimate θθθ r. The
NLLF is minimised using a Nelder-Mead algorithm [59]. A such identification method was chosen because it
shows the best asymptotic properties.

L (θθθ) = NSN f ln(π)+
N f

∑
k=1

ln(|EEEk[θθθ)]|)+
N f

∑
k=1

X̂̂X̂X∗kEEE−1
k [θθθ ]X̂̂X̂Xk (5)

5 Case Study

The studied measurements come from a vertical medium head Francis hydroelectric runner exploited in
Quebec, Canada. This facility was chosen because the turbine was designed and is operated by two partners
of the current project. The measurement data were recorded during a slow transient from no-load overspeed
to stop. Two blades separated with an angle of 111◦ were instrumented with strain gauges. Intrados were
instrumented with three strain gauge rosettes, located in the band junction to blade leading edge and trailing
edge, and in the middle crown-blade weld, as shown in Figure 2. Extrados were instrumented with two uniaxial
gauges, one close to the crown, the other close to the band. The locations are the same from one blade to
another to ensure a redundant signal. Accelerometers and pressure sensors are located in different points
(blade, structure and penstock) and sensors are also installed on the shaft to record torque, flexion and thrust.
The rosette and uniaxial gauges are oriented in agreement with the expected strain flow direction, .e. in the
direction of the principal stresses.

An analysis of experimental correlograms (amplitude of short-time Fourier transforms) and absolute phase-
shift spectra between redundant sensors was made first. Some examples are shown in Figures 3 and 4, related to
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Figure 2: Strain gauge location on the instrumented blades. Circles represent rosette gauges, triangles represent
uni-axial gauges.

both sides of the crown (time and frequency axes are empty for the purpose of clarity). When the windowing is
long enough, correlograms show five ODS. Several modes can be contained inside. A clear resonance of mode 1
is detected on the intrados in the lower part of the diagram (below blade passing frequency signature, abusively
denoted ”RSI”) ; the other resonances are in the upper part. Phase-Shift spectra are amplitude-filtered, and
show only phases associated with a high enough correlogram. They show four single-mode bands and a multi-
mode band, due to multiple phase-shift detection. Resonance of mode 2 is detected on both sides, and mode
3 is vaguely detected on the extrados. Only one mode of the multi-shifted band is excited by a harmonic, thus
leading to a SDoF resonance. Table 1 summarizes all the detected modes in the range [0,100]Hz, and reports
the related resonant harmonic index. Phase-shifts are averaged over the region where the mode is found.

In the studied data, all the time series are recorded with an extensively large sampling frequency, and the
use of AD technique to extract harmonics should be straightforward. The next subsections present typical case
studies based on previous identified modes.

Mode Reference Frequency [Hz] Phase-Shift ×π[rad] Harm. Order
1 18.0 0 13
2 28.0 ±3/4 42
3 50.0 ±1/7 63
4 91.0 ±1/9 /0
5 58.0 ±6/7 61

Table 1: Experimentally Detected Modes

5.1 Identification Example: Shaft Torsion Mode with f0 = 18Hz

The first mode to be studied, mode 1, is excited by the 13− th harmonic of the rotating speed. This
corresponds to the blade passing frequency. Such an excitation can come for instance from the spiral case intake
or the drat tube elbow that can create a stationary disturbance that is seen by the rotating runner each time a blade
passes in front of the intake or the draft tube direction. The investigation of torsion measurements shows that
the studied mode is a natural torsion mode of the shaft line. What is observed on blades is only the propagation
of shaft natural vibrations. Thus, all the runner is excited with the same phase, and the nodal diameter is 0, that
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Figure 3: ODS Analysis of principal direction of intrados crown Rosette gauge. On the left, phase-shift spec-
trum of the redundant gauges. On the right, redundant amplitude spectra.

Figure 4: ODS Analysis of extrados crown Rosette gauge.
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is confirmed by the absence of phase-shift between blades. An axial thrust pulsation is measured on the shaft,
and indicates that the inflow to the runner is not symmetric to the guide vane orientation [31]. Examples of
extracted resonances are shown in Figure 5. The MAC narrows the bandwidth with a threshold MACthr = 0.875,
as depicted in Figure 6. The maximum likelihood estimator raises optimal parameters, shown in Table 2 and
Figure 7.a.

Natural Frequency Damping Ratio Modal Force PSD Error
f0 [Hz] ξ [%] S [ms2/Hz] Se [µ S/Hz]
17.43 1.26 2.22E6 1.73E-2

Table 2: Torque Mode Featuring

The shape relative amplitudes are the same on the two blades, as testifies Figure 7.a.. The mode shape
is in phase opposition from leading edge to crown, and is not spotted neither on trailing edge intrados or on
band extrados signals. That attests a ND−0 ”in umbrella”, as depicted in Figure 7.b. The modal force is very
difficult to extract and is likely very biased. The bias on damping ratio mainly depends on experimental data.
The leakage and tapering bias due to the windowing is avoided thanks to COT-based AD. However, the global
uncertainty level remains likely high because of the unknown excitation.

5.2 Results

Table 3 shows the result of the identification process performed on all detected resonance harmonics. The
information presented is: the exciting harmonic (indexed on the rotating frequency), the most likely nodal
diameter, the Signal-to-Noise Ratio (SNR), the bandwidth and the associated method (MAC or SENS for sensi-
tivity analysis) and the modal parameters. Except for the torsion mode, resonance signals have a low SNR that
renders impossible the use of MAC, because the singular value spectrum is still buried in noise. Instead, a sen-
sitivity analysis was made on modal parameters as a function of the bandwidth. The selected band corresponds
to the parameter convergence. This method gives wider bands (around ten times the width of a MAC selected
bandwidth), where noise has a significant influence. Rather, MAC criterion selects a narrower frequency band
with very few noise. The two methods return quite equivalent results. The experimental data reveals five iso-
lated modes numbered from 1 to 4 in Figure 4, and a multi-mode band. Amongst the 4 well-separated modes,
only the first 3 are excited by a harmonic and then identifiable. Into the multi-mode band, one mode is excited
by a harmonic. It is thus possible to feature it, but the SNR is particularly low. Notice that the first mode of
table 3 is the torsion mode featured in table 2.

6 Conclusion

This paper shows that Francis runner structural modes can be identified from ambient vibration data dur-
ing transient conditions. These modes have been successfully extracted and identified through an enhanced
OBMA technique (E-OBMA). E- OBMA combines three existing techniques and takes benefit from the best
of each: Order Tracking separation quality, MAC bandlimiting rigor and maximum likelihood accuracy. This
work shows that experimental transient data contains accurate frequency information that can be used to assess
numerical model validity. The presented results are the first effort in creating OMA strategy tailored for Francis
runners. The E-OBMA still has to be validated on an analytical case, which is now being developed. The Order
Tracking quality should be evaluated in conjunction with EMA sine-sweep excitation theory. Also, further
improvements will make possible the uncertainty quantification which is a major stake in signal processing.
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Figure 5: On the left, Order Spectra. All the harmonic contents are on the same line. On the right, the related
Bode Diagrams of the harmonic 13.

Figure 6: Resonance function extraction from the first singular values spectra (CMIF).

Figure 7: a) Partial mode shape extracted with maximum likelihood. b) Schematics of the observed mode
shape.
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Identification BandWidth Modal Parameters
Mode Nodal Diameters Bandwidth (Hz) Frequency (Hz) Modal Force (ms2/Hz)

Harm. Index SNR (dB) Method Damping ratio (%) PSD Error (µ s/Hz)

1 0 1.5 17.43 2.22E6
13 7.4 MAC 1.26 1.73E-2

2 1 8 28.71 3.31E5
42 1.8 SENS 3.26 1.18E-3

3 3/5 9 49.84 1.40E6
63 1.9 SENS 1.67 8.00E-4

Multi. 6 12 59.35 4.31E6
61 0.96 SENS 2.30 2.00E-3

Table 3: OBMA Identification Results
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