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1 Abstract  

In vibration-based diagnosis of rolling element bearings, the complexity of the signals requires an expert 
to use advanced signal processing tools and to interpret the results based on his/her experience. Recently, 
a few autonomous methods have been proposed to alleviate the demand on the user’s expertise, yet they 
have been mainly focused on fault detection. They ideally track certain properties in the signal, whose 
occurrence is correlated with the symptom of a fault. This paper follows a similar direction but with wider 
objectives: it aims to develop an indicator that is sensitive to both non-stationarity, non-Gaussianity and 
to the modification of the acoustic signature of the vibratory signal. The indicator is based on the recently 
developed Fast Spectral Coherence, a key tool of the theory of second-order cyclostationary processes. It 
condenses the whole information initially displayed in three dimensions into a scalar. it initially addresses 
the case where the faults frequencies are unknown. In addition, the proposed indicator is able to return 
information for different levels of damages in both stationary and non-stationary operating conditions. A 
new pre-processing step is provided to ensure an efficient and constant statistical threshold. The 
proposed indicator is intended to be used in an autonomous process without the need for visual analysis 
and human interpretation. The proposed indicator is compared with a recent indicator based on the 
Envelop Spectrum, in terms of classification and detection performance. Several applications using real 
and benchmarked data eventually illustrate the capability for self-running diagnosis.  
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2 Introduction 

Roller bearings (REBs) are one of the essential components of rotating machines, hence the demand for 
their efficient and reliable condition monitoring (CM). Condition monitoring ensures maximum 
production, prevents accidents and serious damage and helps to detect failures at an early stage by 
keeping the system in good conditions. Over the last few decades, considerable research has been 
conducted on diagnostics based on REB vibrations and acoustics signals leading to the development of 
some condition’s indicators. Therefore, several strategies have been adopted. This is derived from the 
fact that the occurrence of numerous faults induces changes in signal characteristics that can be described 
as (i) a deviation from Gaussianity, and/or (ii) a shift in the statistical behavior of the signal from stationary 
to non-stationary, accompanied by (iii) a change in the machine's acoustic signature.  
The crest factor [1], the peak-to-peak, the entropy [2]–[4], the form factor, the third-order central 
moment (skewness) and the fourth-order central moment (kurtosis) [5], [6], or any higher-order moments 
or cumulants [7], [8] are all typical examples of the non-Gaussianity measure. They are dedicated to 
characterizing the non-Gaussian behavior in the form of impulsivity of machine signals. The most 
traditional and probably the most widely used is the kurtosis, or its combination with other indicators. In 
the past, they have been used mainly because of their simple calculation formulas, and their relatively 



short computation times. This is despite its uncorrelated values with the fault symptoms in numerous 
situations, reported in many studies[9], [10]. This argument has become obsolete thanks to modern 
computing capabilities. 
The roughness indicator, as traditionally calculated in the time domain from the Aures model [11], is an 
example of the psychoacoustic parameters used to monitor the existence of a fault based on an alteration 
of the machine's acoustic signature. It aims to mimic the ability of the human auditory system to detect 
high-frequency modulation, as evidenced by the faulty rotating machines. The researchers have 
developed various mathematical models [12]–[15] to estimate roughness but none of them have been 
normalized. 
The degree of cyclostationarity [16] and the indices of cyclostationarity [17] based on the 2nd-order 
cyclical cumulants or any higher-order cyclostationarity indices based on higher-order cyclical cumulants 
[18] are typical examples of measures of the non-stationarity that characterizes the cyclostationarity 
introduced by the fault existence. Despite its importance in diagnosis, the real-time use of CS indices can 
be hindered in practice by its high cost, especially in real-time applications [19]. 

This paper aims to fill in these gaps by proposing an indicator sensitive to both non-stationarity, non-
Gaussianity and to the modification of the acoustic signature of the vibratory signal. To do so, the 
frequency domain instead of time domain is used since it better extracts cyclic repetition from a signal 
produced by a repetitive fault and also reduces the noise impact. The cyclostationary framework is then 
our subject of interest since it has been reported that rotating machine signals are cyclostationary [20]. 
Advantage is taken of the availability of a recently proposed fast algorithm to calculate the spectral 
coherence [19], on which the proposed conditioning indicator is based. The spectral correlation is a three-
dimensional distribution of all modulation patterns existing in a signal as a function of the carrier 
frequency in Hertz and the modulation frequency (also called cyclic frequency) in machine order, which 
generalizes the SC to nonstationary operations. It is thus considered optimal for revealing bearing fault 
signatures under stationary and nonstationary speed regimes [21], [22].  
The idea is to condensate the whole information initially displayed in the spectral coherence into a scalar 
after an appropriate weighting performed to select the audible frequencies range from about 20 Hz to 20 
kHz and the audible modulations range from about 15 Hz to 200 Hz. This selection can be easily made 
using the weight 𝜔𝑘,𝑝 designed as a bandpass filter, used to accentuate or reduce certain frequency 

components in order to model the bandpass characteristic of the roughness on the modulation frequency. 
 This approaching, the spectral coherence which is sensitive to both non-stationarity and non-Gaussianity, 
also becomes sensitive to the acoustic signature of the vibratory signal. A new preprocessing step is 
provided in order to eliminate any possible bias (as typically produced by transient disturbances in the 
signal or the presence of unexplained nonstationarities) in the estimated spectral coherence. This original 
step is necessary to produce a pivotal statistic by forcing the spectral coherence to have a constant 
probability distribution with respect to the dual frequencies plan.  
The proposed indicator is statistically consistent, i.e. its variance converges to zero when the signal length 
increases. On the opposite, Aures’ roughness does not involve any time average and is therefore prone to 
significant estimation errors. Contrary to the kurtosis, the proposed indicator separates impulsivity from 
non-stationarity, allowing the identification of the type of deviation from normality. A non-nonparametric 
hypothesis test is also provided in order for this indicator to be credible and possibly implemented in an 
automated monitoring system. The capacity of the proposed indicator is validated on real data and 
benchmarked with the kurtosis to extract meaningful conclusions. It is found to return higher performance 
in terms of detecting faulty bearings.  



3 Indicator 

3.1 Preliminary steps 

This steps briefly resumes the statistical methodology proposed by kass et al.[22] to design the test 
statistics. The starting point is to describe the health of the system under investigation by two alternative 
hypotheses, 𝐻0 and 𝐻1, which correspond respectively to the healthy and the faulty states, respectively. 

The principle is to consider the spectral coherence, 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘), as the random quantity of interest rather 
than its squared magnitude.   

In principle, Under 𝐻0, the random field 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘), seen as a function of the two frequency variables 
𝛼𝑙  and 𝑓𝑘, can be shown to have zero probability of being nil at any position (𝛼𝑙  ,  𝑓𝑘) even though having 
small values. Under the alternative hypothesis 𝐻1, the difference is that the random field will have higher 
magnitudes along parallel lines, discretely located at cyclic frequencies associated with the fault 
frequencies. The objective is to keep only these values and to zero all the other ones. To do so, a statistical 
threshold, defined as a high percentile, is needed to differentiate between information and background 
noise. Hence, the presence of a possible bias (as typically produced by transient disturbances in the signal 

or the presence of unexplained nonstationarities) in the 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) compromises the efficiency of the 

latter threshold.  As result, the noise baseline is not uniformly distributed along the frequencies axis. It is 
therefore impossible to establish a fixed threshold to distinguish between information and noise. To 
correct this situation, the following empirical steps are proposed. The first step is to standardize the EES 
in order to force it to have a constant probability distribution with respect to the cyclic order α, under the 
null hypothesis 𝐻0. In principle, The transformation reads 

𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘)  =

𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) −  {𝛾𝑋
(1)

(𝛼𝑙  ,  𝑓𝑘)|𝐻0}

√ {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)

2|𝐻0} −  {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)|𝐻0}

2
 (1) 

where {⋯ |𝐻0} stands for the ensemble averaging operator taken under 𝐻0. One issue is to replace 

 {𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘)|𝐻0} and  {𝛾𝑋

(1)(𝛼𝑙  ,  𝑓𝑘)
2|𝐻0} in the above equation by estimates obtained from a 

realization of 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) which may either pertain to 𝐻0 or 𝐻1. Since the difference in 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) 
under the null and alternative hypotheses is essentially marked by the presence of parallel lines, it is 

proposed to estimate  {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)|𝐻0} from a running median of 𝛾𝑋

(1)(𝛼𝑙 ,  𝑓𝑘), called 𝜇𝑀𝐸𝐷(𝛼𝑘), and 

 {𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘)2|𝐻0} from the running median of the absolute deviation, called 𝜎𝑀𝐴𝐷(𝛼𝑘). The rationale 

for using a running median is to leave unaffected informative peaks in the spectral coherence. Therefore, 

the 𝛾𝑋
(2)(𝛼𝑙  ,  𝑓𝑘) reads  

𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘)  =  

𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) − 𝜇𝑀𝐸𝐷(𝛼𝑙 , 𝑓𝑘)

𝜎𝑀𝐴𝐷(𝛼𝑙, 𝑓𝑘)
 (2) 

which returns a “pivotal” statistics (i.e. whose probability distribution does not depend on any unknown 
parameter). Briefly, the presence of the possible bias is firstly removed by subtracting a running median, 
then the results are standardized by dividing it with a running median of the absolute deviation. These 
two steps can be though as a normalization of the 𝐻1 statistics with respect to the 𝐻0  statistics.  

3.2 Proposition  

The first step is to preserve the informative values, i. e. the spectral lines parallel to the frequency axis 𝑓𝑘 
along 𝛼𝑙, expected during the fault’s existence i. e. under 𝐻1.To do so, this step consists of setting all non-

significant peaks in 𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘) to zero which are found below a given threshold. A reasonable choice is 



to define the threshold as a high percentile pc (e.g. 𝑝𝑐 = 0.9)[23], which means that only the 100(1 −
𝑝𝑐)% highest values will be kept. Thanks to the standardization step, the threshold is constant over the 

full frequency plane (𝛼𝑙  ,  𝑓𝑘). And the 𝛾𝑋
(3)

(𝛼𝑙 ,  𝑓𝑘) is expressed as 

𝛾𝑋
(3)

(𝛼𝑙  ,  𝑓𝑘) =  𝛾𝑋
(2)

(𝛼𝑙  ,  𝑓𝑘). 𝕀
[𝛾𝑋

(2)
(𝛼𝑙 , 𝑓𝑘)>𝑝𝑐]

(3) 

where the symbol 𝕀
[𝛾𝑋

(2)
(𝛼𝑙 , 𝑓𝑘)>𝑝𝑐]

 denotes the indicator function defined on the frequencies plane 

(𝛼𝑙  ,  𝑓𝑘) having the value 1 for all elements of (𝛼𝑙  ,  𝑓𝑘) satisfying the condition 𝛾𝑋
(2)

(𝛼𝑙 ,  𝑓𝑘) > 𝑝𝑐 and the 
value zero otherwise. 

This is a crucial step as the next step involves modelling the bandpass characteristics of the roughness by 
accentuating or reducing certain frequency components, thus preventing the occurrence of misleading 
peaks. 

The next step is to performs an appropriate weighting of the 𝛾𝑋
(3)

(𝛼𝑙  ,  𝑓𝑘) so as to select the audible 
frequencies range from about 20 Hz to 20 kHz and the audible modulations range from about 15 Hz to 
200 Hz in order to approach the roughness measurement proposed by Aures. This selection can be easily 
realized based on the weight 𝜔𝑘,𝑝 designed as a bandpass filter, used to accentuate or reduce specific 

frequency components in order to model the roughness bandpass characteristic on modulation 
frequencies. In other words, 𝜔𝑘,𝑝 resembles the distribution matrix of the weighting functions for each 

Bark channel. The weighting of 𝛾𝑋
(3)(𝛼𝑙  ,  𝑓𝑘) is achieved as follows: 

𝛾𝑋
(4)

(𝛼𝑙  ,  𝑓𝑘) = 𝛾𝑋
(3)

(𝛼𝑙  ,  𝑓𝑘).𝜔𝑘,𝑝 (4) 

The third step is divided into two sub-steps, the first is to integrating the 𝛾𝑋
(4)(𝛼𝑙 ,  𝑓𝑘) over the cyclical 

frequency axis 𝛼𝑙, which condenses the whole information initially displayed in three dimensions into a 
two-dimensional representation, 

𝐼𝑋
(5)

( 𝑓𝑘) =
1

𝐹1
[∑ 𝛾𝑋

(4)
(𝛼𝑙 ,  𝑓𝑘)

𝑙∈𝐹1

] (5) 

 
While the second sub-step consists of dividing the frequency axis into a Bark filter bank to estimate the 
modulation depth per auditory channel which is spaced by 1 Bark representing a psychoacoustic scale for 
the bandwidths of the hearing filters. The latter is a frequency band established by Zwiker [24], it is divided 
into 24 critical bands ranging from 0 to 15500 Hz. 
As a final step, the roughness dependence with respect to the carrier frequency is introduced into the 

model by multiplying 𝐼𝑋
(5)( 𝑓𝑘) by a weighting function 𝑔(𝑓𝑘) with factors ranging from 0.6 to 1.1 in 

accordance with the dependency of the roughness to the carrier frequency of the amplitude modulated 
tones. The values of the weighting function with respect to the channel number are shown in Figure 1.  

Finally, the proposed indicator 𝐼𝑅 is obtained by integrating 𝐼𝑋
(5)( 𝑓𝑘) over the frequency axis 𝑓𝑘. 

𝐼𝑅 =
1

𝐹2
∑ 𝐼𝑋

(5)( 𝑓𝑘)

𝑘∈𝐹2

. 𝑔(𝑓𝑘) (6) 

By analogy with the result given by the connection between the kurtosis and the sum of the squared 
envelope spectrum [25], it was shown in [23] that the proposed indicator might be interpreted as a 
kurtosis, yet sensitive only to cyclostationary components. 
The next section describes how the fault detection will be done using a statistical hypothesis test using 
the proposed indicator. In this context, alternative strategies to statistical testing can also be used. For 
example, the proposed indicator can also be used as an input parameter for an SVM classifier (machine 



vector support) or a neural network. This statement is based on the observation of the results obtained 
by applying the proposed indicator to the various databases. 

3.3 Hypothesis testing, design 

The interpretation of the proposed indicator could vary from one application to another, depending on 
several parameters (such as the noise level related to transient perturbations in the signal or to the 
presence of unexplained non-stationarity as well as the vibration level and the interfering contribution of 
other second-order components emitted by other sources). In the majority of the literature [16]–[18], the 
provided methods give their results as scalar. The latter indicates the presence of a fault in some 
applications while in another, and for the same value, the fault will be considered as absent. This is why a 
threshold is needed for decision-making. To do so, two thresholds are provided in this paper. The lower 
threshold 𝐼𝐿 is defined as the indicator value of the randomized version of the vibration signal under which 
the fault is absolutely absent. In detail, 𝐼𝐿 is equal to the indicator value when the signal is randomized. 
The randomization of the signal is defined as a circular permutation of its elements, it can be performed 
using the MATLAB function called "randperm". The latter returns a new version of the signal containing a 
random permutation of its values. On the other hand, the link between the kurtosis and the spectral 
correlation makes it possible to reach the upper threshold, 𝐼𝑈, beyond which the fault presence is declared 
with high certainty. 
After the 𝐼𝑈 is calculated, a comparison is then made with the proposed indicator to detect the fault 
presence. If 𝐼𝑅 has a value greater than 𝐼𝑈, the fault exists. 
The null hypothesis test relative to our case originating from the comparison between 𝐼𝑅 and 𝐼𝑈 can be 
written as: 
“Reject the null hypothesis H0 if: 

𝐼𝑅 ≥ 𝐼𝑈 (7) 
where 𝐼𝑈 ≥ 2⨉𝐼𝐿. 

It easily allows performing a statistical test: according to the decision rule, any value of 𝐼𝑅 that is greater 

than the 𝐼𝑈-threshold will indicate that the signature of the fault is detected. The proof of proposition Eq. 
(7) is based on observing that under the null hypothesis test H0 the quantity asymptotically follows a 
nonparametric distribution that has a constant bias and variance all over the cyclic order axis. It also 
remembers that this test is true almost everywhere. 
The complete flow diagram for the algorithm described in this section is shown in Fig.3 
 



 
Figure 1.Complete algorithm flowchart 

It is worth noting that 𝐼𝑅 is very similar to the Aures’ roughness measure used in psychoacoustics. One 
difference is that Aures’ roughness is based on a decomposition of the signal through a Bark filter bank 
whereas a narrow-band decomposition is used in this paper, yet this is more or less transparent after 
integration over the frequency plane (𝛼𝑙  ,  𝑓𝑘). Another difference is that Aures’ roughness does not 
involve any time average and is therefore prone to significant estimation errors. On the contrary, the 
indicators introduced in this work are statistically” consistent” (i.e. their variances converge to zero when 
the signal length increases). 

4  Experimental Validation 

The ability of any method in detecting a bearing fault must be validated on real signals. In the present 
paper, four benchmarks are used. The first is provided by the Case Western Reserve University (CRWU) 
bearing data center [26], while the second is an industrial database provided by SOMFY-Cluse. These 
databases are widely used to test new algorithms by comparing their efficiency with existing techniques 
[27]. The CRWU’s database provides multiple fault types, i.e. rolling element, cage inner-race, and outer-
race fault, and it is used to illustrate the proposed method and to compare the proposed algorithm to 
those existing in the literature. The industrial database is used to illustrate the diagnosis of bearings in a 
real industrial world signal. 

4.1 Algorithm illustration and comparison with kurtosis 

To illustrate the proposed algorithm, we consider a real industrial signal. This analyzed signal is provided 
by Somfy and includes an industrial fault. It is provided as supplementary material of the article. This may 
be used as a general source of bench mark data for research on diagnosis of industrial faults under 
constant speed operation. The comparing the results of the proposed indicator with those given by 
kurtosis. The duration of signals is 20 s with a sampling frequency of 50 kHz. 
As explained above, the first begins with the calculation of the fast estimator of the spectral coherence 

for the resampled time domain signal 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘). In what follows, the window length in the Fast-OFSC 

is set to 𝑁𝑤 = 29 in order to achieve a frequency resolution of about 100 Hz and the cyclic range 𝛼𝑚𝑎𝑥 =

750 Hz. The next step is to standardize 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) in order to force it to have a constant probability 

𝛾𝑋
(1)

𝛼𝑙  , 𝑓𝑘 =
 𝑋 𝛼𝑙  , 𝑓𝑘

2

 𝑋 𝛼𝑙  , 𝑓𝑘   𝑋 𝛼𝑙  , 𝑓𝑘

SOUND SIGNAL p(t)

𝛾𝑋
(2) 𝛼𝑙  , 𝑓𝑘 =

𝛾𝑋
(1) 𝛼𝑙  , 𝑓𝑘 − 𝛾𝑋

(1) 𝛼𝑙  , 𝑓𝑘

𝛾𝑋
(1)

𝛼𝑙  , 𝑓𝑘
2 − 𝛾𝑋

(1)
𝛼𝑙  , 𝑓𝑘

2 

𝛾𝑋
(3)

𝛼𝑙  ,𝑓𝑘 = 𝛾𝑋
(2)

𝛼𝑙  ,𝑓𝑘 . 𝕀 𝛾𝑋
(2)

𝛼𝑙  , 𝑓𝑘 > 𝑝𝑐 

𝛾𝑋
(4)

𝛼𝑙  ,𝑓𝑘 = 𝛾𝑋
(3)

𝛼𝑙  ,𝑓𝑘 .𝜔𝑘,𝑝

𝐼 =
1

𝐹1𝐹2

∑ ∑ 𝛾𝑋
4

𝛼𝑙  , 𝑓𝑘

 

𝑙∈𝐹1

. 𝑔 𝑓𝑘

 

𝑘∈𝐹2

I



distribution with respect to the frequency plane, under 𝐻0. The statistical threshold will be defined as a 
high 𝑃𝑐 percentile (𝑃𝑐 = 0.9), which means that only the 100(1 − 𝑃𝑐)% of the highest values will be 
preserved. It is noteworthy that this method perfectly preserves the diagnostic information that nicely 
appears with a significant overrun of the 0,1% statistical threshold. This signal is easily diagnosable and it 
should, therefore, be considered as a preliminary test for the proposed algorithm. The visual inspection 
of the spectral coherences presented in Figure 2 (a) and (b) shows a series of symptomatic pulses at the 
fault frequency - spectral lines parallel to the 𝑓-axis discretely located at cyclic frequencies associated with 
the fault frequencies- as expected by the model given by Somfy during under 𝐻1. In Figure 2 (b) it is 

obvious that some frequency components disappear from the 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) while retaining only 
informative peaks and eliminating noise-related components found below the chosen threshold. 

 
Figure 2. For the raw time signal  a) the  𝛾𝑋

(1)(𝛼𝑙 ,  𝑓𝑘) , and b) the  𝛾𝑋
(3)(𝛼𝑙 ,  𝑓𝑘) 

The audible frequencies and modulations range are selected by using the weight 𝜔𝑘,𝑝, shown in Figure 

3(a), so as to select the audible frequencies range from about 20 Hz to 20 KHz and the audible modulations 

range from about 15 Hz to 200 Hz. The weighted version of spectral coherence 𝛾𝑋
(4)(𝛼𝑙  ,  𝑓𝑘) is presented 

in Figure 3 (b). As shown in Figure 3 (b), certain frequency components are emphasized or reduced so as 
to model the band-pass characteristic of the roughness over the modulation frequency. 
 

  
Figure 3 (a) The weight 𝜔𝑘,𝑝 used  to select the audible  frequencies and modulations ranges, (b) the  𝛾𝑋

(4)(𝛼𝑙 ,  𝑓𝑘). 

In the next step and as mentioned in section 3.2, the integration of 𝛾𝑋
(4)(𝛼𝑙  ,  𝑓𝑘) over 𝛼𝑘 will be 

performed. The two-dimensional representation 𝐼𝑋
(5)( 𝑓𝑘) which condenses the three-dimensional 

information is shown in Figure 4 (a). Then, the modulation-depth per auditory channel is estimated by 



dividing the 𝑓-axis into the 24 bands of Bark filter. 𝐼𝑋
(5)

( 𝑓𝑘) is then multiplied by a weighting function 

𝑔(𝑓𝑘). Finally, the roughness indicator 𝐼𝑅 is obtained by integrating the weighted 𝐼𝑋
(5)

( 𝑓𝑘)  over the 𝑓-
axis. The latter has in this case a value of 2.2624.  
The signal is now randomized in order to calculate the upper and the lower threshold. Figure 4 (a) et (b) 
shows both the raw time signal and its normalized version. When both signals are visually inspected, it is 
evident that cyclostationary symptoms are lost when the signal is randomized, which is consistent with 
the auditory test performed using MATLAB's sound function (). More precisely, when performing a hearing 
test, the original signal exhibits periodic behavior that is produced with each cycle. This periodic symptom 
is no longer heard after the randomization of the signal. The value of the indicator in this case 𝐼𝐿 =
0.27109 is negligible compared to the case of existing fault, matching both the visual and the hearing 
inspection. 𝐼𝑅 is equal to about 10 times 𝐼𝐿. According to the decision rule provided by Eq. (7), the fault 
existence is reported. 

 
Figure 4. (a) the integration of 𝛾𝑋

(4)(𝛼𝑙 ,  𝑓𝑘)  over 𝛼𝑙 , (b) the weighting function g 

 

 
Figure 5. (a) the raw time signal and (b) its randomized version 

Surprisingly, and contrary to both visual and auditory inspection tests, the kurtosis of the original and 
randomized signal gives a very low value of 3.0088 reporting the fault absence in both cases. 
After an appropriate filtration of the raw time signal, the kurtosis value is now 20.8589, corresponding to 
a very high value -7 times the value of a normal case - indicating the failure's presence. The success of 
kurtosis after proper filtering highlights its limitation when analyzing a signal with a low signal-to-noise 
ratio and at the same time demonstrating the superiority of the indicator designed from a cyclostationary 
method for the detection of fault symptoms.  
Now the filtered signal is randomized to study kurtosis response in this case and presents another 
superiority of the proposed indicator over kurtosis. In detail, the same kurtosis value for both the 
randomized signal and the filtered signal is obtained indicating that the fault is detected in these cases. 
The obtained results are expected since kurtosis is defined as follows  



𝑘 =

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 )

2                                                                (8) 

This equation shows that regardless the sequence of this signal summation, results will be the same since 
the permutation disorganizes only the sequence of the original signal. The kurtosis in this case cannot 
therefore indicate whether the signal is cyclostationary or stationary but not Gaussian. On the other hand, 
the proposed indicator can perform this distinction giving a cyclic roughness value of 2.2424 for the 
filtered signal and 0.25819 for its randomized version. 

4.2 Performance Evaluation in the CWRU database 

The performance of the proposed indicators is now evaluated on the bearing signals provided by the 
CWRU database. The CWRU database has been used in many references (e.g. [19], [22], [27], [28]) and 
can be considered as a reference to test newly proposed algorithms and compare them against the state-
of-the-art. The experimental setup consists of a 1.4914 kW, reliance electric motor driving a shaft on which 
a torque transducer and encoder are mounted. Torque is applied to the shaft via a dynamometer and 
electronic control system. Four types of vibration signals are collected (normal, ball fault, inner-race fault, 
and outer-race fault), acquired by accelerometer sensors under different operating loads and speeds. 
More details about the test bench as well as the description of its vibration signals can be found in the 
reference source [27]. In this study, the drive end data-set category with sampling frequency 48 kHz have 
been analyzed. Information for all 64 data sets used are shown in table 1. The capacity of the proposed 

indicator is evaluated using different faults types. The 𝛾𝑋
(1)

(𝛼𝑙  ,  𝑓𝑘) parameters are as given in the previous 
section.  

Table 1. The 48K drive end bearing faults data sets used. 

Fault types Data sets name 

Inner-race 110,111,112,174,176,177,14,215,217 

Outer-race (centered) 135,136,137,138,201,203,204,238,239,240,241 

Normal data 97,98,99,100 

 
Table 2 and table 4 collect the results of the proposed method. Included in these tables are the 𝐼𝑅 as well 
as the kurtosis values, of each raw time signal and its randomized version. 
As shown in Table 3, for the original signals, 𝐼𝑅 is close to 0.15, while for its randomized version, it is about 
0.1 (𝐼𝐿 = 0.1). In all these cases and in according to the decision rule in equation (7), the fault is declared 
missed. The kurtosis in these cases is approximately 3. From Table 3, nearly the same increasing or 
decreasing behavior of the proposed indicator values are detected compared to the values provided by 
kurtosis and by the roughness indicator provided in commercial psychoacoustic software. In all these 
cases and in according to the decision rule in equation (7), the fault is declared presented. According to 
the obtained results, all faults detected by the human visual inspection of [27] in the inner ring and outer 
ring are also detected by the proposed indicator. It is clearly proven that the distinction between healthy 
and defective bearings can be made using these indicators. Unfortunately, given that the proposed 
indicator provides overlapping values when applied to the different types of bearing faults, the existence 
of the fault can be detected but not identified. 
In conclusion, the objective has been achieved and the proposed indicator can identify the fault even if its 
frequencies are unknown. 
 

Table 2. analysis results of the healthy bearing; Kurtosis, 𝐼𝑅 

 Raw signal Randomized signal 



Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

100 2.9572 0.1354 2.9572 0.0999 

97 2.7642 0.1471 2.7642 0.1011 

98 2.9306 0.1422 2.9306 0.1002 

99 2.9306 0.1422 2.9306 0.0977 

 
Table 3. analysis results of the faulty bearing; Kurtosis, 𝐼𝑅 

Inner-race faults 

 Raw signal Randomized signal 

Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

110 7.36862 0.494821 7.36862 0.101008 

111 7.51043 0.467891 7.51043 0.103501 

112 6.82779 0.439782 6.82779 0.104584 

174 11.6689 0.504829 11.6689 0.10279 

176 20.1511 0.861307 20.151 0.117898 

177 14.9400 0.823425 14.940 0.114356 

214 3.93724 0.507309 3.93724 0.100236 

215 3.65185 0.444887 3.65185 0.099826 

217 3.65185 0.444887 3.65185 0.09756 

Outer-race faults (Centered) 

 Raw signal Randomized signal 

Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

135 6.7415 0.5032 6.741461 0.1047 

136 6.8648 0.5293 6.864769 0.1027 

137 6.9370 0.5295 6.937026 0.1017 

138 7.3917 0.5154 7.391694 0.1030 

201 3.7676 0.2039 3.767617 0.1031 

203 6.0172 0.2108 6.017181 0.1015 

204 2.9993 0.2104 2.999284 0.0996 

238 20.7910 2.3374 20.79105 0.1169 

239 20.5436 2.7322 20.54365 0.1148 

240 21.0265 0.5032 21.02651 0.1205 

241 19.7818 0.5293 19.78182 0.1199 

5 Conclusion  

This paper aims introduces an autonomous method of bearing diagnosis. It relies on the introduction of a 
new scalar indicator. The indicator results from a post-processing of the spectral coherence, as computed 
by the fast algorithm.  
The factors that are likely to impede the autonomous diagnosis have been addressed; a new 
standardization of the estimated spectral coherence to remove any possible bias and frequency 
dependence in the estimation variance. The method comes with a robust hypothesis test, which is crucial 
for decision making. 
The proposed method has been validated on several databases, where it has been checked to be able to 
systematically replace both the human intervention or the classical conditioning indicator to efficiently 
complete the diagnosis of bearings.  
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