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Abstract
The scope of this paper is the development of a fault detection and diagnosis method aimed to helicopter gear-
box bearings vibration monitoring in an operational context. Bearings are critical components in the gearbox,
and their monitoring allows for failure anticipation capabilities, leading to increased safety and improved main-
tenance planning. Deploying a monitoring strategy for helicopter gearboxes necessitates the development of a
methodology which can provide reliable information under varying operating conditions, dealing with a noisy
vibration environment and simultaneously considering acquisition system constraints, such as limited acqui-
sition duration and sampling frequency, and operational needs, such as low rate of false alarms and minimal
workload for the analyst. The approach proposed in this paper is based on the cyclostationary signals theory and
relies on a two-steps procedure of detection and diagnosis. First, bearing fault detection indicators are devised
on a statistical basis, leveraging on the theoretical properties of the envelope method. Then, a diagnosis based
on the computation of the averaged cyclic periodogram is performed to assess the damage in the eventuality of
an alarm. The developed methodology is validated on real helicopter data collected over about twenty thousand
flight hours, including four bearings from different machines for which in-service spalling initiation occurred.
The fault detection performance is evaluated on the basis of the achieved false alarm rates and the improvement
in fault anticipation with respect to chip detectors, whereas the capability of isolating the fault-related signals
using cyclostationary signal separation methods is shown for the diagnosis stage.

1 Introduction

Aircraft operations always pose the problem of guaranteeing at any time a compliant level of safety of the
machine, achieved through an adequate maintenance plan, without significantly compromising its availability.
In helicopters, the drive train sub-system is responsible for transferring power from the engines to the rotors,
and represents a critical sub-system for the machine due to non-redundant load paths and the high variability
of the dynamic loads acting on the components [1]. As to ensure aircraft airworthiness, the system needs to
be maintained following a prescribed preventive maintenance program, resulting in a burden to operating costs
and aircraft availability. Searching for an optimal trade-off between keeping the machine operational and re-
ducing safety risk within acceptable hazard levels calls for making as informed as possible decisions. In the last
decades, the helicopter industry worked on implementing technical solutions for increasing safety and reducing
maintenance costs by enabling Condition Based Maintenance (CBM) [2, 3]. The effort resulted in the wide-
spread adoption of Health and Usage Monitoring Systems (HUMS). Owing to the mechanical degradation of
drive train components often resulting in specific vibration symptoms, and considering the widespread avail-
ability of vibration measurement systems, helicopter HUMS mostly rely on vibration analysis as a monitoring
mean.

A structured breakdown of the failure mechanisms that may affect a helicopter transmission is given in
[4], mostly based on [5, 6]. Failure modes may be divided into gear failure modes, bearing failure modes
and shaft failure modes. From an operational point of view, the potential of vibration monitoring in driving
maintenance operations toward condition based can probably at most be realized by improving the gear and
bearing monitoring procedures. Gearbox inspections are expensive and require long-term grounding of the
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machine. Therefore, timely detecting an impending mechanical degradation is a great advantage which results
in improved maintenance planning and increased machine availability.

In this paper, a two-steps procedure for rolling element bearing fault detection and diagnosis is proposed,
with the aim of obtaining a reliable operational procedure able to cope with the monitoring of a fleet of he-
licopters. First, cyclostationary analysis is recalled as a tool to describe and characterize the characteristic
signature of a faulty bearing in section 2. Then, a procedure based on automated statistical bearing fault de-
tection and successive fault diagnosis, and tailored on the specific features of helicopter gearbox vibration
environment, is proposed in section 3. The devised strategy is validated in section 4 using data collected from
a fleet of operating commercial helicopters. Finally, conclusions are drawn in section 5.

2 Theoretical background

This section is a summary of existing literature on the subject of cyclostationary methods for bearing fault
detection, and does not contain original material, except for section 2.4.3.

2.1 Cyclic spectral analysis

Rotating machinery vibration signals have been in the last decades successfully modelled as cyclostationary
processes [7–11]. Cyclostationarity is a property characterizing stochastic processes whose statistics vary peri-
odically with respect to some variable (for rotating machinery, typically time or shaft’s angular position) [12].
Due to this generality, it is particularly fit to describe rotating machinery signals [13]. The impact forces gener-
ated by rolling elements interacting with a local defect on the race are not repeating perfectly periodically due
to slippage of the elements in normal operating conditions. Also, the transfer path to the accelerometer varies
depending on the relative position of the sensor and the source of the impact. This is the case, for example,
for a defect localized on any rotating element in the bearing, where the impact location varies periodically with
respect to the transducer position. Such phenomena can be described by their periodic statistics, and therefore
the class of cyclostationary signals is suitable to represent the associated excitation. In this paper, the second
order cyclostationary descriptors are used to characterize the bearing fault signature. The main quantities of
interest when dealing with cyclostationary processes in rotating machinery vibration monitoring are the cyclic
spectral correlation (SC) and its normalized version, the cyclic spectral coherence (SCoh). Those quantities are
bi-spectral representations, containing information related to the correlation between spectral frequency bands
spaced apart by a so-called cyclic frequency α . By considering a signal y(t) recorded in the time T and its
Fourier transform YT ( f ), its cyclic spectral correlation can be expressed as:

Syy( f ,α) = lim
T→∞
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whereas the (squared magnitude) cyclic spectral coherence reads:

|γx( f α)|2 =
|syy( f ,α)|2

syy( f +(α/2))syy( f − (α/2))
, (2)

A practical estimator of the cyclic spectral correlation can be obtained using the averaged cyclic peri-
odogram method [14]. Based on [14], the averaged cyclic periodogram for the N-length discrete sequence x[n]
sampled with sampling frequency Fs, computed using K (possibly overlapping) windows w[n] of length Nw can
be computed as:
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where:
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is the DFT of the kth windowed sequence wk[n]x[n]e± jπαn/Fs . Practically, the selection of the window
length, the window function and the cyclic frequency resolution can be optimized as to minimize the compu-
tational time, minimize the cyclic leakage and find the proper trade-off between frequency resolution on the
spectral axis f and variance reduction of the estimator [15]. Despite being computationally heavy, the estimator
of equation (3) provides reliable results, thanks to its statistical properties, well characterized in [15]. Albeit
faster algorithms were developed to estimate the cyclic spectral correlation, e.g. [16], the average cyclic peri-
odogram method still remains a benchmark in terms of estimation accuracy and estimation variance properties.

2.2 Envelope analysis

An important relationship that can be exploited for characterizing a second order cyclostationary process is
that connecting the cyclic spectral correlation of the process with its envelope spectrum. It holds from [10] that
marginalizing the spectral correlation on the cyclic frequency axis, by integrating out the spectral frequency
yields the squared envelope spectrum of the signal. The envelope spectrum has indeed been used in rotating
machinery long before the cyclostationary framework was introduced [17]. However, the work in [10] allows to
explain the efficiency of the envelope spectrum as an analysis tool for second order cyclostationary processes,
framing the technique in the solid theoretical framework of cyclostationary analysis. Other than simplifying the
analysis (albeit at the price of losing information on the spectral frequency distribution of the investigated pro-
cess), the envelope spectrum can be easily estimated from a digitalized realization of the stochastic process by
making use of the discrete Hilbert transform and the Fast Fourier Transform, and it is therefore a computation-
ally very convenient quantity. Being equivalent to the integration of the cyclic coherence along the frequency
axis, the squared envelope spectrum (SES) as a function of the cyclic frequency α , can be obtained from the
N-samples discrete sequence x[n] sampled with sampling frequency Fs as [14]:

ICC(N)
x (α) ∝ | 1

N

N−1

∑
n=0
|x[n]∗g[n]|2e−j2πnα/Fs |2

=
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{
|x[n]∗g[n]|2
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x (α)

, (5)

where the convolution with g[n] accounts for whitening of the signal (necessary to have the power normal-
ization leading to cyclic coherence, in place of cyclic correlation); analytic signal transformation; and band-pass
filtering in a band comprised between the frequencies F1, F2, normally to be chosen as to filter the signal in
a band in which the fault symptoms are prominent with respect to the background vibration and the interfer-
ing sources. More recently, the logarithm of the envelope spectrum (LES) for a discrete sequence x[n] with
n = {1, ...,N} was introduced in [18] as:

LESx[α] =

∣∣∣∣∣∑N−1
n=0 log

(
x[n]2

)
e−2π jnα/Fs

N

∣∣∣∣∣
2

, (6)

The LES is an interesting quantity to be considered in an automated detection framework, thanks to its
advantageous statistical properties demonstrated in [18].

2.3 Statistical tests for cyclostationarity

The problem of detecting the second order cyclostationarity is formulated as the decision between the two
alternative hypotheses:

H0 : "The signal does not contain a CS2 component at the cyclic frequency α”
H1 : "The signal contains a CS2 component at the cyclic frequency α.”

(7)

2.3.1 Testing the SES for cyclostationarity

A rigorous statistical test for the presence of a cyclostationary component at frequency α was given in
[14] and is based on the cyclic coherence. By exploiting the link between the cyclic coherence and the SES, a
practical statistical test on the SES can be obtained, with the advantage of allowing to work on a simpler, faster
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to compute quantity. Namely, for a discrete signal x[n] of length N, the following result is obtained in [14] by
extending the statistical test on the cyclic coherence, and in [19] following a direct analysis of the discrete SES:

"Reject H0 if: ”SES(N)
x (α)>

σ4
x∗g

2N
Fs

F2−F1
f (α) ·χ2

1−p,2”, (8)

being p the significance level of the test, σx∗g the standard deviation of the filtered signal x[n]∗g[n] and:

f (α) =

{
1−|α|/(F2−F1) , |α|< F2−F1
0 elsewhere

(9)

It is important to underline that the optimality of the test is obtained under the assumption of white noise
signal for a healthy component. An analysis of the effects of CS1, CS2 components and colored noise on the
SES of the signal is exhaustively performed in [19]. The relevant points are summarized below:

• The effects of a set of M additive multi-harmonic CS1 components of frequencies λm, m = {1, ...,M} are
that of biasing the SES at the difference frequencies {∆λ} = {λm−λn}, m,n = {1, ...,M}; and that of
amplifying the variance in large frequency bands.

• The effect of an additive CS2 component in the signal is that of introducing a bias in the estimator of the
SES, which is stronger when the average power of the CS2 carrier is dominating over the background
noise.

• The generalization to colored noise implies estimating the variance of the signal at each frequency bin,
resulting in a statistical threshold which is no longer a linear function of the frequency.

2.3.2 Testing the LES for cyclostationarity

For a white noise, discrete signal x[n] of length N, the distribution of the LES at a cyclic frequency α is
given in [18] as:

LESx[α]

π2/4N
∼ χ

2
2 (10)

Therefore, the LES test for cyclostationarity at significance level p reads:

"Reject H0 if: ”LES(N)
x (α)>

π2

4N
·χ2

1−p,2”, (11)

The LES allows estimating the CS2 components in the signal with the following advantages with respect to
the SES:

• The estimator is unbiased by the presence of cyclic components of a frequency different than the consid-
ered one.

• Under the white noise assumption, the variance of the estimator is independent from the variance of the
noise in the signal.

The second point is more a matter of mathematical rigor for long, whitened noise signals, whereas the first
point constitutes an important advantage of the LES when it comes to defining automated tests for the presence
of cyclostationary components at a frequency of interest. Additionally, the LES was shown to yield better
statistical performance in presence of impulsive noise [20]. This last characteristic is not surprising in light of
its being unbiased from CS2 components, considering the existing relation between the CS2 components in the
signal and its Kurtosis [21].
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2.4 Signal pre-processing

In order to leverage on the optimality of the statistical tests discussed in section 2.3, it is necessary to bring
the analyzed signal’s statistics as close as possible to the white noise conditions. First, it is a good practice
to remove CS1 components from the signal, as they have a biasing effect as explained in section 2.3. The
removal of CS1 components can be performed, e.g., through estimation and subtraction. Such an estimation
can be performed in different ways, depending on whether the fundamental cycle of interest is known or not.
In the case it is not, it can be based on blind estimators, as the linear adaptive enhancer (ALE), or the self-
adaptive noise canceller (SANC) and its more efficient frequency domain formulation [22–25]. Generally,
blind estimators performance is negatively affected by signal to noise ratio. Moreover, blind filters require a
proper parameter tuning which may not be trivial in every case. When the cycle of the signal is known, a
popular estimator of the periodic mean is the synchronous average (SA) operator, which is also known as Time
Synchronous Average (TSA) due to its original formulation in time domain [26]. In order to obtain the periodic
mean in the case of a quasi-cyclostationary signal, the SA must be applied for each of the fundamental cycles
which are present in the signal, and then the extracted periodic components need to be summed together [13].
Once the deterministic part of the signal is removed, it is necessary to obtain a flat frequency spectrum for
the signal, resembling white noise statistics. In order to do so, there are mainly two strategy: one is selecting
a narrow-band frequency region and filter it out; the other is to apply any method to "flatten" the spectrum,
such as cepstrum pre-whitening (CPW) [27–29]. On the other hand, the estimation bias resulting from the
exogenous CS2 components discussed in section 2.3 cannot be simply corrected for, due to its statistical nature.
As a summary, two main steps shall be performed before analyzing the signal, i.e. removal of CS1 components
and pre-whitening of the residual. In this work, two techniques were found particularly useful for the scope:
the angular domain synchronous average and the cepstrum pre-whitening. The first technique is preferred as
the cycles of the main additive deterministic components are known for a given gearbox, whereas the second
one is preferred over filtering, as it allows to consider the full-band signal in the analysis, avoiding a further
optimization step to select a narrow-band filter which is able of isolating the fault signature (e.g., Spectral
Kurtosis [30] is a popular tool that can be used for the scope). Also, if compared to other pre-whitening
techniques, the CPW excels for the simplicity of use and the lack of configuration parameters to be properly
selected.

2.4.1 Synchronous average removal

Under the assumption of cycloergodicity [13], SA is indeed a practical estimation of the periodic mean
of a CS signal, which is its first order cyclostationary part of cycle equal to the fundamental period used for
averaging. The equation for the SA of a signal x(θ) of fundamental cycle Θ reads in angle domain [31]:

SA[x(θ)]Θ =
1
N

N−1

∑
i=0

x(θ + iΘ) (12)

Synchronous averaging is thus equivalent to applying a comb filter to the signal [13], which extracts the mul-
tiples of the reference harmonic. The number of averages controls the bandwidth of the lobes, the amount of
noise rejection and the position of the notches of the filter. In order to remove multiple cycles linked to different
harmonic families, equation (12) can be applied multiple times to extract the harmonic family of interest and
then subtract it from the original signal. It is worth mentioning that an "order tracking" or "angular resampling"
step has to be performed to correct for small speed fluctuations, expressing therefore the measured vibration
signal in the angle-domain form of equation (12) [27]. This angular resampling step is typically performed us-
ing a synchronization signal acquired from an external measurement system, as e.g. a magnetic pick-up sensor
mounted on a reference shaft [31].

2.4.2 Cepstrum pre-whitening

The pre-whitening operation consists in setting a zero value for the whole real cepstrum (except possibly
at zero quefrency), then, once transformed back to the frequency domain, the obtained signal is recombined
with the phase of the original signal and inverse transformed to time domain [29]. Considering a signal x, its
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pre-whitened version can be simply computed as [29]:

xcpw = IFT
{

FT (x)
|FT (x)|

}
(13)

2.4.3 Remarks on signal pre-processing

The two steps of signal pre-processing carry with them some hidden difficulties which is worth pointing out.
First, it is necessary to observe that the synchronous average removal requires angular resampling of the signal,
and when it is performed using the computed order tracking (COT), it involves interpolating the signal in order
to obtain its angle-domain values. In [32], a discussion of interpolation methods is given. Interpolating acts as
a low-pass filter in the frequency domain. Therefore, it is important to keep into account that any order tracking
step has the effect of distorting the signal’s spectrum by attenuating the high-frequency components. As a
consequence, spectral flattening shall always be performed after order tracking, when envisaging the use of the
statistical tests of section 2.3. Furthermore, the cepstrum pre-whitening enhances the sensitivity of the squared
envelope results to phase correlation. This last issue is formalized below by using a simple, unit amplitude
complex harmonic signal as an example. Consider the following:

x(t) = e j2π f̃ t (14)

then its Fourier transform reads:
X( f ) = δ ( f − f̃ ) (15)

being x(t) complex analytic, and noting x(t) its complex conjugate, then the envelope spectrum can be
computed as:

ENVx( f ) = FT (x(t) · x(t)) (16)

if a finite-length, discrete signal y[n] = x[n] ·w[n], n = {1, ...,N} is considered (neglecting the sampling step
from the notation for simplicity), being w[n] a rectangular, causal observation window of length N, and the
Discrete Fourier Transform is used to compute the Fourier transform, it holds:

ENVy[k] =
1
N

N−1

∑
n=0

y[n] · y[n] · exp
(
− j2π

nk
N

)
(17)

then by the convolution theorem, equation (17) can be rewritten as:

ENVy[k] =
N/2

∑
r=k

Y [r] ·Y [r− k] (18)

again, for the convolution theorem, the sifting property of the Dirac’s delta distribution δ (·), and considering
the Fourier transform of the rectangular window w[n], equation (18) can be expressed as:

ENVy[k] =
N/2

∑
r=k

sin(π(r− k̃))
sin(π(r− k̃)/N)

e− jπ(r−k̃)N−1
N · sin(π(r− k− k̃))

sin(π(r− k− k̃)/N)
e jπ(r−k−k̃)N−1

N (19)

where k̃ denotes the discrete frequency index corresponding to f̃ . After the cepstrum pre-whitening op-
eration of equation (13), only the phase terms are left from the DFT of the original signal and equation (19)
becomes:

ENVy[k] =
N/2

∑
r=k

e− jπ(r−k̃)N−1
N · e jπ(r−k−k̃)N−1

N = e− jπk N−1
N (

N
2
− k) (20)

From equation (20), it can be observed that the phase correlation from residual periodic components has
a harmful effect on the classical envelope spectrum of the pre-whitened signal, which is amplified when the
amplitude spectrum of the signal is equalized to the unit value.
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2.5 Bearing fault signature

Healthy bearings vibration does not typically bring a significant contribution to the vibration generated by
a helicopter gearbox. On the other hand, a defective bearing generates a characteristic vibration signature,
characterized by repeated impacts occurring each time that a bearing element contacts the defective surfaces [5,
33–35]. Typically, four characteristic frequencies can be identified: ball pass frequencies on the outer and inner
races (respectively BPFO and BPFI), typically linked to localized defects on one of the races; fundamental
train frequency (FTF), generally linked to cage defects; and ball spin frequency (BSF), normally related to
localized defects on the rolling elements surface. By indicating with fi and fe respectively the inner and outer
race rotation frequency, with Nb the number of rolling elements in the bearing, by α0 the initial contact angle,
by d the rolling element diameter and by D the bearing pitch diameter, these characteristic frequencies read
[36]:

BPFI =
Nb | fe− fi|

2

(
1+

d
D

cos(α0)

)
BPFO =

Nb | fe− fi|
2

(
1− d

D
cos(α0)

)
BSF =

D | fe− fi|
2d

(
1− (

d
D

cos(α0))
2)

FT F =
1
2

(
fe

(
1+

d
D

cos(α0)

)
+ fi

(
1− d

D
cos(α0)

))
(21)

Letting h j(t) be the impulse response to a single impact measured by the sensor located at position j, q(t)
the periodic modulation owing to load distribution (or periodic changes in the loading conditions, or sensor ori-
entation/position with respect to the impact point) [37, 38], and letting T be the fundamental impact periodicity
(which can be computed by inverting the frequency of interest from equation (21)); then the measured response
x j(t) related to the defective bearing was given in [14, 39–41] as:

x j(t) =
+∞

∑
i=−∞

h j (t− iT − τi)q(iT )Ai +n j(t), (22)

where n j(t) includes the additive background noise and all eventual interference sources, the subscript
i indicates the ith impact, τi represents the mentioned uncertainty on pulse arrival time and Ai the random
amplitude of the impact. Both the variables are modeled in [14] as mutually independent, white, stationary
random sequences with respectively zero and unity mean. Those idealized assumptions allow, according to the
literature, to gain sufficient insight into the described phenomenon. The fault signature appears as a pseudo-
periodic excitation consisting of pulses which are separated by a period close to that of the fault frequency,
but affected by a small, random variation typically of the order of one percent of the fundamental period.
Such slight fluctuations results practically in destroying the discrete, harmonic structure that would arise if
the random fluctuations were neglected as in [34], giving raise to an essentially random vibration signal in the
frequency range of interest [14]. The main difference between the model found in [34] and that of equation (22)
is that in the latter, the harmonic structure produced by the fault-related impacts rapidly turns into a random
signal. As a consequence, the bearing fault signature in the spectrum is likely to be localized in the low-
frequency region, and therefore subject to masking from the background noise and from other possibly existing
interference sources, as e.g. gear mesh harmonics. Hence, the model can explain the reason for which classical
spectral analysis may fail in detecting rolling-element bearing faults, making this signal representation closer
to the reality of the phenomenon. A practical solution to this issue resides in making use of the second-order
cyclostationary tools presented in section 2.1 in order to isolate the bearing vibration signature from the rest of
the measured signal. The cyclostationary approach was actually shown very successful for bearing diagnostic
problems in several works, as in [10, 14, 19, 21, 33, 41]. From equation (1), adopting the proper normalization
to obtain the cyclic power spectrum from the spectral correlation, it can be shown that for the signal model of
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equation (22), it holds [10]:

Sx j( f ,α)' 1
T

H j
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f +

α

2
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H j
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2

)∗(
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1+σ

2
A
)
−Φ

(
f +
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2

)
Φ

(
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2

)∗)
×

+∞

∑
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Qlδ

[
α− k

T
− l

P

]
+δ [α]Sn( f )

, (23)

in which Φ( f ) stands for the Fourier transform of the probability density function of the random variable
τ associated to the impacts jitter, P for the load variation characteristic period, H j( f ) for the transfer function
from the impact point to the measurement location j, obtained as the Fourier transform of the impulse response
function h j( f ), σA the standard deviation of the random variable A representing the random impact amplitude,
and the Ql are coefficients of the Fourier transform of the modulating function q(t). The weak harmonic
contribution was neglected, being it highly attenuated in the high frequency region as an effect of the random
jitter of the impact times. From equation (23), the discrete structure of the bearing signature is finally evident
in the cyclic power spectrum plane, with continuously distributed values along the spectral frequency lines
appearing at multiples of the fundamental impact frequency (along axis α). Also, the values are higher for
those spectral frequency bands where the fault signature is dominating. It follows for the cyclic coherence [14]:

∣∣γx j( f ,α)
∣∣2 ' ∣∣∣∣ SNR( f )

1+SNR( f )

∣∣∣∣2 |Φ(α)|2
+∞

∑
k,l=−∞

∣∣∣∣Ql

Q0

∣∣∣∣2 δ

[
α− k

T
− l

P

]
, (24)

where SNR( f ) represents the signal-to-noise ratio of the fault. Consequently, as a function of the spectral
frequency f , equation (24) shows an increased coherence for increasing amplitude modulation randomness,
impact frequency and load modulation intensity, whereas as a function of the cyclic frequency α , it shows
a discrete structure consisting of harmonics of the fault signature separated by the characteristic impact fre-
quency, with decreasing amplitude depending on the low-pass filtering function Φ(α). Therefore, the highest
the multiple of the fundamental impact frequency, the lower the intensity of the observed bearing signature in
the cyclic coherence. Equation (3), along with the proper normalization, can be used to estimate the quantity
appearing at the LHS of equation (24), yielding an efficient diagnostic representation able of highlighting the
bearing fault signature according to the structure of equation (24).

3 Proposed monitoring procedure

Operationally, it is desirable to control the risk of false alarms from the health monitoring system, in addition
to providing the earliest possible warning. In order to achieve those targets, a two-steps procedure is proposed
in this work. First, statistical indicators leveraging on the cyclostationary theory are designed in order to attain a
specified false alarm rate. Secondly, a diagnostic step based on the analysis of the cyclic coherence is taken each
time that an alarm is raised, in order to confirm that the threshold exceedance is actually due to a mechanical
defect. The importance of the first step of the procedure is that of providing an easy-to-read scalar indicator,
with known statistical behavior, which can be employed to guarantee a given false alarm rate as low as not to
overload the analysts, maintaining contextually an acceptable detection performance. The second step implies
confirming the alarms raised in the detection phase before performing any maintenance, as a measure to avoid
unnecessary grounding of the concerned helicopters.

3.1 Fault detection stage

With the aim of deriving statistically reliable monitoring indicators, the cyclostationary signal theory is
adopted in this work within the frame of a procedure similar to that proposed in [42]. The envelope spectrum
is here computed through the methods described in section 2.2. Both SES and LES can be considered. The
necessity of an automated bearing monitoring gives raise to the following challenges:

1. The false alarm rate shall be kept under control in order to avoid unnecessary grounding of the machine;

2. The actual fault frequency cannot be accurately predicted using the simplified kinematics relations;

3. Interfering, exogenous components may mask the bearing fault signature.
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As to cope with the first point, the statistical tests presented in section 2.3 for LES and SES can be ex-
ploited. First, a signal pre-whitening step consisting of the removal of the periodic (CS1) components through
synchronous averaging followed by cepstrum pre-whitening for spectral flattening is performed. This allows to
get rid of interferring CS1 sources and to bring the signal’s statistics closer to those of white noise. A statistical
threshold can then be derived from the white-noise envelope spectrum statistics as in [18, 43]. For a number
of bearing fault harmonics to be configured, a narrow-band frequency range around the fault frequencies of an
extent to be configured, can be defined. This is done in order to allow some margin in considering eventual
shifts of the fault frequency from its predicted nominal value, addressing the second problem in automatizing
the algorithm. At the same time, if the considered cyclic frequency range is too wide, there is the risk of ex-
ogenous CS2 components leaking into the analysis band, leading to incorrect diagnosis. This issue has to be
carefully addressed when tuning the algorithm’s parameters. Any number of fault harmonics can be considered
in the algorithm. However, according to equation (24), best results are obtained for the low bearing harmonics.
For each defined range, the values of the SES or LES are compared to the statistical thresholds of equations (8)
and (11). If any statistically significant value is present, a fault detection alarm is raised. The advantages of
the adopted procedure are two-fold: on one hand, the envelope spectrum is computed in a computationally
efficient way; on the other hand, the computation of the theoretical threshold after pre-whitening according to
[18, 43] provides solid grounds for statistical testing. For a given signal to be processed, the algorithm can be
summarized in the following steps:

1. Define the desired false alarm rate ˜PFA for the indicator according to the operational needs;

2. Calculate the fault frequency of interest FF (according to equation (21)) in units of the sampling frequency
Fs;

3. Set the number of fault harmonics Nh to be monitored;

4. Set a tolerance band ψ as a percentage of the fault frequency of interest, in order to account for the
uncertainty on the actual fault frequency;

5. Remove known CS1 components using synchronous average removal;

6. Apply spectral flattening using cepstrum pre-whitening;

7. Compute the full-band SES/LES of the pre-whitened signal;

8. Compute the statistical threshold p according to the defined desired false alarm rate, based on the white
noise assumption;

9. For each considered fault harmonic: find the maximum value of SES/LES in the defined tolerance band;

10. Compute the indicator value as the mean of the statistically significant values with respect to the defined
threshold (if no significant value is found for any of the considered harmonics of the fault, the indicator
value is set to zero).

The expected false alarm rate ˜PFA corresponds to the probability of one value of the (squared or loga-
rithmic) envelope spectrum within the considered range being higher than its statistical threshold computed
through equations (8) and (11). Therefore, to attain a desired level for ˜PFA, it is necessary to calculate the
significance level p as to satisfy:

˜PFA = 1− p∑
Nh
h=1 rh (25)

with Nh being the number of the considered fault harmonics and:

rh = dh
ψ

100
FF

Fs
Ne (26)

where N is the discrete signal length and Fs its sampling frequency expressed in inverse units of the sampling
step. The value of p obtained from equation (25) allows for calculating the statistical thresholds of equations (8)
and (11) so that the probability of having one exceedance of the envelope spectrum in the computational range
is equal to ˜PFA. It is important to point out that where the false alarm rate can be kept under control, the
detection performance cannot be predicted a priori. Typically, the higher the tolerance band ψFf , the lower
the detection performance for a fixed ˜PFA; the higher the admissible alarm rate ˜PFA, the higher the detection
performance that can be expected.
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3.2 Fault diagnosis stage

Each time an alarm is triggered, a fault diagnosis step is performed by the analyst. It consists of computing
the cyclic spectral coherence around the fault frequencies for which the detection algorithm raised an alert and
visually assessing the existence of CS2 components compatible with the expected signature from a bearing
fault. The spectral coherence is estimated according to equation (3), where the number of averages and the
window length are set according to the guidelines discussed in [15]. Within this assessment step, the analyst
can additionally assess the presence of diagnostic side-bands carrying supplementary information on the nature
of the fault.

4 Results

In this section, the proposed monitoring strategy is applied on in-service helicopter HUMS data in order
to assess its performance in terms of reliability and detection. LES and SES indicators, along with different
pre-processing treatments are compared, stressing the importance of properly pre-whitening the signal before
carrying on with the analysis.

4.1 Data description

In order to validate the proposed procedure, a comprehensive data-set consisting of vibration data recorded
from fourteen machines over about twenty-thousand flight hours (FH) is considered. The data-set includes four
bearing in-service degradation cases that were detected by the HUMS: two of them concern roller bearings,
and the other two concern ball bearings. The acquisitions were performed in various operating conditions,
involving different regimes for the rotational speed of the rotor and for the transmitted torque from the engines.
Main gearbox (MGB) and accessory gearbox (AGB) acquisitions comprise signals from seven accelerometers
and two keyphasor signals. The two keyphasor signals provide respectively one pulse per revolution of the
main rotor and of the tail rotor shaft. Accelerometers are typically mounted on the gearbox casing, close to
the monitored components. Generally, acquisitions are divided in groups. Each acquisition group is launched
when specific flight conditions are matched and consists of a synchronized acquisition from a set of sensors,
performed with a configured sampling frequency for a configured duration. The available keyphasor signals
are always sampled with the same sampling frequency of the accelerometer signals. Signals were sampled
synchronously from all the MGB accelerometers with a sampling frequency of 50 kHz, for one second dura-
tion. The four documented bearing fault cases occurred on different machines during the monitoring period.
The faults were anticipated by the HUMS in the spalling initiation phase, allowing for timely maintenance.
Table 1 summarizes the four selected fault cases, whereas figure 1 show the inspected bearings after component
removal. All the cases involve outer race spalling which occurred whether on a roller or on a ball bearings.
The HUMS, through the deployed monitoring strategy, triggered regular inspections of the chip detectors and
allowed in each case to anticipate the chip warning coming from the oil metal chips detectors. Additionally,
for the fault case 4, HUMS had gained enough confidence to trigger the removal without the need of waiting
for the metal particles in the chip detector to be out of criteria. The geometrical parameters of the concerned
bearings are not reported for proprietary reasons.

Table 1 – Fleet selected bearing fault cases summary

Fault case ID Machine ID Damaged bearing
1 1 Roller bearing (bearing 1)
2 2 Roller bearing (bearing 1)
3 3 Ball bearing (bearing 2)
4 3 Ball bearing (bearing 2)
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(a)
(b)

(c) (d)

Figure 1 – Damaged bearings after inspection. Outer race presenting spalled area at the time of removal – a)
Bearing fault case 1 ; b) Bearing fault case 2; c) Bearing fault case 3 ; d) Bearing fault case 4.

4.2 Fault detection performance

The bearing monitoring strategy proposed in section 3 is applied on the operational data of this section.
Bearing anomaly indicators are computed routinely on all the fleet data, and then the detected exceedances are
analyzed using cyclostationary analysis in order to complete the diagnosis. Although bearing anomaly indica-
tors are computed for each monitored bearing in the gearbox, the results here presented are restricted to those
for which the faults were observed, allowing to validate both detection and the reliability performance. From
the bearing geometrical properties, the theoretical characteristic frequencies could be computed according to
equation (21). Table 2 reports the computed, nominal bearing defect frequencies for the considered bearings
1 and 2, expressed in orders of the rotational speed of the shaft to which they are attached. According to the
nominal design parameters, the fault frequencies are very close (for the outer race defect frequency, the dif-
ference between bearing 1 and 2 is less than two percent), posing a challenge in discriminating which one is
the faulty bearing in the event of a detection. Both SES-based and LES-based indicators are evaluated, com-
puting the envelope spectra on the pre-whitened signal after a synchronous average removal step and cepstrum
pre-whitening (SES-CPW and LES-CPW indicators). Performance on the signal after the synchronous average
removal step only are also reported for comparison (SES-SA and LES-SA indicators). The indicators were con-
figured such as to allow to separate the two fault frequencies, but allowing some slippage through one-percent
width analysis bands. Only the first harmonic of the outer race fault frequency was considered. With reference
to section 3, care was taken when performing the OT steps in the SA removal and when resampling the signal
to order domain before the cepstum pre-whitening.

Table 2 – Bearing 1 and 2 characteristic fault frequencies in order domain.

Parameter Description [dimension] Bearing 1 Value Bearing 2 Value
BSF Roller Spin Frequency [Hz] 3.64 3.67
FT F Fundamental Train Frequency [Hz] 0.44 0.45
BPFO Ball Pass Frequency Outer race [Hz] 9.69 9.85
BPFI Ball Pass Frequency Inner race [Hz] 12.31 12.15
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Figure 2 shows the actual false alarm rate against the expected one for the SES and LES indicators for
bearing 1 and bearing 2 on the whole collected healthy fleet data. It can be seen that the actual alarm rates for
both the bearings do not match well the expected results in the case of the SA indicators. This is attributable
to two main factors: first, the SA procedures do not remove all of the periodic components originally present
in the signal, leaving some residual, biasing CS1 component; secondly, the spectrum of the measured vibration
is far from resembling white noise, leading to the statistical thresholds computed using equations (8) and (11)
being inaccurate. On the other hand, figures 2c and 2d show better results for the indicators computed after
the cepstrum pre-whitening step. From the distribution check it can be seen that the LES-based indicator
provides very accurate results for both the considered bearings: the actual false alarm rate agrees very well
with the predicted one. Conversely, despite the spectral flattening and the SA removal, the SES indicator yields
higher false alarm rate than expected. This fact might be explained by the SES statistics being affected by
exogenous CS2 components, differently from those of the LES. In order to evaluate the detection performance
of the devised statistical indicators, an anticipation over removal metrics is introduced. For each fault case, the
removal anticipation (RA) achieved by HUMS alert and expressed in acquisitions number, was computed as
a function of the actual false alarm rate on the fleet. Typically, the removal is triggered by an inspection of
the particles captured in the chip detector and matching some criteria on size and composition. The RA figure
allows to judge the achievable trade-off between detection capability and global false alarm rate performance
of an indicator. Figures 3a and 3b show the results respectively for the fault cases 1 and 2, for the SES-SA
and LES-SA outer race fault indicators, whereas figures 4a and 4b report the same results for the SES-CPW
and LES-CPW outer race fault indicators. Concerning the fault cases 3 and 4, related to the ball bearing, the
RA is constant for each considered indicator, despite pre-processing differences and equal respectively to 66
acquisitions and 34 acquisitions. This depends actually on two distinct facts: first, in the considered data-
set, acquisitions for machine 3 begins already in a relatively advanced bearing degradation stage, where all
indicators detect very clearly. Secondly, the second degradation produced very early, strong CS2 symptoms
which were as well detectable in a robust manner from all of the considered indicators. Also, for the second
ball bearing degradation (fault case 4), the HUMS alerting system was already deployed, and guaranteed the
detection of the incipient bearing degradation, along with an optimized, planned maintenance intervention.
Therefore, the time to removal metrics is not representative of the anticipation over the chip detector alert
for case 4. For the roller bearing degradation cases, evidently the SES-CPW and LES-CPW achieve a better
anticipation over removal for a given false alarm rate, implying their better performance in terms of early
detection with respect to the SES-SA and LES-SA indicators in both the cases. The comparison between LES-
CPW and SES-CPW shows that they perform very similarly for the first fault case (figure 4a), whereas the
SES-CPW indicator shows better detection performance with respect to the LES-CPW in the second fault case
(figure 4b).

4.3 Fault diagnosis stage

In this section, the diagnostic charts based on the cyclic coherence are shown for each detected bearing
degradation. The defined operational procedure only requires to compute such quantities when an alert is
raised, so to confirm the actual occurrence of a mechanical degradation. In figures 5 to 8, for fault cases re-
spectively 1 to 4, the diagnostic charts and the associated LES and SES spectra, together with their statistical
threshold computed for the 0.1 percent significance level according to equations (8) and (11), are shown in three
conditions: before the beginning of the bearing degradation, during the bearing degradation and after gearbox
replacement. In each case, the spalling manifests as a high-frequency excitation, at a cyclic order which is
slightly different than that predicted from the theoretical calculations. Consequently, the actual loading condi-
tions encountered in operations have an impact on the exact determination of the fault frequency, owing to the
simplified kinematics assumptions being inadequate to describe the bearing dynamic behavior. By comparing
figure 5 to figure 6, it can be seen that the symptoms of the spalling appears much more evident for the second
fault case (compare, e.g., the statistical threshold to the value of the emerging peak in the two cases). Coher-
ently, figures 3 and 4 show that the second fault case is predicted with a higher anticipation time from both the
SES and LES indicators. This can be explained by looking at figure 1. It can be noticed from figure 1a and
figure 1b that the shape of the surface degradation is consistently different in the two cases. In fault case number
2, the spalling area extends across the full span of the race, creating a slot. Conversely, in fault case number 1
the spalling area is restricted to part of the width of the race. It can be expected that for the second degradation
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Figure 2 – Healthy fleet data, actual vs. expected probability of false alarm rate of the SES and LES outer
race fault detection indicators for: a) Bearing 1, SA indicators; b) Bearing 2, SA indicators; c) Bearing 1,
CPW indicators; d) Bearing 2, CPW indicators. Blue: theoretical relation; red dashed: LES indicator; magenta
dot-dashed: SES indicator.
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Figure 3 – Removal anticipation (RA) time in acquisitions vs. fleet false alarm rate for SES-SA (upper row,
magenta dot-dashed) ad LES-SA (lower row, red dashed) indicators – a) Fault case number 1; b) Fault case
number 2.
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Figure 4 – Removal anticipation (RA) time in acquisitions vs. fleet false alarm rate for SES-CPW (upper row,
magenta dot-dashed) ad LES-CPW (lower row, red dashed) indicators – a) Fault case number 1; b) Fault case
number 2.
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Figure 5 – Diagnostic charts for fault case 1. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.

case, impacts will occur, exciting the bearing resonances and resulting in stronger CS2 symptoms with respect
to those produced in case number 1, where the quasi-periodic change in the dynamic response is more likely due
to the change of the load distribution within the contact line of the rolling elements rolling over the defective
surface. As a matter of fact, the detection performance depends, among the other factors, from the evolution
of the mechanical degradation. This does not appear to be the case for the ball bearing degradation, where
the symptoms are of relatively comparable magnitude, despite the case number 3 presenting a more advanced
degradation at the time of removal (figure 1). The fact that the contact taking place in ball bearings between
the races and the elements can better be described as a point contact interaction could explain these results. In
fact, any geometry of the degradation would almost surely provoke mechanical impacts between the elements
and the race. The analysis of the diagnostic charts is an important step to confirm the alarms: the bearing fault
signature presents itself as a clear cyclic excitation localized in the high spectral frequency band, and allows
the analysts to reliably confirm whether the fault detection alert is effectively related to a mechanical fault. In
fact, by observing the cyclic spectral coherence representation, it is possible in an operational scenario to rule
out both the occurrence of false alarms and those false indications coming from corrupted measurements.

4.4 Impact of the operating conditions

In order to assess the sensitivity of the bearing monitoring indicators to the different operating conditions,
the correlation of the indicator values to the torque and rotor speed values was studied. Figures 9 and 10 show
such correlation for the LES-CPW outer race indicators related respectively to the roller (bearing 1) and to the
ball bearing (bearing 2). Similar results were obtained for the other indicators, therefore only figures 9 and 10
were reported for brevity. As indicator value, the magnitude of the detected peak in the envelope spectrum
was reported. This is a consistent indication, being the LES statistical distribution independent from the cyclic
frequency. From the results, it can be observed that there is no significant correlation between the values of the
indicator and the contextual parameter, whenever the indicator takes its nominal values. However, the higher
values related to degraded conditions are mostly localized in correspondence of the high-torque region, for a
rotor speed of around 97 percent of the nominal speed. This may indicate a slight sensitivity of the indicators
to the operating conditions. However, it has to be pointed out that the majority of the recorded acquisitions
occurred in the low rotor speed, high torque conditions. Being the acquisitions density in the region higher
than in the rest of the operating spectrum, the likelihood of acquiring in those conditions during the progression
of the fault is also higher. Finally, relatively high values of the indicator during the fault progression can be
observed also in other regions of the operating spectrum, confirming its detection robustness to the different
flying regimes of the helicopter.
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Figure 6 – Diagnostic charts for fault case 2. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.
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Figure 7 – Diagnostic charts for fault case 3. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.
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Figure 8 – Diagnostic charts for fault case 4. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.
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Figure 9 – Impact of the operating conditions on the bearing 1 outer race fault LES-CPW indicator values.
Top-left: joint distribution of torque, rotor speed and indicator values; top-right: indicator values vs. torque;
bottom-left: rotor speed vs. indicator values; bottom-right: rotor speed vs torque.
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Figure 10 – Impact of the operating conditions on the bearing 2 outer race fault LES-CPW indicator values.
Top-left: joint distribution of torque, rotor speed and indicator values; top-right: indicator values vs. torque;
bottom-left: rotor speed vs. indicator values; bottom-right: rotor speed vs torque.

5 Conclusions

A predictive maintenance strategy for the monitoring of rolling element bearings in the context of heli-
copter operations was developed. The proposed methodology relies on a two-step fault detection and diagnosis
process. The first step consists of devising reliable statistical indicators, allowing to attain a given false alarm
rate. The second step consists of confirming eventual alarms through refined diagnostic analysis based on the
estimation of the cyclic spectral coherence of the concerned signals. The devised procedure was validated
on comprehensive, in-service helicopter fleet data set, comprising high-frequency acquisitions from fourteen
machines flying according to several different profiles. Statistical indicators based on the logarithm envelope
spectrum and on the squared envelope spectrum were compared in terms of both reliability in providing a given
false alarm rate and ability to promptly anticipate four in-service bearing degradation cases. Two pre-processing
algorithms based on synchronous average removal and cepstrum pre-whitening were considered, and some of
their properties investigated. It was shown that indicators based on the logarithm envelope allow for a very fine
tuning of the desired false alarm rate, together with providing acceptable detection performance in the consid-
ered cases. Conversely, squared envelope based indicators proved less reliable in actual operations. The results
were shown to be consistent across the full range of considered operating conditions. The diagnostic step was
shown to be able of accurately disclosing the faulty bearing signature, proving to be an effective discrimination
mean to avoid unnecessary grounding of the machine in the occurrence of a HUMS alarm. At the same time,
the burden of performing the diagnosis is restricted to those cases in which an alarm from the detection step
actually occurs. The impact of different mechanical degradation shapes was also considered: it was shown
that for the roller bearing outer race degradation cases, the fault shape has a significant impact on the HUMS
detection performance. The developed approach allowed to deploy a statistically efficient, operationally valid
procedure to monitor the rolling element bearings in helicopter mechanical transmissions within an in-service
context, characterized by harsh mechanical environment, acquisition constraints and multiple different operat-
ing conditions. Remarkably, it could be used to deploy an effective, semi-automated monitoring for helicopter
bearings which guarantees an effective condition based maintenance of the monitored components.
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