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Abstract 
Machine Learning techniques open important ways of development of physical models in almost every 
field. Performances reached rely on two major pillars: the (physical) model and the data. When a huge 
amount of data is available, the intrinsic characteristics of the chosen algorithm become less critical. On 
the other hand, with limited amount of data, all the human knowledge on the system to be modelled 
becomes critical to exploit.  
One of the multiple applications of Machine Learning (ML) technics concerns the meta-models. Indeed, 
in this paper, we show how we can bypass a computation scheme by using clever regression models. 
The approach is performed on a system from which we want to know instantaneously the first natural 
frequencies without performing each time finite elements (FE) computation. We study the performance 
reached by studying the number of training cases required to teach the algorithm how to link inputs to 
outputs within a satisfying accuracy. Different algorithms are tested with very encouraging results as 
going into higher dimensional problem. The final aim of this study is to provide global guidelines for 
the most efficient Machine Teaching. 

 
 Introduction 

Reducing the computation time is an objective is many cases. Whether it is for having instantaneously 
a result or to integrate the meta-model in a bigger loop, the idea remains the same: to link inputs to 
outputs without going through a whole computation process. The best way to achieve that is for instance 
to have an analytical formula based on physics consideration which can represent exactly the 
phenomenon studied. According to the task, it is unfortunately not always possible to use an analytical 
formula. The typical representative case of such a task would be for instance a classification problem: 
to determine if a given picture represents a cat or a dog, it seems obvious that we will not find an 
analytical formula able to do that. To illustrate our idea we can consider Figure 1. 
 



 
Figure 1: General approach of a regression/classification problem 

 
When we lack information (case A), we can either use scientific knowledge (case B) or generate more 
data (case C) or of course both in order the fill the gap. 
The general parameters suggested to be considered are: 

- The level of information required to satisfyingly achieve the regression/classification implies to 
set a threshold beyond which we estimate that the task is a success, 

- The quantity of data is directly linked to their quality (we consider that in the next part), meaning 
that many data of poor quality could not be that helpful according to the accuracy aimed for, 

- The prior (human) scientific knowledge establishes the base of the whole stack (for instance, an 
adapted analytical formula fills the gap to the level of information required by its own). 

 
This approach will be later included into a classification task consisting in detecting in a block made of 
carbon is cracked or not by studying its natural frequencies. We focus in this paper on the determination 
(through regression) of the natural frequencies of the block without any additional FE computation than 
those used for the model building. The accuracy of the reference natural frequencies (those obtained for 
a healthy block) must be high in order to be the more sensitive possible in the incoming classification 
task. 
 

 The concept of Machine Teaching 

The Machine Teaching concept as we thought it relies on a direct analogy on human learning. Let’s 
consider a student who has a set of examinations.  



 
 

 
 

 
 

Figure 2: Illustration of the Machine Teaching concept  
 
 
We suggest on Figure 2 the following symmetries. The number of examinations can be related to the 
complexity of the task or its dimensionality. The time before the examinations can be related to the 
quantity of data that one can generate in a given time. The learning resources (writing quality, the teacher 
implication and so on) can be related to the quality of data (does one need to correct and to complete 
manually the dataset, taking risk to insert errors…). The current ability of the student can be related on 
the priori scientific knowledge: what does he knew before any learning? His knowledge basis. Finally, 
the learning schedule is directly related for us to the concept of Machine Teaching. Indeed, having well 
distributed data (not necessarily uniform) permits to optimize the supply of each new data, avoid 
generalization problem, eliminate redundancies and perform better. To continue the analogy, for a 
student with a limited amount of time, a good schedule learning during which he will be able to the see 
different cases. The most representative cases will definitely improve his learning compared to spend 
most of the time on one chapter and ignoring the six left. Therefore a good teaching can be related to 
one ability to understand the knowledge compulsory to integrate and to provide consistent organization 
of the data. 
 
 

 Presentation of the study case 

 The free-free beam 

The study of the free vibration of a beam is not that challenging. Nevertheless, classical approach using 
Euler-Bernoulli’s and Timoshenko’s beam theories [1-2] provides satisfying as long as some 
assumptions are satisfied, such as the ratio between the length of the beam and its cross-sectional 
dimensions (in which case the Euler-Bernouilli’s beams present an important error). In our case, we 
don’t want to make any assumptions about the beam behaviour and we use therefore FE model with 
solid elements to feed the meta-model. The Figure 3 shows two beam samples, which can be rectangular 
or circular. The Table 1 lists the different parameters considered and their variation ranges and Table 2 
sums up the meshing details used. 
 
 



 

Figure 3: Examples of considered rectangular and circular beams. 
 
 
 
 

Parameters Minimum Maximum 

Length (m) 2 9 
Section1 (m) 0.3 1 

Young’s modulus (MPa) 7.92 11.88 
Poisson’s ratio 0.1 0.4 

 
 

Table 1: Parameters studied and their variation ranges 
 
 

 Rectangular beams Circular beams 

Element’s type Cube Rectangular cuboid 
Type of grid Structured Structured 

Number of elements 50 112 93 600 
Number of nodes 55 575 97 999 

 

Table 2: Meshing details 
 
 
 

 Automatic generation of samples 

The study was realized in two steps, a first naïve approach to the problem, and then a second step where 
we developed and improved a method. The different cases firstly used to feed the meta-model are 
generated automatically and are divided in ��	circular and �� rectangular. We separate two different 
types of set, the training data used for the learning procedure, generated in a grid way, we will explain 
later the reason of this choice. And the test data, used for the meta-model validation, which are randomly 
generated, to emphasize the generalization on the entire study domain. We recall the different subsets 
in Table 3 and Table 4: Subsets labels of the second stepErreur ! Source du renvoi introuvable.. 
L, b, h, E, ν respectively stand for the length, the height, the thickness, the Young’s Modulus and the 
Poisson’s coefficient of the beam. 
 
 
 
                                                 
1 Section corresponds to the larger length of the section’s beam, i.e. diameter for circular beams or maximum 
between thickness and height for rectangular beams. 
 



 
 
 
 
 
 
 

Table 3: Subsets labels of the first step 
 
 
 
 
 
 
 
 
 
 
We begin with 512 samples of rectangular beams for the training process, such as we have eight different 
values of length, thickness and height to make the grid. The initial distribution is naively uniform. 
Its test set counts 141 random samples, with a criteria on the ratio, length over the working dimension 
of the section, where it can’t overstep 3.33 for each configuration. The first training data for the circular 
beams contains 400 samples, such as we have twenty values of length and twenty values of diameter, to 
make a grid. We have 75 samples for its test set. 
 
For the second step, we include the material properties in the study and we try to reduce the number of 
samples needed for the learning. For both of the circular and rectangular cases, we generate a grid such 
as we have 5 values of length, 5 values of thickness, 2 values of Young’s modulus and 2 values of 
Poisson’s ratio. We’ll explain later the reasons of that configuration choice. As we add two new features, 
we also have to create new test sets of 50 samples each, generated randomly.  
 
Finally, a total of 1428 samples have been automatically generated. To give an idea of the length of the 
process, one computation takes about three minutes. Then, to generate the complete set of input data, 
about 72 hours have been required.   

 
 Automatic extraction of data 

The outputs required are simply the three first traction/compression (Z axis) eigenfrequencies and the 
three first flexural eigenfrequencies in both directions (X and Y axis). Each computation output file are 
post-process and for each case the 9 outputs are written related to the parameters defined in part 3.1.   
 

 Methodology for building the meta-model 

Facing a lack of information, we firstly choose the random forest as our starting strategy to predict the 
eigenfrequencies. Indeed, the ensemble methods can have good results on small subsets, where they 
start from a high variance and thanks to bagging algorithm, decreases it during the learning process to 
improve the generalization [4]. However, many parts of the response values are underrepresented, which 
distorts the training phase, leading to a bad accuracy. We had to change our point of view on the 
procedure and try to develop a way to guide the algorithm during the training so that we can control how 
it learns along the process and “help” it. That’s why we choose to build a custom learning method, closer 
to the machine teaching area. This method is based on nonlinear least squares [5] and the use of a specific 
grid as training data.  
We can see in the Table 5: Comparison of relative error between random forest and a custom method a 
comparison on the worst mode’s results, between random forest and our custom method. To do so, we 
calculate the relative error e such as:    

 First Step 

Rectangular beams Circular beams 
Train Test Train Test 

Variables involved b, h, L b, h, L b, h, L b, h, L 
Number of samples 512 141 400 75 
Generation Grid Random Grid Random 

 Second Step 

Rectangular beams Circular beams 
Train Test Train Test 

Variables involved b, h, L, E, ν b, h, L, E, ν b, h, L, E, ν b, h, L, E, ν 
Number of samples 100 50 100 50 
Generation Grid Random Grid Random 

Table 4: Subsets labels of the second step 
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with y, the observation value and �,�  the prediction from the modelling function. This error is determined 
for each point of the test subset. 
 
 
 

Table 5: Comparison of relative error between random forest and a custom method  
Rectangular beams / Circular beams 

 
This table shows the limit of classical machine learning algorithms in this context. We had to modify 
existing methods to have a better fitting and more complex regression curve.  
 
The main idea behind the method used is to deconstruct the learning procedure, so that we can control 
the tendency of our response depending on each features separately, during each step. We want to 
approximate the output with a function such as: 
 
f :   						�� � …	� �� 	 			→ 	� (2) 

    ��� � …	� ��� 	→ 	����� � …	� ���, ��  

                                   
 
Where � is the number of features, �� 	⊂ 	�	, � � �1,… ,�  the set where the feature is taken from, and 
β a set of parameters used by the function	�. In our situation, we can choose the configuration  
��� � …� ���	we want to append in our samples set. Then, we choose to build a grid, as a combination 
of values from chosen subsets. The strategy is given in Appendix.  

 

 First step 

 
 Strategy 

 
To start the study, several comments have been done to make easier the resolution. We choose to 
consider each eigenfrequency separately, instead of using multioutput regression algorithms which tends 
to be less accurate. To approximate the transverse modes along the Y axis, we used the symmetric 
properties of these modes and take the regression function on the transverse modes along X axis, where 
we inverse the thickness and height values. We now had to build 6 modelling functions. We also consider 
that the height does not influence the transverse modes along X axis, so the approximation will involve 
only two dimensions. For the longitudinal modes, we noticed that the eigenfrequencies are highly 
correlated with the length, so the regression function will only depend on this feature. 
Our custom method were mainly used to build the transverse modes interpolation. So we have two 
layers, according to the features involved. The thickness layer is approximated with polynomials of 
second order and the parameters to estimate as related to a rational function such as:  
 

																																																														��!� � "#$
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%	"($%	� 	  (3) 

 
Where x is the feature and �) , * � 1,… ,5 the parameters. The final function looks like: 

 Random Forest Custom Method 

 F1X F1Y F1Z F1X F1Y F1Z 
Mean (%) 9.57 ; 29.1 13.7 ; 29.3 0.210 ; 5.38	10
� 9.35	10
� ; 0.122 0.100 ; 0.122 0.212 ; 0.265 
Max (%) 46.54 ; 154 39.98 ; 156 2.42 ; 0.346 0.264 ; 0.554 0.255 ; 0.554 0.414 ; 0.843 
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With 4) , �), 5) , * � 1,… ,5 the final parameters. 
For the longitudinal modes, we did a log-log transformation then a linear regression on the result, such 
as ��-� � 	-"#�"
 .	 
 

 Results 

5.2.1 Longitudinal modes   

The relative error mentioned (1) is used to explore the function’s accuracy and validate the model. We 
deduct some statistic information of its tendency, such as the mean above the values, the standard 
deviation around it and maximum and minimum value of the error data. This procedure is kept for all 
the results in the study.  
The mentioned data are presented in Erreur ! Source du renvoi introuvable.. 

 
  
 
We can already be satisfied by the error which is less than 1%, except for the third longitudinal modes 
with the circular beams, where we notice a peak at 1.42%. All the means are around 0.2% of error which 
is promising for the efficiency of the method used. 
  
We also represent the error depending on the ratio, to enhance the influence of ratio as major error 
vector. The results are represented in the  Figure 4. 
  

 Figure 4: Errors in function the ratio for longitudinal modes during the study’s first step  
 
The error has a dependency with the ratio which increases when this ratio decreases. The difference of 
behavior between circular and rectangular beams is due to the difference of the grid’s construction used. 
 
 
 
 
 

 Rectangular beams Circular beams 

 F1Z F2Z F3Z F1Z F2Z F3Z 
Count 141 141 141 75 75 75 
Mean 0.212 0.202 0.198 0.265 0.263 0.296 

Standard Deviation 9.31 10
� 8.99 10
� 0.138 0.215 0.241 0.295 
Min 7.63  10
� 4.86 10
� 9.36 10
7 1.12  10
� 2.01 10
7 1.53 10
7 

Max 0.414 0.432 0.608 0.843 0.973 1.42 

Table 6: Error (%) for longitudinal modes with circular beams during the study’s first step 



5.2.2 Transverse modes 

Table 7: Error (%) for transverse modes with rectangular beams during the study’s first step and Table 
8: Error (%) for transverse modes with circular beams during the study’s first step contain the statistic 
of the error on the transverse modes. We still have an error less than 1% except a peak for the third 

modes which results of its higher complexity. The means tends to evolve around 0.15% which is still 
promising. 
 
 
 

 
 
 
We have globally the same accuracy as for the longitudinal modes, the distribution is wider which can 
be explained by the more complex behavior of these quantities. The use of 2 layers here can also add 
some deviation for some values. 
 
We have a good accuracy, even if we have some peaks for small ratio which confirming the changing 
behavior of this area as shown Figure 5. 
 

 
Figure 5: Error in function of the ratio for transverse modes during the study’s first step 

 F1X F2X F3X F1Y F2Y F3Y 

Count 141 141 141 141 141 141 
Mean 9.35	10
� 0.128 0.126 0.100 0.141 0.139 

Std. Dev. 6.76 10
� 8.58 10
� 8.98 10
� 6.55 10
� 8.53 10
� 8.31 10
� 
Min 1.04  10
7 2.44 10
7 1.45 10
7 5.45 10
7 6.17 10
7 5.08 10
8 

Max 0.264 0.323 0.305 0.255 0.324 0.344 

Table 7: Error (%) for transverse modes with rectangular beams during the study’s first step 

 F1X F2X F3X F1Y F2Y F3Y 

Count 75 75 75 75 75 75 
Mean 0.122 0.160 0.185 0.122 0.153 0.187 

Std. Dev. 0.130 0.153 0.187 0.130 0.153 0.187 
Min 9.52  10
9 1.21 10
7 2.92 10
7 9.52 10
9 1.21 10
7 2.92 10
7 

Max 0.554 0.877 1.23 0.554 0.877 1.23 

Table 8: Error (%) for transverse modes with circular beams during the study’s first step 



 Critics and way of improvement 

Even if the accuracy could be higher, we have satisfying results for this first meta-model, which gives 
us 1% error on our generalization data. This results is satisfying for the model.  As we are in a problem 
with maximum two dimensions, having only one feature to fit the longitudinal works well in this specific 
case.  
 
Moreover, we want to include in the second step the material properties of the beam, so we will have to 
be more flexible on the complexity of our regression function, even for the longitudinal modes. A more 
specific way of determining the training samples has to be built, so that we minimize its size. The next 
step will be to set a guideline to choose an initial subset and optimize the number of samples needed to 
have a great accuracy. 
 

 Second step 

 Strategy 

As we have two new features involved, another grid needs to be made. We want to minimize the number 
of samples, so the first idea is to keep as much variance as possible in the domain of study, while 
maintaining the properties of a grid. Nevertheless, during the study, we set a constrain on the ratio, 
where for a beam too close of a cube, we are not sure to find a third longitudinal mode, due to its 
geometry. To respect this constrain, instead of taken the length between 2 and 9 meters, we set its 
boundaries between 3.33 and 9 meters.   
 
The optimization is mainly done by the number of values we choose for each feature. Thanks to 
theoretical properties, we know that the eigenfrequencies are linearly dependent with Young’s modulus 
and Poisson ratio [6]. So for the layers associated to material features, we needed two values each to 
make a linear regression. Then for the other features, we want to approximate data with curves which 
have a certain complexity, so we decided to choose five values as our beginning training set. The five 
values will allow us to choose function including five parameters and this gives us a first flexibility on 
function complexity. 
 
We took the same comments as the previous step, where only six modes are approximated and the height 
is not included as a relevant feature for both the transverse and longitudinal modes. Moreover, for the 
rectangular beams, we generate randomly the height always strictly lower than the thickness, so that we 
avoid redundancy in the training data. 
 
We also improve the custom method, now for each layer and for each parameters, the function to 
interpolate can be chosen. This increases a lot the complexity of the final function and allows us to fit 
more precisely our data and have a visualization of the fitting at each step of the process. We chose 
among the following functions to adjust the data: 
 

- Linear : ��!� � 	��! 1	�� 
- Polynomial of degree 2 : ��!� �	 ��!� 1	��! 1	�7 
- Polynomial of degree 3 : ��!� � 	��!7 1	��!� 1	�7! 1	�8 

- Rational function of first order : ��!� � 	"#$%	"

"&$%	�  

- Rational function of second order : ��!� �	 "#$
%	"
$%	"&
"'$
%	"($%	�  

- Exponential : ��!� � 	���"
$ 
 
With �), * � 1,… ,5 the parameters to adjust. 
 
 
 
 



 Results 

6.2.1 Longitudinal modes   

 
 In the Table 9: Error (%) for longitudinal modes with rectangular beams during the study’s second 

step, we present the results of longitudinal modes for the second step of the study. 
 

Table 9: Error (%) for longitudinal modes with rectangular beams during the study’s second step 

 
The error is slightly higher than the first step and increases with the order of the mode, but the means 
are under 0.6% of error, which is a promising accuracy for this initial grid. 
 
The Figure 6: Error in function of the ratio for longitudinal modes during the study’s second presents 

the error depending on the ratio of the beams. 
The rise of the error depending on the mode’s order is more prominent here, with still some perturbations 
for small ratio. 
 
6.2.2 Transverse modes 

In the Table 10: Error (%) for transverse modes with rectangular beams during the study’s second step 
and   
 Table 11: Error (%) for transverse modes with circular beams during the study’s second 
step, we present the results of transverse modes for the second step of the study. 
 

 

 Rectangular beams Circular beams 

 F1Z F2Z F3Z F1Z F2Z F3Z 
Count 50 50 50 50 50 50 
Mean 0.378 0.412 0.582 0.215 0.278 0.351 

Standard Deviation 0.138 0.223 0.442 0.221 0.263 0.291 
Min 1.62 10
� 6.31 10
7 4.20	10
8 5.03  10
8 6.00 10
: 8.71 10
8 

Max 0.570 0.954 2.30 0.565 0.763 0.886 

Table 10: Error (%) for transverse modes with rectangular beams during the study’s second step 

 F1X F2X F3X F1Y F2Y F3Y 

Count 50 50 50 50 50 50 
Mean 0.430 0.487 0.512 0.399 0.678 0.829 

Standard Deviation 0.203 0.250 0.379 0.166 0.494 0.623 
Min 1.93  10
� 6.66 10
� 2.76 10
� 3.79 10
� 1.45 10
� 6.23 10
� 

Max 1.05 1.24 1.92 0.837 2.48 3.03 

Figure 6: Error in function of the ratio for longitudinal modes during the study’s second 
 



 
 
 

 

   
 Table 11: Error (%) for transverse modes with circular beams during the study’s second step 
 
 
The same remark as the previous section can be made, the error is higher than the first step but still 
acceptable, considering the number of training data. 
 
In the Figure 7: Error in function of the ratio for transverse modes during the study’s second, the graphs 
show the limits of the method and the grid, where we have generalization issues, especially for small 
ratios and third modes. 
 

 Critics and  ways of improvement 

The error increases but is still acceptable. Moreover, we have to consider the context of the learning 
which is more complex than the previous step. The error is twice higher than the first step, under 3% 
error of accuracy. It is worth remembering that we added two features and decreases the training data 
from 512 to 100 samples.  
 
A first improvement would be to stabilize generalization’s error. To do so, we will propose a guideline 
to select leading samples to add in the training data which will increase the accuracy. The criteria to 
build the initial grid can also be improved. Indeed, we didn’t train the model with length under 3.33 

 F1X F2X F3X F1Y F2Y F3Y 

Count 50 50 50 50 50 50 
Mean 0.186 0.309 1.36 0.189 0.309 1.36 

Standard Deviation 0.173 0.472 1.00 0.172 0.470 1.00 
Min 4.02  10
7 1.26 10
8 2.73 10
� 4.02 10
7 1.26 10
8 3.73 10
� 

Max 0.475 3.25 3.64 0.475 3.24 3.63 

Figure 7: Error in function of the ratio for transverse modes during the study’s second 



meters and it impacts the generalization as we see in the results. A new methodology could spare the 
lack information in this ratio’s area. 
 

 Guideline for sample selection 

We propose a first guideline to increase the precision by adding some relevant samples. The initialization 
starts with the construction of a first grid, with a minimum number of samples. Here it will depends on 
the nature of the features and the domain of study. If some follows a specific tendency, then we know 
the minimum number of requisite values to approach them.  
In order to get a satisfying learning, we need to have a uniform representation of the response on its 
boundaries. Then, with the modelling function learnt with the initial grid, the purpose is to find the 
missing configuration with that function, to restore a uniformly represented response. 
We can either use directly the reciprocal function of our final regression function, or generate a set of 
values with that function and determine the closest ones to our wanted configuration. Once we have all 
the inputs needed, we have to adjust those values to a grid which will be added to the initial grid and 
used in the next iteration. 

 

 Discussion and perspectives 

The first aim of this study was to build a model to obtained directly the 9 first eigenfrequencies of 
interest of a circular or rectangular beam in order to lately integrate this model in a larger loop which 
purpose is to classify carbon blocks whether there are susceptible to contained cracks or not, and this 
the more precisely possible. This has been achieved with success. 
The second aim was to investigate the concept of Machine Teaching in the sense that we were searching 
for guidelines to minimize the number of input data required conserving a given accuracy goal. To 
illustrate the idea, we can think about Figure 1, and more particularly at the link between the quality and 
the quantity of data. Indeed, by structuring cleaver the distribution of the input data taking into account 
the produced output data, we strongly believe that we can reach higher levels of regression or 
classification ability while minimizing the number of initial computations required to feed the model. 
That is of first importance when the computation time last hours or days. 
This study based on a simple model permitted to not be hampered by too long computational times in 
order to find the optimal strategy. The further work will consist in applying those guidelines on a more 
complex problem and to implement it for optimization purposes. 
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A Appendix 

The grid used is built with the following pattern:  
 

;ℎ==>�	?�	@=*AB>	*A	��, >C;ℎ	D>	, E��
���, … , �F#

���G	 
																																								⋮ 
;ℎ==>�	?�	@=*AB>	*A	��, >C;ℎ	D>	, E��

���, … , �FI
���G 

�=J	*� � 1,…	,?� : 
        ⋱ 
           �=J	*� � 1,…	,?�: 

                  Add 	��)#
���, … , �)I#

���� 
 
This kind of combination leads us to ∏ ?)�)M�  samples. In this way of data generation, we can explore a 
domain study with a chosen discretization, which can be useful in our case. A second benefit of the grid, 
is the possibility to observe the response depending on only one feature, where all the others are fixed. 
We will use this ability for the visualization.  
 
We start by unrolling the grid’s construction operations, by fixing each feature, then we have a 2D graph 

with the response associated to the set E��
���, … , �FI

���G. Then, we interpolate the graph by a chosen 

function, with the nonlinear least squares algorithm, which gives us the best parameters to fit the 
interested values. After repeating this curve fitting for each configuration on the last loop, we interpolate 

the parameters of the chosen function with the set  E��
��
��, … , �FIN#

��
��G. The process is done when all 

the features were involved in the learning process.  
 
We can illustrate that decomposition with an example. Let’s consider a problem with three real input 
features, A, B and C, and F as a real output feature. In order to make a grid, we choose arbitrary two 
points for each input, and by applying the previous building method, we get the following combinations 
(Table ). 
 

A B C F 

OP Q� R� S� 
OP Q� R� S� 
OP Q� R� S7 
OP Q� R� S8 
OT Q� R� S: 
OT Q� R� SU 
OT Q� R� SV 
OT Q� R� S9 

 
 Table 12: One grid example 
 
Then, we can apply the decomposition, which can be illustrated with a graph, like the one in Figure 8. 
The set of nodes corresponding to one feature is a step of the algorithm, which can also be described as 
a feature layer. Only the last layer will proceed the response, corresponding to the first step of the 
method. Then all the layers will deal with the parameters of the function fitted in the layer before.  



 
 Figure 8: Graph of each layer of the example 
 
The purpose is to manually select the best fitted function among a lot of possibilities, in terms of intrinsic 
properties such as convexity, asymptotic behavior or the level of complexity. The construction of the 
final modelling function is done by a composition of all the functions involved during each feature’s 
layer. In our example, the final regression function would be:  
 
 SW	�X, Q, R� � ��R, YZQ, ℎ�X, 5�[� (5) 
 
The interest of this method, is firstly the high complexity of the final function, often with several input 
features, where we adjust several functions on a 2D graph. It also decomposed the training phase in 
several steps, where a human can control the level of accuracy. The possibility of choosing the modelling 
function at each layer for each parameter, depending of the tendency followed by the values is a 
determinant way to obtain maximum precision with a highly restricted data set. 

  


