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Abstract

The present paper aims at evaluating the influence of nonlinearities on the dynamic response of an helicopter
on the ground. Indeed, the helicopter on the ground might be faced to resonance and instability conditions that
could lead to high vibration levels. Nonetheless, under the effects of nonlinearities, the dynamical behaviour of
the aircraft could have substantial changes in which quasi-periodic and/or chaotic motions can occur. Poincaré
section and bifurcation diagrams are evaluated for different helicopter configurations in order to highlight the
dynamical behavior of helicopters with nonlinearities in the fuselage.

1 Introduction

Concerning the helicopter dynamics, one aims avoiding any rise of vibration level during operational con-
ditions. For this purpose, the comprehension of the dynamics of the mechanical components and how they
interact with the environment are necessaries. Beyond these aspects, the interaction of the helicopter with the
terrain during take-off and landing can cause multiples resonances which might lead to ground resonance with
fatal consequences [13, 2].

In order to suppress the ground resonance, among other existent means, elastomeric dampers can play a
significant role in the stability of the aircraft. Therefore, the modeling of the elastomeric lag dampers have
received increasing attention, specially concerning its nonlinear characteristics [1, 6, 4]. For example, Gandhi
and Chopra [1] place an additional nonlinear spring in series with the linear, parallel spring and dashpot in order
to represent the elastomeric dampers. Other possibility is to consider the inclusion of pneumatic elements on
the aircraft suspension for absorbing and dissipating the vibrating energy [13].

Nonetheless, these dissipative elements and some structural ones introduce nonlinearities that might sub-
stantially affect the dynamics of the helicopter [5].

It is known from the literature that rotating machines under nonlinear operating characteristics could attain
other than the periodic motion, predictable for linear systems, such as the quasi-periodic or chaotic motions.
Recently, Varney and Green observed the presence of quasi-periodic and chaos on the rotor dynamics by as-
suming rotor-stator contact [14]. Indeed this phenomenon is observed since precisely manufactured bearings
are used and thus reduced clearances are imposed for improving the performance of the rotating machines.

Under the hypothesis of nonlinearities for the ground resonance modelling purposes, this paper aims ver-
ifying, their effects on the helicopter response. if at certain operating conditions or design properties, the
appearance of non-periodic and/or chaotic motion are reached. The helicopter considered contains nonlinear
spring stiffness on the fuselage displacements (longitudinal and lateral). The four-bladed rotor consider rigid
structures having only lead-lag oscillations. Parametric analyses combined with examination of the Poincaré
maps and bifurcation diagrams, the nonlinear dynamical behavior of the helicopter was assessed.
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2 Mechanical Modeling

The physical model of the helicopter is based on that presented by [10]. The hypotheses assumed are
sufficient for computing accurately (through a linear model) the ground resonance instability of an helicopter
with four (Nb = 4) articulated bladed rotor.

The aircraft is considered having two translation movements, along x and y-directions (i.e.: x(t) and y(t),
respectively) for the fuselage and the angular displacement of each blade (jk (t),k=1..4). Moreover, it is sup-
posed that the fuselage and blades structures are sufficiently rigid in which they can be modeled as rigid body.
No aerodynamic effects are take into account and the rotor speed is assumed constant W.

The blades are connected to rotor hub through a hinge axis. At each blade hinge, a set of spring (Kbk) and
damper (Cbk) elements is placed. The landing skids are represented by a set of nonlinear elastic and linear
viscous damping forces in both directions of the fuselage movements. Indeed, the nonlinear elastic function
can represent the different sources of nonlinearities, e.g.: suspensions forces, lading skid structure or the soil
restitution force. In the nonlinear elastic force acting on the fuselage, the k f x and k f y are the coefficients
of the linear terms, while knlx and knly are the coefficients of the cubic ones. Others polynomial orders are
not considered in the present work. The damping coefficients are c f x and c f y along the x and y directions,
respectively. The Figure 1 sketches the mechanical model adopted for the helicopter.

Figure 1 – Sketch of Helicopter Mechanical Model

The equations of motion are obtained through the Lagrange equation [10, 9, 15] applied at the kinetic and
potential energies expressions and by considering the virtual work of the non-conservative forces on the system.
Under the hypothesis of small angular displacements jk(t), the trigonometric terms can be reduced to linear
expressions when small perturbation theory is considered [9]. Thus, the linear matrix equation, Eq. 1, can be
easily determined as:

M(t)ü+G(t)ü+K(t)u = Fnl (1)

with M(t), G(t) and K(t) are the mass, damping / gyroscopic and stiffness matrix. The vector u corresponds
to [x(t),y(t), j1(t), j2(t), j3(t), j4(t)]T which are the helicopter degrees of freedom. The Fnl represents the
vector of nonlinear terms of the helicopter model.

It is important to note the time dependence of the matrices since the blades angular displacements are
given on a rotating frame while fuselage movements are described in the inertial one. Using the Multi-blade
coordinate transformation as showed in [12, 11], such time dependent matrix might be reduced to one with
constant coefficients. The new vector of generalized coordinates q(t) is obtained through the following relation:
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q(t) = T(t) u(t) (2)

with,

[T(t)] =

2

6666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 cos(Wt) sin(Wt)
0 0 1 -1 -sin(Wt) cos(Wt)
0 0 1 1 -cos(Wt) -sin(Wt)
0 0 1 -1 sin(Wt) -cos(Wt)

3

7777775
(3)

Once the Eq.3 has been replaced in Eq.1, after some mathematical manipulations, the helicopter dynamics
is given by:

MCq̈+GCq̇+KCq = Fnl (4)

where,

MC =

2

666664

m f +Nb mb 0 0 0 -2 b mb 0
0 m f +Nb mb 0 0 0 2 b mb
0 0 Nb (mb b2 + Izb) 0 0 0
0 0 0 Nb (mb b2 + Izb) 0 0

-2 b mb 0 0 0 Nb/2(mb b2 + Izb) 0
0 2 b mb 0 0 0 Nb/2(mb b2 + Izb)

3

777775

(5)

GC =

2

666664

cx 0 0 0 0 0
0 cy 0 0 0 0
0 0 Nb cb 0 0 0
0 0 0 Nb cb 0 0
0 0 0 0 Nb/2cb -Nb (mb b2 + Izb)W
0 0 0 0 Nb (mb b2 + Izb)W Nb/2cb

3

777775
(6)

KC =

2

666664

k f x 0 0 0 0 0
0 k f y 0 0 0 0
0 0 Nb (kb +W2abmb) 0 0 0
0 0 0 Nb (kb +W2abmb) 0 0
0 0 0 0 kt - cb WNb/2
0 0 0 0 cb WNb/2 kt

3

777775
(7)

with kt = Nb/2(kb +W2(abmb � Izb � b2 mb)) and q = [x(t),y(t), td(t), t0(t), t1c(t), t1s(t)]T . The variables
td(t), t0(t), t1c(t), and t1s(t) are related to rotor modes of vibration and they replace the blade displacements
on generalized coordinate vector. Through this coordinate transformation, the Eq. 1 becomes time-invariant
(c.f. Eq.4).

3 Linear Stability Analysis

Several authors have addressed to the stability analysis of the ground resonance previously by considering
linear dynamical models [15, 4]. Indeed, the stability analysis of the ground resonance will contribute for
further comprehension of the behavior of the nonlinear dynamical system. Therefore, present section aims
at verifying the stability of the linear LTI system by neglecting the nonlinear efforts Fnl from Eq. 4. The
mechanical data for the stability analysis are given in Tab. 1.

It is important to note that the natural frequencies and damping factors written in Tab. 1 are defined with
respect to the helicopter dynamical properties at rest with null rotor speed. Thus,

wx =
q

k f x/(m f +Nb mb) wy =
q

k f y/(m f +Nb mb) wb =
q

kb/(Izb +b2 mb) (8)

cx = 2xxwx(m f +Nb mb) cy = 2xywy(m f +Nb mb) cb = 2xbwb(Izb +b2 mb) (9)
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Property Value Units
m f 2902 kg
mb 31.9 kg
Izb 259 kg m2

a 0.2 m
b 2.5 m

wx 6p rad/s
wbk ( k = 1 . . .4) 3p rad/s

xx = xy = xbk 0.1 %

Table 1 – Helicopter’s Data

The stability boundaries are verified through the eigenvalues (r) of the linear system investigated for several
rotor speed values (i.e., 0  W  10 Hz) and for three fuselage configurations, i.e: wy = [6, 7, 8] Hz. The results
are illustrated in Figs. 2a to 2c for wy = 6, 7 and 8 Hz, respectively.

(a) wy = 6p (b) wy = 7p

(c) wy = 8p

Figure 2 – Eigenvalue Evolution with respect to rotor speed and fuselage configurations.

One notice from each graph the changes of the natural frequencies and exponential decay constant of the
dynamical system once the parameter (rotor speed) varies. For the three fuselage configurations analyzed,
clearly it can be pointed out the existence of unstable regions (i.e., R(r) > 0) for certain range of rotor speed
values. These unstable regions are associated with the natural frequencies of the fuselage at rest. As the nat-
ural frequencies of the fuselage along x and y directions become dissimilar (c.f. Fig. 2b-2c), the instability
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regions evolve leading to clearly two distinct zones: each one is related to each direction of fuselage oscil-
lation. Nonetheless, when the fuselage frequencies are equals (i.e., wx = wy), the instability regions are then
superposed. Specially concerning this last case, it is observed that two pairs of eigenvalues become unstable
simultaneously, indicating the existence of double hopf bifurcation. Otherwise, only one pair of eigenvalue
becomes unstable and therefore a single hopf bifurcation happens.

In order to determine the critical rotating speeds for each fuselage configuration, Figure 3 shows the maxi-
mum real part of the eigenvalues with respect to the rotor speed. The boundaries of instabilities are determined
by inspecting when positive values are attained for the real part of the eigenvalues. The instability region for

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3 – Instability boundaries for different fuselage configurations

wy = 6p are given for rotor speed values within 4.25 < W < 5.3 Hz. When the fuselage natural frequency is
changed to wy = 7p , the critical speeds are within 4.33 < W < 5.87 Hz. Finally, when wy = 8p , there are two
unstable regions identified, i.e., 4.35 < W < 5.08 Hz and 5.23 < W < 6.56 Hz.

4 Bifurcation Diagrams

The present section aims at analyzing the effects of the nonlinear efforts on the dynamic response of the he-
licopter. Indeed, the restoring forces from the pneumatic components presented in some helicopter suspensions
can be expressed through nonlinear functions [13, 7, 6]. In addition, for some cases, the interactions between
the soil and aircraft might cause nonlinear efforts [2]. For this purpose, one assumes a pure cubic polynomial
function acting along the fuselage displacements with the following coefficients knlx = knly = 1x105N/m3.

Since hopf bifurcation points on the helicopter dynamics were evidenced from the linear stability analysis
(c.f. section 3), the literature shows that hopf bifurcation might leads to periodic motion which characterizes
the limit cycle oscillations. Nonetheless, the periodic motion can evolve under control parameter variation
and becomes into non-periodic one. It can further evolve from the non-periodic motion to a chaotic motion
[3]. Therefore, Poincaré sections and bifurcation diagrams are evaluated from the time history data obtained
through the numerical integration of the nonlinear equations (c.f., Equation 4). The initial condition is the same
for all simulations and it considers a shift of 0.1m for the fuselage displacements from the equilibrium position,
while others displacements and speeds are nulls. The Poincaré section is considered into the plane tc = 0.
Henon algorithm is used for precisely obtain the points intercepting the Poincaré section and, therefore, used
to obtain the bifurcation diagrams [8].

Figures 4 and 5 describe the bifurcation diagram for x(t) and y(t) with respect to W for the helicopter
with identical natural frequencies of the fuselage (i.e., wx and wy are 6p rad/s). Since the Poincaré sections
are evaluated in the plane tc = 0, and thus for the bifurcation diagrams, one observes that y(t) reaches higher
amplitude level than x(t), accordingly to Figures 4a) and 4b). This fact might be explained since the variables
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x(t) and tc(t) are in-phase motion, while y(t) is quarter phase with tc(t). Moreover, concerning Figure 5 at
W= 4.865 Hz, the values of x(t) and y(t) are concentrated at some points instead of being uniformly distributed,
as it can be evidenced for the whole rotor speed conditions analyzed. A closer investigation is carried out for
comprehending the differences between the two cited cases. Therefore, the Poincaré section and the phase
subspace for W = 4.85 Hz and W = 4.865 Hz are represented in Figures 6 and 7. Clearly, by comparing the
Poincaré sections for two speed conditions, the Figure 6a represents a quasi-periodic behavior while at Figure 7a
a periodic signal with nine harmonics is observed.

(a) (b)

Figure 4 – Bifurcation Diagram for wx = 6p and wy = 6p: a) x(t) and b) y(t)

(a) (b)

Figure 5 – Detailed Bifurcation Diagram for wx = 6p and wy = 6p: a) x(t) and b) y(t)

The helicopter is now considered to have an asymmetry between the frequencies of the fuselage i.e., the
oscillations along x-direction is at wx = 6p rad/s while in y-direction it is at wy = 7p rad/s. The influence of
the nonlinearity in the fuselage on the helicopter is evidenced through the bifurcation diagram in Figure 8. One
observes that, as W increases, the bifurcation amplitude levels for x and y are also augmenting. At W = 5.4
there is no movements noted, since the helicopter are nearly stable (c.f. Figure 3). Moreover, the amplitudes
of the bifurcation section get increased for rotor speeds higher than 5.66 Hz. Figure 9 compares the evolution
of the Poincaré sections for different rotor speed values in order to highlight the increment of the amplitude
level on the bifurcation diagram. A closer inspection on the time response is done through Figure 10 in which
a slight modulation of the signal for W = 5.59 Hz is observed; while for W = 5.82 Hz the signal modulation has
significantly changed.

Finally, the helicopter with high asymmetry level on the fuselage frequencies is investigated, i.e., wx = 6p
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(a) Poincaré Section (b) Phase Subspace

Figure 6 – Poincaré section and phase subspace at W = 4.85 Hz of an helicopter with wx = 6p and wy = 6p
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(a) Poincaré Section (b) 3D- Phase Subspace

Figure 7 – Poincaré section and phase subspace at W = 4.865 Hz of an helicopter with wx = 6p and wy = 6p
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(a) (b)

Figure 8 – Bifurcation Diagram for wx = 6p and wy = 7p: a) x(t) and b) y(t)
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Figure 9 – Comparison of Poincaré Sections for Helicopter with wx = 6p and wy = 7p
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(a) W = 5.59 Hz
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(b) W = 5.82 Hz

Figure 10 – Temporal Responses of the helicopter with wx = 6p and wy = 7p - D Poincaré section points

rad/s and wy = 8p rad/s. The bifurcation diagram for such dynamical system under the nonlinear efforts
are presented in Figure 11. The reader should note that for 5.08  W  5.23 Hz there is no amplitudes on
the bifurcation diagram since the helicopter is stable and thus the response converges to zero (static equilib-
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rium). Moreover, similar to the previous helicopter configuration analyzed (i.e., helicopter with wx = 6p rad/s
and omegay = 7p rad/s), there exist some regions in the bifurcation diagram in which the amplitudes growth
abruptly. A closer inspection of some of these regions is carried out. For this purpose, the Poincaré sections
were investigated for W = 5.9, 6.0, 6.34 and 6.48 Hz. Beyond the amplitude level that changed as function of
the rotor speed, one observe that for W = 6.34 Hz the points on the Poincaré section are distributed along likely
two circumferences.

(a) (b)

Figure 11 – Bifurcation Diagram for wx = 6p and wy = 8p: a) x(t) and b) y(t)
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Figure 12 – Comparison of Poincaré Sections of a Helicopter with wx = 6p and wy = 8p

5 Conclusions

The present paper aims at analyzing the effects of the nonlinear efforts on the dynamic response of the
helicopter on the ground. The nonlinearities might change the behavior of the dynamical system, in which
other than periodic motion is attained. Through the analysis, this paper investigated if non-periodic or chaotic
motions are observed for the helicopter.

For this purpose, Poincaré sections and bifurcations diagrams were done for different helicopter configu-
rations. Three different sets of fuselage’s natural frequencies were evaluated, accordingly to the value of wy
adopted.

The bifurcation diagrams highlight that for some rotor speed values, an abruptly rise in amplitude was
observed for asymmetric fuselage configuration. For some exception cases where periodic motion was attained,
non-periodic motion occurs for several rotor speeds values.

10



References

[1] GANDHI, F., AND CHOPRA, I. Elastomeric lag damper effects on flap-lag stability in forward flight. In
35th Structures, Structural Dynamics, and Materials Conference (1994), p. 1311.

[2] GUALDI, S., MASARATI, P., MORANDINI, M., AND GHIRINGHELLI, G. L. A multibody approach to
the analysis of helicopter-terrain interaction. In Proceedings of 28th European Rotorcraft Forum, Bristol,
UK (2002).

[3] HILBORN, R. C., ET AL. Chaos and nonlinear dynamics: an introduction for scientists and engineers.
Oxford University Press on Demand, 2000.

[4] KIM, S. J., AND YUN, C. Y. Performance comparison between piezoelectric and elastomeric lag dampers
on ground resonance stability of helicopter. Journal of Intelligent Material Systems and Structures 12, 4
(2001), 215–222.

[5] KING, R. L. Nonlinear inplane flexbeam stiffness provides rotor system stability without lag dampers.
Journal of the American Helicopter Society 46, 4 (2001), 283–289.

[6] KUNZ, L. Influence of elastomeric damper modeling on the dynamic response of helicopter rotors. AIAA
journal 35, 2 (1997), 349–354.

[7] LIU, Y., WANG, J., AND TONG, Y. Kinetic analysis of elastomeric lag damper for helicopter rotors. IOP
Conference Series: Materials Science and Engineering 311, 1 (2018), 012006.
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