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Abstract
Today, Industry 4.0 is being introduced. Machines are equipped with internet connection and increasingly
sensorized using Industrial Internet of Things (IIoT) sensors. Especially the emergence of 5G is a game changer
in this regard. It becomes possible to send data at high speeds to cloud computing data-centers. However,
streaming all data is deemed to be unnecessary. It is more advantageous to use the additionally available
bandwidth to drastically increase the number of connected sensors. Thus, on-board processing of the data
directly at the edge is necessary. This paper illustrates this edge computing concept using data of wind turbines.
Different fault indicators are calculated directly on an embedded system. In addition to statistical features also
more complex signal processing pipelines combined with machine learning approaches are used. An example
of a more advanced technique is the spectral coherence approach. This is one of the most promising approaches
for bearing fault diagnostics to extract the optimal envelopes. This approach requires a significant amount of
computational power. Today, different Advanced Risc Machine (ARM) processors are available in embedded
architectures. Moreover, CPU based single board computers are available. Embedded GPUs allow dedicated
machine learning algorithm processing. In this paper an NVIDIA Jetson device combining multiple ARM cores
with a GPU is used. The edge computing concept is validated by processing pipelines on vibration and SCADA
data originating from operational wind turbines using such architectures. Both healthy and faulty data sets are
processed.

1 Introduction

In the context of Industry 4.0 efforts there is a continuously decreasing cost for sensors. As such the range
of machines and other systems that are equipped with on-board instrumentation has increased substantially and
will increase even more in the years to come. For those industries where the cost of downtime is high there
is a strong interest and economic opportunity to move towards predictive maintenance. Therefore, more and
more companies show interest to acquiring more data from their product for condition monitoring and design
validation purposes. Continuous data collection allows to gain insights in product usage and thus forms the
basis for design improvements from better understanding asset behavior in the field. Adequate processing al-
gorithms are needed to perform usage evaluation and failure prediction to extract useful information from these
sensors. Typically these algorithms use acceleration or current signals sampled at high frequency. The wide
adoption of the Internet has brought broad coverage and continuous data connections at many locations all over
the world. However, for many industrial applications the local connectivity can still be problematic due the
limited bandwidth of wired or mobile connections. As such, streaming high frequency data is still unfeasible.
Local processing is thus necessary and will become more important with increasing data volumes.

*These authors contributed equally.
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Figure 1 – Streaming data in the context of an edge-cloud balanced architecture for condition monitoring.

To overcome the streaming limitations, today, high frequency samples are typically taken for a short pe-
riod of time in burst mode. Such bursts are done at intermittent periods in time. However, this means that
for machines operating at non-constant speed and load chances are high that data-points are taken at different
loading conditions. Due to the continuously changing nature of the system excitation, its response will also
permanently change. These changes can have an influence on the resulting monitoring feature values. If the
data samples—acquired at the intermittent moments—are spread too much over different loading conditions,
then trending becomes challenging. Particularly since today’s innovative industrial machines typically target
a wider operational range, their speed and loads are varying continuously. To allow extraction of high quality
condition indicators it becomes therefore interesting to explore, not only continuous data collection, but also
continuous processing. This paper targets the latter.

Ideally we can instrument all machines in the fleet. The collected data should then allow the extraction
of directly actionable insights for machine designers on the one hand machine and for owner-operators on the
other hand. The one will use the insights to improve the design, whereas the other uses alarms to perform
predictive maintenance. To allow the instrumentation of many machines it is necessary to have integrated
processing algorithms capable of automatically processing the monitoring data. Edge computing can play an
important rule to allow the extraction of health and design information from a large number of machines in a
fleet where it might be unfeasible to transfer all data to a central location. Extensive research about the detec-
tion of failure in rotating machinery is available in literature today. More recently, machine learning is used
more and more for condition monitoring. This offers opportunities towards automation. Leaning algorithms
can enhance vibration signal processing methods to make them autonomous and more repetitive. This paper
targets such methods by combining advanced signal processing techniques with anomaly detection and feature
fusion based on data-driven techniques.

In this paper we target the assessment of the feasibility to use advanced edge devices for overcoming the
limitations linked to intermittent data gap. We develop an integrated approach combining advanced signal
processing methods with anomaly detection and a Bayesian regression approach to deal with vibration data
in the new digital context. We target maximal computation close to where the sensor data is measured. Thus
maximally leveraging processing power of the embedded ARM cores and GPUs. Devices of this architecture
are plenty. In this paper, we use the NVIDIA Jetson TX2 embedded computing board, which features an ARM
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for general-purpose computations, and a GPU for specialized fast matrix-vector computations that are apparent
in many machine learning techniques. This device combines low cost with high computational density. To
assess the feasibility of using this device in a condition monitoring context, we use data of healthy and failed
wind turbines from the multi-megawatt range.

2 Methodology

Our goal is to maximally automate the condition monitoring process such that calculations can be done
maximally at the edge. Those approaches that cannot be calculated at the edge we will calculate centrally a
the cloud level. As such we generate a balance between edge and cloud, as illustrated in Figure 1. For those
approaches that cannot be calculated at the edge level, we target to only use high quality data.

We focus on the wind turbine drivetrain system. Different monitoring pipelines are calculated in parallel on
the edge device. In this paper we assess the possibility to calculate processing pipelines of different complexity
on the embedded processors. A multitude of features is generated. These range from statistical indicators on
raw sensor data, that are less computationally intensive, to complex sequences of filters. Anomalies in these
features are afterwards annotated using machine learning. To optimize the usage of the calculation power of the
edge device, analysis methods of different types are coupled to their most optimal processor type. All signal
processing calculations are done on the ARM processors. Multiple ARM processors in parallel allow to calcu-
late features on multiple channels at the same time. The anomaly detection using Bayesian approaches is then
done using the GPU processor. This allows to exploit the fast matrix-vector computations.

Since the focus of this paper is on the assessment of the edge computation aspect, we only discuss the
pipelines used in this paper in a high-level overview. For details on the different methods the reader is for
each sub-block referred to our prior publications or relevant literature. The following paragraphs discuss these
processing pipeline blocks.

Statistical indicators
Statistical values of different nature can be calculated on acceleration data to detect changes in vibration be-
haviour of the system over time. We use the following indicators:

1. RMS: This gives an indication of the overall energy level present, xRMS =
√

1
N ∑n x2(n), with x(n) the

sampled signal.

2. Crest factor: Max peak value over RMS, CF =
|xpeak|
xRMS

.

3. Kurtosis: A measure for the dispersion of the signal’s distribution, κ =
1
n ∑

n
i=1(xi−x)4

( 1
n ∑

n
i=1(xi−x)2)2 −3.

4. Moors kurtosis: An alternative implementation of kurtosis based on quantiles [6], κMoors =
(E7−E5)+(E3−E1)

E6−E2
.

5. Peak-to-Peak: A straightforward indicator that quantifies the distance between the maximum and mini-
mum acceleration, xP2P = xmax− xmin.

6. Peak Energy Index: PEI =
√

1
Np

∑
N
n=1 x2

p(n), where Np is the number of peaks exceeding a threshold
equal to µx +2σx, with µx the mean and σx the standard deviation.

Speed compensation
Complex processing pipelines contain different processing steps that are chained together. For wind turbines a
first step is always correction for speed fluctuations due to the stochastic nature of the wind. Typically this is
achieved by converting the acceleration signals acquired in the time domain to the angular domain by means of
angular re-sampling methods. Accurate speed measurements are necessary to achieve this step. Different meth-
ods are available in literature. We opt to use the Multi-Order Probabilistic Approach (MOPA). This method is
based on interpreting the short time Fourier transform (STFT) of the vibration signal as a probability density
function of the instantaneous angular speed. Consequently if the STFT has a high amplitude at frequency f ,
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then the probability that the shaft frequency is equal to f/Hi with Hi being the excitation order. For details on
the specifics of the method the reader is referred to [4, 7].

Cepstrum liftering
In case bearing damage signature extraction is targeted, a second step consists in the removal of the dominating
effect of the harmonics originating from the gears. Typically cepstrum liftering is used to achieve this goal. In
this paper we opt to use the automated cepstrum editing procedure (ACEP). The cepstrum allows to concentrate
the energy of periodically spaced spectral components into a smaller number of impulses. These are referred
to as rahmonics. Removing these peaks decreases the amplitude of the periodic signal content. Similar to
filtering in the frequency domain the term liftering is used in the cepstral domain. Randall & Sawalhi showed
that the real cepstrum can be used to edit the log amplitude spectrum which contains the discrete harmonics [8].
Recombining this modified amplitude spectrum with the original phase creates an edited version of the time
signal with significantly less pronounced harmonic content. In our case we use an automated cepstrum editing
procedure. In this procedure first a long-pass lifter is applied to the cepstrum. The corresponding content will
be read to the signal after the editing procedure. This in order to prevent liftering of this content which is
dominated by the structural behaviour of the system. First noise reduction is achieved by a wavelet de-noising
approach. Then a comb lifter allows the removal of selected distinct peaks in the cepstrum. Finally the signal
is transferred back to the time domain. In the resulting signal the stochastic content is dominant.

Filtering
Once the data is cleaned and disturbances are removed, filtering is done prior to calculation of the statistical
indicators. A variety of frequency ranges and filter types can be chosen. For the purpose of this paper the
frequency range up to the Nyquist frequency is divided in 4 different bands. For each of these bands the same
statistical indicators as for the raw data are calculated.

Cyclic spectral coherence
In parallel to the pipelines calculating statistical features, enveloping is done to detect bearing faults. Even after
reducing the influence of harmonic disturbances using cepstrum liftering techniques the detection of bearing
faults remains a challenge. The bearing fault impulsive excitation signatures are small compared to potential
other disturbing energy sources. In complex gearboxes with many stages this can complicate detection. En-
veloping techniques linked to band pass filtering allow to highlight the fault. However, accurate knowledge
about the most optimal frequency band for envelope extraction is needed. The use of cyclic spectral coherence
to identify this frequency band improves detection potential by identifying the frequency ranges in which reso-
nances can amplify the signatures [2]. Calculation of the spectral coherence maps and envelopes are done both
directly at the edge.

Anomaly detection
The features that result from the processing pipelines discussed above are treated as time series data. This al-
lows them to be trended in order to accurately capture failure-driven anomalies. To automate and objectify this
process, we use linear Bayesian Ridge regression [5] to model the features under healthy conditions using the
machine operational parameters as inputs. Bayesian Ridge Regression is a probabilistic approach to regression
with regularization. Essentially, it fits the linear parameters (i.e., slopes and intercept) and inherent noise to the
observed data, while maintaining the uncertainty over the parameters. This type of regression fully captures all
stochastic components in the modeling process, and allows the identification of anomalies that are not due to
this stochasticity. The models are trained during a healthy period and thus predict expected feature response for
healthy conditions. Outliers exceeding a three standard deviations range around the expected feature behaviour
are classified as anomalies and thus unhealthy behavior.
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3 Experimental case

To be able to keep up with the continuous data streams we opt to not transmit all data to a central cloud
processing platform but balance processing between cloud and edge. Figure 1 gives a schematic overview of
our architecture. In this paper we will make use of embedded ARM and GPU technology and use the commer-
cially available NVIDIA Jetson TX2 product as edge device. This features a quad-core ARM Cortex-57 MP
Core CPU. In addition also a 256-Core NVIDIA Pascal GPU is available.

Signal processing pipelines exploit a Python architecture. These are deployed on the quad-core ARM pro-
cessor. The anomaly detection models are implemented in TensorFlow [1], which allows for execution at the
edge on the GPU. TensorFlow is a library that automatically organizes operations in a computational graph,
such that many repetitive simple operations can be executed in parallel on the arithmetic units of the GPU.
Such a framework is suitable, as Bayesian Ridge regression requires matrix multiplications during prediction,
and thus can be efficiently executed on a GPU. Training of the models is performed in the cloud, as it is too
computationally intensive.

To asses the processing ability of the Jetson and identify its limitations we opt to use vibration monitoring
data collected from offshore wind turbines and process the analysis pipelines discussed above. Based on the
insights gained in the speed and processing capabilities of the ARM processor and GPU, the balance between
edge and cloud computing is identified. Computations that are feasible to be performed at the edge are done
there, whereas the other processing is done in the cloud. To limit bandwidth usage of the data connections only
high quality data is sent to the central cloud. The indicators calculated at the edge allow to determine whether
it is useful to transfer the data to the central cloud.

Industrial CMS data is taken as starting point. In this way the analysis is done on a representative dataset.
Data-sampling rates are above 25kHz. Each data block is approximately 10 seconds. Data is collected at in-
termittent moments in time. One accelerometer channel at the planetary and one at the high speed stage are
processed. First, the processing pipelines using signal processing techniques, discussed in the previous section,
are calculated. The six statistical indicators are calculated on the raw sensor data as a baseline. 240 process-
ing pipelines provide an extensive feature set. The final step in each pipeline is the calculation of a statistical
indicator to generate a summary value. To allow data-trending, intermittent data samples over a multi-year
period are processed. After the trending step anomaly detection is executed on the GPU of the Jetson for fast
prediction. Model training, comparison, and visualization of the resulting features is done on the VUB AVRG
cloud platform.

Accelerometers are mounted on the gearbox at the planetary and high speed stage. We target the detection
of deterioration on the planetary gear stage, which can lead to more severe damage. Constructed health indica-
tors of both the planetary stage and high-speed stage are compared to illustrate deviations in nominal behavior.
Figure 2 shows an example, comparing a peak-to-peak feature for the planetary stage and the corresponding
feature for the high speed stage over multiple years of data. Based on these indicators it is clear that the fault
is in the planetary stage. The indicators clearly show a strong anomaly score towards the end, whereas before
some outliers already start to pop up. The indicators for the high speed stage show no anomalous behaviour.
This shows the ability to locate the fault in the gearbox system.

Based on this analysis it is possible to perform calculations for failure detection, taking into account a large
quantity of indicators calculated in parallel at the edge. For the moment calculations are far from real-time so
only intermittent measurements are possible. As such more computationally intensive calculations using more
detailed processing methods, such as for example the Kurtogram [3], need to be performed at the cloud level
anyhow. However, there is definitely potential to use this technology for continuous condition monitoring if
enough calculation cores are made available on the device.
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Figure 2 – Comparison of peak to peak based health indicator between two affected and unaffected channels.

4 Conclusion

This paper investigated the potential to use combined embedded ARM and GPU processing architectures
for edge computing in the context of condition monitoring. Both signal processing and machine learning ap-
proaches were calculate locally on the device. The NVIDIA Jetson TX2 was used as testing device. Using
real-life data it was shown that failure detection can be achieved by edge computing. Complex signal process-
ing pipelines, comprising of amongst others speed compensation, cepstrum liftering and enhanced enveloping
were calculated on the device. These was complemented with Bayersian feature fusion using Tensor Flow on
the embedded GPU after model training in the cloud.

As such it is shown that the edge device can be used to monitor a gearbox using typical measurements from
CMS devices used in industry today. In addition to these local calculations the computationally more intensive
calculations able to detect this failure type earlier will be performed in the cloud. In future research this balance
will be further optimized.
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