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Abstract 
Industrial automation is a promising move to fulfill today’s competitive manufacturing industry 

demands by lowering operation costs, increasing productivity and quality. Monitoring the 

production process is one of the important steps toward total autonomy of manufacturing plants, 

which reduces routine checks, enables proactive maintenance and reduces repair costs. This 

research investigates tool wear as one of the most common faults in milling process during cutting 

of the D2 high speed steel as a hard to cut material using Carbide Walter End Mill Protostar tool. 

Vibration signal is chosen to represent the system status due to its applicability in industry. Signals 

are transformed into time-frequency domain using Wavelet Transform method to reveal both time 

domain and frequency domain features of the signal simultaneously. In order to model the 

complex and non-linear relations between tool wear and vibration signals under varying cutting 

parameters, a deep learning based algorithm, Long Short-Term Memory (LSTM) Artificial neural 

networks (ANNs) is employed. Deep learning algorithms are getting lots of attention recently 

within the diagnosis and prognosis community because of their exceptional performance in 

exploiting information in big data to solve complex problems. LSTM network is a type of 

recurrent ANNs that have some internal cells that act as long-term or short-term memory units, 

which is most suitable for sequential data and time series like vibration signals in our analysis. 

After designing the system, performance of the monitoring method is validated using 

experimentally acquired data with K2X10 Huron high speed CNC machine in LIPPS and Dynamo 

labs of ETS.  

Keywords 
Deep Learning, Tool Wear, Wavelet Transform, Condition Monitoring, Time-Frequency 

Transformation, Machining Process   

1. Introduction 

Machining processes are key components of industrial manufacturing, which requires higher 

productivity, parts quality, workers safety and lower operational costs. Therefore, there is growing 

demand to make the machining operation autonomous. Along with other initiatives in automation, 

online monitoring of machining process is beneficial to assure the production safety and quality. 

Tool wear is one of the most common and costly defects of the machining process, which is 

caused by excessive, contact forces and friction between cutting tool and workpiece material, high 
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temperatures in the cutting surfaces and pressure of the chips on the tool. It may deteriorates the 

surface finish or causes damage or breakage to the tool, workpiece or machining center if is not 

detected and fixed on time [1]. Therefore, designing a reliable and robust online automatic tool 

condition monitoring (TCM) system is in high demand to actively monitor the cutting process 

and provides actionable reports of tool condition status. 

TCM systems can be divided into two main sub-categories: direct and indirect methods. Direct 

methods involve a procedure to directly measure actual value of faults with a laser, optical or 

ultra-sonic sensor. This could be costly and causes interruption in the manufacturing process for 

the measurements. Indirect methods in contrast employs physical parameters of the system such 

as force, vibration, etc. to indirectly reflect the status of the system [2]. Indirect methods can be 

used to fulfill TCM requirements as an alternative to indirect methods with accurate results and 

acceptable cost[3]. Another advantage of this approach is that the same sensor can be used for 

multiple monitoring purposes.  

Force, vibration, acoustic emission, current and power signals are among the applicable and most 

common signals for TCM application in the literature. Li et al. studied TCM using force signals 

to reveal tool faults in turning[4]. Fourteen time-domain features of the signal are extracted and 

fed into a v-support vector regression model to developed flank wear prediction model. Force 

signal shows high accuracy to represent tool wear variations, however, it is also dependent on 

other operating conditions and relatively costly for industrial application [3]. Vibration sensors 

are practical in industrial environments and can represents the tool wear with appropriate 

performance. Harun et al. studied tool condition during deep twist drilling process using time and 

frequency domain fault features and compared vibration and force signals in this application. 

They concluded that both sensors are acceptable for this application, however they recommended 

vibration signal [5]. Acoustic emission is another efficient signal for TCM which is highly used 

in the literature [6] . Power and current sensors are also cost effective and applicable for industrial 

environment. In and study, current signals of the spindle of the milling machine is used to 

investigate tool wear. S-transform is used to transform the signals to time-frequency domain [7]. 

Sensor fusion is another approach to increase the accuracy and reliability of the monitoring. In an 

study, Segreto et al. combined information of the force, acoustic emission and vibration signals 

for tool condition monitoring of the turning process [8]. 

In the next step, signals are processed to magnify the effect of monitoring variables and reducing 

the effect of the noise in the signals. Time, frequency and time-frequency domain analysis are 

most common methods for signal processing in TCM [9]. Time-frequency analysis is appropriate 

for this application as it investigates both time variant and frequency dependent characteristics of 

the signal simultaneously, although it has higher computational costs [10]. In a study s-transform 

as a powerful time-frequency transformation method is used by Rehorn et al.  to generate a feature 

called selective regional correlation, for machining condition monitoring [11]. In another study, 

a comparative analysis is conducted among common time-frequency transformation methods for 

the purposes of TCM in milling operation [12]. 

The relations between extracted features of the signals and tool wear is non-linear and complex, 

especially under varying cutting parameters such as depth of cut and feed rate which makes the 

monitoring task difficult. Therefore, a solid algorithm is necessary to accomplish the decision-

making requirements. Machine learning algorithms such as artificial neural networks (ANNs), 

support vector machine (SVM) and Bayesian networks are common in the literature to fulfil this 

need. ANNs method is employed by Patra et al. to investigate tool wear of the micro drilling 

process [13]. In another study, a sound based system is developed using discrete wavelet 

transform (DWT) and SVM algorithms in face milling operation for TCM [14]. Tobon-Mejia 

employed Baysian network for the prediction of remaining useful life (RUL) of the tool in 

machining process [15]. 



Recently, deep learning algorithms draw attention of researchers in different fields due to their 

promising capabilities to solve complex challenges [16]. Deep learning refers to machine learning 

algorithms with deep multiple layers which enable them to learn highly complex patterns from 

even low-processed to raw signals [17]. In the era in which sensors are continuously producing 

enormous amounts of data, such techniques are in need to make the most information out of this 

data. These algorithms are less dependent on applications and frameworks and they are most 

efficient to outperform other methods when the relationship between the input data and desired 

outputs are complex [18]. Despite this potential, they are relatively new in the field of machinery 

fault monitoring. In an study, Jing et al. developed a Convolutional neural network based 

algorithm for gearbox condition monitoring [19]. Zhao et al. conducted a study to investigate the 

researches using deep learning methods in machine health monitoring [20]. Further research is 

crucial to examine deep learning algorithms applicability with different signals and levels of 

signal processing in TCM applications. 

In this study, a TCM system is proposed using LSTM ANNs as a powerful and state of the art 

deep learning algorithm. Vibration signals from ETS experimental dataset are used to develop the 

monitoring system. Signals are processed using Wavelet method to transform them to time-

frequency domain. Afterwards, the frequency bands energies calculated in the previous step is fed 

to the LSTM network as the features to construct the monitoring system. The algorithm accuracy 

is compared with a baseline Multi-Layer Perceptron (MLP) ANNs. This paper is organized as 

follows: Section 2 represents the formulation and backgrounds of the techniques of the paper. The 

proposed methodology is elaborated in Section 3. Results and discussion are presented in Section 

4 and Section 5 is devoted to conclusion. 

 

Figure 1.The monitoring system framework 

 

 



 

2. Background of methods 

2.1. Wavelet Transform  

Wavelet transform is one of the widely used algorithms for fault diagnosis and health condition 

monitoring. In wavelet transform, wavelets are used as the basis instead of sinusoidal functions 

that are used in fast Fourier transforms which is the main difference between wavelet transform 

(WT) and Fast Fourier Transform (FFT). It is famous for transient signal analysis as well as time-

frequency localization because it introduces a scale variable in addition to the time variable in the 

inner product transform. It has a better time localization but a lower frequency resolution for 

higher frequency components. In contrast, for lower frequency components, the frequency 

resolution is higher while the time localization is worse. Following equation describes the 

formulation of the continuous wavelet transform [10]. 
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a normalization factor to maintain energy conservation and a > 0. 

2.2. LSTM Neural Networks 

LSTM ANNS have recently demonstrated a great success in many machine-learning tasks, such 

as regression, prediction, etc. While conventional machine learning models can only map from 

input data to outputs, LSTM is capable of building multi-directional connections and it is 

effective at capturing long-term temporal dependences and keeps a memory of previous inputs 

to in the network’s internal state, which makes it ideal for sequential data. The following 

equations is the hidden layer function that give the update for a layer of memory cells [20][21]: 
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where 𝜎 is an  element-wise application of the sigmoid function, θ is the tanh function, and ⊙ 

is the element-wise product. 𝑔 is the input node with a tanh activation function and 𝑖 , 𝑜 and 𝑓 

are the input, output and forget gates, respectively.  

3. Proposed Methodology  

The proposed methodology of this paper is elaborated in this section. In the signal acquisition 

step, an accelerometer is used to capture vibration data of the machine spindle for further 

processing. The framework of the monitoring system of this research is presented in Figure1. 



Signals are processed after the acquisition step to extract informative fault indicators and remove 

noise. Time-frequency analysis is used for this step because of its superior potential in revealing 

the time variant characteristics of the signals in frequency domain using Morlet wavelet transform 

method.  

In the next step, a set of features are extracted from the wavelet transform to describe the fault 

properly. The signal energy in different frequency bands are used as the monitoring features. 

Therefore, minimum pre-processing is implemented to explore the capability of LSTMs in 

eliminating unnecessary information and magnifying relevant features. In contrast to other hand-

crafted feature learning models, deep learning methods are capable to provide an effective 

prediction tool for fault detections by learning robust feature representations directly from input 

signals. 

A deep LSTMs model is proposed in this paper to accurately predict the faults in machining 

process. A simple yet effective architecture as shown in Figure 1 is considered due to the 

constraints of tool condition monitoring system. The keras deep learning library is employed 

[22] with tensorflow as the back-end [23] to implement the proposed model. The proposed 

architecture of the paper involves an LSTM with four neurons in the first hidden layer. then the 

output is fed into two fully-connected layers. The fully-connected layers are responsible to 

compute the softmax activation with a matrix multiplication followed by a bias in order to 

produce the prediction value. Mean Absolute Error (MAE) is chosen as the loss function. The 

model is fit during 2000 training epochs. 

4. Results and discussion  

4.1. ETS Experimental Dataset 

A set of experiments are performed to measure tool flank wear during machining of hard to cut 

materials. K2X10 Huron high speed CNC machine of the LIPPS laboratory at ETS is used to 

perform the experimental tests. A tri-axial accelerometer was mounted on the spindle of the 

machine with a sensitivity of 100mV/g for measuring acceleration.  

D2 high speed tool steel is selected as the workpiece material with hardness of 60-62 HRC due 

to its high wear resistance in order to investigate tool wear in machining hard material with 

dimension of 200 × 54 × 4.  Carbide Walter End Mill Protostar H50 Ultra tool with 6 teeth is 

selected as the cutting tool with 50 degrees of helix angle. Different cutting speeds of 2500 rpm 

and 6000 rpm and feed rates of 0.12 mm/tooth and 0.05 mm/tooth with 4 mm depth of cut and 

tool wear were measured at different intervals which results in 63 cases with different tool wears 

and cutting conditions. Figure 2 demonstrates this experimental setup. 

4.2. Tool wear estimation using vibration signals from ETS dataset 

The monitoring system is developed as per the methodology described in the previous section. 

Also another system without the LSTM layer with just fully connected layers of ANN is 

developed as the baseline. Fully connected layers can be considered as multi-layer perceptron 

ANNs which are widely used in this application as a common ANN technique. Data is divided 

into two categories, training and testing with 70% and 30% of the data respectively. For evaluating 

the performance of monitoring systems, average accuracy in percentage (the differences between 

predicted and actual tool wear value divided by average of tool wears) and RMSE are calculated 

as representative of the performance from the Scikit-learn machine learning performance analysis 

toolboxes.  



 

Figure 2. Experimental set up 

 

 

 

Figure 3. Loss function during training process 

Figure 3 reports the loss values of the LSTM training method, which shows it is converging close 

to zero during the epochs of the training step. Table 1 presents the results of tool wear estimation 

using test dataset for two different algorithms.  



Table 1.  Comparison Between regression results 

Regression Algorithms Average Accuracy % RMSE Test RMSE Train 

LSTM ANNs 92.37 0.00015 0.0001 

MLP ANNs 82.21 0.00264 0.00139 
 

Based on the results, LSTM has higher accuracy (92.4%) and lower root mean square error 

(RMSE) which are acceptable for most industrial applications. Figure 4 illustrates the predicted 

versus actual tool wears using the LSTM based algorithm for two tools from the no wear (VB=0) 

state up to the high tool wears. It is observed based on the diagrams and table that LSTM has a 

promising performance in this application. 

 

Figure 4. Estimated and real tool wear values using vibration signals 

  

5. Conclusions 

A robust tool condition monitoring method is proposed and validated in this research with ability 

to tolerate changing cutting parameters. Spindle vibration signals from the ETS dataset are used 

as the fault indicator. Wavelet transform time-frequency transformation method is employed for 

the signal processing step due to its great applicability to process signals and reveal rich 

information in both time and frequency domain simultaneously and its proven performance in this 

application. A deep LSTM based ANNs method is also implemented as the last step to model the 

complex relationships between extracted features and tool wear. 

Time frequency step of the research revealed information on both time domain and frequency 

domain characteristics of the signals and the study confirms its performance and effectiveness in 

tool wear monitoring. Table 1 report the comparative results of the LSTM ANNS based proposed 

methodology of the paper versus MLP ANNs which is one of the most common and widely used 

ANNs in the Literature. Based on the results, LSTM outperforms MLP with above 10% in 

accuracy and it has a significantly lower RMSE for both training and test results. So it proves the 

applicability of LSTM for tool wear estimation. 



As the next steps of this study, the results will be validated with other common sensors in this 

application, especially more economic and applicable sensors such as power and current sensors. 

In addition, sensor fusion techniques will be investigated at different levels of analysis to increase 

accuracy and robustness of the system. 
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