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Abstract 
Many production lines in the food industry, that run continuously 24 hours per day, are nowadays equipped 

with induction motors to drive machines to process raw materials to become final products. As the motor 

function in the production lines is vital, the failure of the motor can thus interrupt the production process that 

eventually leads to economic losses, i.e. higher production cost. The statistical analysis on the maintenance 

record of a specific production line conducted in this study confirms that induction motor breakdowns are the 

major contributors of the unplanned production downtimes.  Furthermore, this case study also shows that the 

common failure mode of the induction motors is due to the rolling element bearing faults, which is in-line 

with the findings of many authors in the literature. The main interest of the production line owner is how to 

minimize the unplanned downtimes such that the productivity can be maintained or increased, and at the same 

time, the production cost is minimized. In this paper, we present a testimonial story of a setting-up a vibration 

monitoring system to continuously monitor the condition of motors for the first time in a real production line 

with low-cost MEMS accelerometers available on the market. Some technical challenges and the state-of-the-

art techniques used to compute health indicators from the measured raw vibration signals are presented in this 

paper. The installed vibration monitoring system has successfully identified a damaged bearing in one of the 

monitored motors. This finding was also independently validated by a maintenance service company. 

1. Introduction 

Operations cost efficiency enhancement is the primary decision driver of manufacturing enterprises, in 

order to stay economically competitive [1]. It not only refers to reducing resource (material, energy, machine 

and labour) utilization per unit of manufacturing process output, and improving product quality and yield per 

unit of input but also includes reducing unplanned downtimes or delays of the production process due to 

technical issues (machine breakdown, unavailable material, blockage of a line). Conventionally, 

manufacturers tend to ignore a full exploration of the enormous power of data, although these data have huge 

potential to help increase their operations cost efficiency [2]. The production-related data generated on the 

shop floor is various, such as production logs, power consumption, maintenance registers, machine 

performance indicators, labour shifts, material availability, and storage status. A majority of manufacturing 

enterprises either do not gather these data, or have fragmented data, or simply store these data without any 

further management and analytics. 

With the emerging industrial transition toward Industry 4.0, the penetration of Internet-of-Things (IoT) 

technologies into manufacturing industry (industrial IoT, or IIoT) enables collecting these various data in a 

cheaper and more flexible manner [3], hereby unlocking the enormous potential of big data technologies 

applied to production lines. In this paper, we discuss our experience in assisting a food manufacturing 

company that runs its production lines 24 hours per day in the transition toward Industry 4.0. This company 

has a number of production lines to manufacture different types of food. The key performance indicator (KPI) 

set by the company that need to be achieved within this project is an improved operation cost efficiency and 

productivity. 

The production lines availability is one of the other important aspects that influence the operation cost 

efficiency and productivity. Currently, the preventive maintenance is applied to the production lines to 

maintain the availability, where the production lines have to be stopped in every pre-determined maintenance 

window (e.g. every few weeks). To reach the KPI, the maintenance strategy, therefore, needs to be changed 

from the preventive maintenance to the condition-based maintenance (CBM) /Predictive Maintenance (PdM) 



   

 

   

 

strategy. The first critical step to successfully implement the CBM/PdM strategy is to identify critical assets 

that have a significant impact on the business. Here, the asset criticality is determined by the duration of 

production downtimes caused by the failure of a certain asset. The longer the production downtime is, the 

more critical the asset will be. 

Since the beginning of the project, it was not entirely clear yet what production lines/sub-production lines 

or machines that can be categorised as critical assets. To identify critical assets in an objective manner, the 

maintenance record and production data of a pilot production plant for more than 6 years (from April 2011 to 

November 2017) were analysed. The analysis revealed that most of the downtimes in the production plant are 

caused by the failures of AC electric motors located at different production lines. Further analysis also showed 

that the majority of the AC electric motor failures is caused by the mechanical damages on the rolling element 

bearings. 

Once the critical assets have been identified, the second step is to determine which technologies necessary 

to monitor the health condition of the critical assets. Vibration based condition monitoring is a well-established 

approach that has been employed by industries for many years in their maintenance program of rolling element 

bearings [4]. The common practice of this approach is that, vibration measurements are periodically recorded 

using portable vibration sensors (i.e. accelerometers) and measurement signals are analysed by an expert to 

interpret the bearing condition. However, this common practice can lead to serious misinterpretation, where 

rapidly growing faults, that might occur in rolling element bearings, could be missed. In contrast, a continuous 

condition monitoring approach offers a more optimal solution in which the bearing condition is continuously 

tracked. This way total failures can be anticipated in advance thus allowing optimal maintenance action. 

Despite its advantages, the continuous monitoring program is however not well adopted by industry because 

of high investment cost, where sensor cost is a major factor. To remedy this gap, cost-effective accelerometers 

are therefore needed. 

The remainder of this paper is organised as follows. Section 2 discusses the market survey for low-cost 

accelerometers suitable for bearing condition monitoring purposes. Section 3 describes the architecture of the 

continuous monitoring system installed in a production line. Section 4 discusses the analysis results of the data 

acquired by the installed monitoring system. Section 5 presents the conclusions drawn from the analysis and 

proposes a future work. 

2. Sensor Selection and Deployment 

The high investment cost is one of the bottlenecks for adopting continuous condition-based maintenance 

strategies in the industry. A major part of these costs is introduced by the sensors. Advancements in the field 

of MEMS accelerometers have enabled opportunities for low-cost alternatives while maintaining basic-

performance requirements for vibration-based condition monitoring purposes. 

MEMS accelerometers offer many attractive attributes. They combine the economic benefit with, for 

example, a compact, a high sensitivity, a good resistance to shocks and acceptable stability over a wide range 

of temperatures. In the previous study [5], a market survey was carried out and it was concluded that the only 

MEMS accelerometers available on the market suitable for vibration-based condition monitoring (in particular 

for bearing faults monitoring) are the ones from Analog Devices, ADXL001-70/ ADXL001-250. The main 

criteria for selecting such sensor models are because of i) the high dynamic range and ii) the wide frequency 

range properties. However, the noise performance over higher frequency ranges of the selected sensor models 

is relatively low, i.e. higher noise density level, which is about 4000 μg/√Hz. 

Recently, the market study has been updated as summarised in Figure 1. It turns out that Analog Devices 

has released the new generations of MEMS accelerometers for more than one year, namely 

ADXL1001/ADXL1002 having ultra-low noise density level, which is about 25 μg/√Hz. These ultra-low 

noise sensor models are the successor of ADXL001-70/ADXL001-250. Despite the fact that the noise density 

level of the successors is much lower than that of the predecessors, other potential limitations of the low-cost 

ADXL1001/ADXL1002 MEMS accelerometers such as the long-term signal drift, bias offset and overall 

robustness of the sensor to industrial environments, are not clear yet. 



   

 

   

 

 

Figure 1: The market overview of analogue MEMS accelerometers updated version of [5]. The dashed lines 

indicate the minimum requirements set for condition monitoring applications. The diameter of the circles 

indicates the noise density as specified in the datasheets. 

Proper hardware solutions were exploited to cope with the inherent limitations of the low-cost MEMS 

accelerometer that can affect the monitoring performance. To this end, a printed circuit board (PCB) and a 

tailored-packaging have been designed and produced. Figure 2 schematically illustrates the sensor deployment 

process to protect the MEMS sensor and enhance its overall robustness. To preserve the frequency range of 

the MEMS accelerometer, the packaging should be designed with care. For this purpose, a design criterion for 

the packaging was imposed, namely, the first packaging resonance frequency should be higher than the 

maximum frequency range of interest, i.e. 10 kHz. The flowchart of the packaging design is shown in Figure 

3. 

 

Figure 2: Sensor integration and packaging process. 

 



   

 

   

 

 
 

Figure 3: Packaging design flowchart. 

3. The Continuous Monitoring System Architecture and The Installation 

in A Production Line 

The asset criticality analysis, as discussed in Section 1, has guided us to consider 4 electric motors which 

are located in different locations. Hence, four of the selected ultra-low noise sensor model (ADXL1002) have 

been packaged according to the sensor deployment flow described in Section 2.  

Figure 4 illustrates the architecture of the monitoring system, in which each vibration sensor is installed 

on an individual motor. Each sensor is oriented such that the measuring axis in parallel with the horizontal 

axis and radial axis of each motor. Note that each sensor is powered by 5 VDC power supply. Sensor #1 and 

#2 are both installed on an extrusion press in a regular industrial environment, while sensor #3 and #4 are 

installed on a ventilator and belt motor subject to harsh environmental conditions with the temperature 

variations between 20 and 120°C and the humidity up to 90%. The latter stressed conditions have a major 

impact on the lifetime of the motor bearings and are an ideal industrial use case for this study. 

 

Figure 4: Architecture of the monitoring system installed in a production line. 



   

 

   

 

Each sensor is individually connected to a four-channel data acquisition device (NI CDAQ9191) sampled 

at a high frequency of 50 kHz. The digital data from the data acquisition device is transferred to a server via 

an ethernet cable. On the server, a custom data recording program shown in Figure 6, which can be scheduled 

along the working hours, is run, which stores every half hour a few seconds of data. This monitoring system 

has been successfully running and generating a dataset of almost one year of production data. 

 

Figure 5: Custom data recording program. 

The two sensors installed in the regular industrial environment are still in operation until now. In contrast, 

after more than one month since the installation, the two sensors installed in the harsh environmental 

conditions showed an anomaly behaviour, where the DC values of the raw signals have dropped to values 

around zero. The comparison of the raw signals of a functional and failing sensor is shown in Figure 6. It is 

not clear yet the reason for the sensor failure. But it seems that one of the electronic components used in the 

sensor packaging is vulnerable to a long time high temperature. 

 

Figure 6: Raw sensor data of a functional (top) and failing (bottom) sensor, sampling at 50 kHz. 

4. Data Analysis 

Batch data acquisition Sensor data are acquired in batches: in a standard operating mode, a batch is 

recorded every 30 minutes. If necessary (e.g., if data analysis indicates imminent failure), the acquisition 

period can be gradually reduced to ensure up-to-date information for decision-making. The length of a batch 

depends on the rotational speed of the motor: for reliable analysis, a batch should contain a sufficient number 

of full revolutions. The rotational speed of the monitored motors while executing a typical production order 

ranges from 1400 to 1500 RPM (approximately 25 Hz), therefore we set the batch length to three seconds. 

Thus, one sensor generates at least 57 megabytes of uncompressed raw vibration data per day. 

Computing health indicators For each monitored motor and each batch, we compute several bearing 

health indicators, referred to as features. Figure 7 illustrates the feature computation algorithm. It requires 



   

 

   

 

three inputs: bearing fault frequencies, the rotational speed of the motor shaft, and the raw vibration signal. 

The required bearing fault frequencies include the bearing defect frequency (BDF), and the inner & outer ball 

pass frequencies (BPFI & BPFO), and the ball spin frequency (BSF) for the drive and non-drive ends; their 

values typically can be found in the manufacturer’s catalogue. The shaft speed can either be directly read from 

the motor controller interface (PLC) or estimated from the vibration data; in this work, we use the latter 

method. To filter out non-production situations (e.g., maintenance, cleaning, holidays, etc.), we skip the 

batches where the rotational speed is much lower than the typical values of 1400-1500 RPM; we set the filter 

threshold to 600 RPM. 

 

Figure 7: Inputs and steps of the feature computation algorithm. 

 

From a high-level perspective, the main steps of the algorithm are (1) centering the vibration signal, (2) 

estimating its envelope spectrum, and (3) informally, matching the spectral peaks with the expected fault 

frequencies: the closer the match, the higher the feature value and hence, the likelihood of a bearing failure. 

Figure 8 illustrates the third step: the bearing monitored by Sensor#2 is substantially more likely to fail than 

the one monitored by Sensor#1. For the detailed description of the algorithm and its options, we refer the 

reader to Ompusunggu et al. [5]. 

 

Figure 8: Final step of feature computation: matching envelope spectral peaks with bearing fault 

frequencies. Close matches for Sensor#2 likely indicate bearing fault. 

The algorithm computes 10 features in total: 8 features for each fault frequency listed above, one feature 

for the shaft, and an aggregate global feature. This enables a coarse-grained overview as well as fine-grained 

analyses. Figure 9 shows the evolution of the global feature over time for the two motors shown in Figure 8, 

indicating the stable condition of the first motor and the gradual increase of the failure likelihood of the second 

motor. These findings have been confirmed by an external audit. 



   

 

   

 

 

 (a) Sensor#1 (b) Sensor#2 

Figure 9: Evolution of the global bearing health indicator for two motors over eight months (missing values 

correspond to non-production periods, e.g., maintenance or holidays). 

Remaining data analysis challenges include accounting for operational context and calibration. Relevant 

contextual data (such as the shaft speed, load, ambient temperature, raw material, etc.) can be read from PLCs 

and various manufacturing systems, e.g., SCADA or MES. Accounting for these data will reduce the influence 

of external factors and mitigate spurious feature value fluctuations seen in Figure 9. Calibration requires data 

from the complete lifecycle of a bearing, from installation to failure. Once such data become available, 

dimensionless feature values can be used to calculate interpretable health indicators, e.g., fault size or time to 

failure. 

Implementation details The software is implemented in MATLAB with a thin Python wrapper for 

scripting. The implementation reads the TDMS files output by the NI acquisition device and generates CSV 

files that can be used directly or uploaded to a database, an IoT platform, or another data processing system. 

5. Conclusions & Outlook 

In this paper, we have shared our experience in assisting a food manufacturing company in setting up a 

continuous monitoring system in transition from the current practice preventive maintenance toward the 

condition-based maintenance/predictive maintenance. The maintenance record and production data recorded 

for more than 6 years have been used and analysed to objectively determine critical assets in a pilot production 

plant. It turns out from the analysis that AC electric motors located in different production lines are the most 

critical assets, where rolling element bearings are the main root causes of the motor failures. 

The architecture of the monitoring system with a low-cost vibration sensor solution has been proposed 

and realised in the pilot production line to monitor the health condition of four selected electric motors. The 

monitoring system has been running successfully and acquiring vibration data, which are stored in a server. 

The off-line analysis has shown that one of the selected motors is already faulty. The findings have been 

verified independently by a third party. As a result, a maintenance action for the faulty motor has been planned 

and will be executed in the coming weeks. 

The future work will be to further extend the framework that allows for on-line analysis and decision 

making. 
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