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Abstract

The manufacturing industries more and more payecédgention to artificial intelligence (Al). For ample,
smart monitoring and diagnosis, real time evaluatod optimization of the whole production and raw
materials management can be improved by using madéarning and big data tools.

In this work, a smart milling diagnosis has beereftleped for composite sandwich structures based on
honeycomb core. The use of such material has groowsiderably in recent years, especially in the
aeronautic, aerospace, sporting and automotivesirida. But the precise milling of such materiadgants
many difficulties.

The objective of this work is to develop a datasen industrial surface quality diagnosis for thdlimg of
honeycomb material, by using supervised machinmileg. methods. In this approach cutting forces are
online measured in order to predict the resultinfese flatness.

The developed diagnosis tool can also be appli¢iaetonilling of other materials (metal, polymer, ....)

1 Introduction

The manufacturing industries more and more payechitention to artificial intelligence (Al). For
example, smart monitoring and diagnosis, real #veluation and optimization of the whole production
and raw materials management can be improved Img usachine learning and big data tools [1]. An
accurate milling process implies a high qualitytted obtained material surface (roughness, flatrj@$s)
With the involvement of Al-based algorithms, midiirprocess is expected to be more accurate during
complex operations.

T. Mikolajczyk et al developed an Atrtificial Neuronal Network (ANN)rfeool-life prediction in
machining with a high level of accuracy, especiatiythe range of high wear levels, which meets the
industrial requirements [3].

D. Pimenovet al evaluated and predicted the surface’s roughrassigh artificial intelligence
algorithms (random forest, standard Multilayer p@toon) [4]: in their investigation the obtained
performance depends on the parameters contairtbd ohataset.

M. Correaet al. compared the performances of Bayesian networkg @8N artificial neural networks
for quality detection in a machining process [5ye& ANN models are often used to predict surface
guality in machining processes, they preferred BiMgheir significant representation capability aod
the fast model building.

The work of C. Zhangt al. [21] focused on monitoring the condition and lifiethe cutting tool in
dry milling environment. From de-noised vibratidgral they extract some relevant features sucthes t
root mean square, the skewness and the kurtodi®tim time and time-frequency domain. Based on
Neuro-Fuzzy Network (NFN), they implemented a taelar prediction model which performs the best,



with the smallest Mean Squared Error (MSE) and Mahsolute Percentage Error (MAPE) compared
with Back Propagation Neural Network (BPNN) and RbBasis Function Network (RBFN) algorithms.

Z. Rui et al [24] implemented a hybrid approach combining laafied feature design with
automatic feature learning for machine health nwmg: local feature-based gated recurrent unit
(LFGRU) networks. By comparison with some other hmds such as the Support Vector Machine
(SVM), the k-nearest neighbor (KNN), they verifidte effectiveness and robustness of the proposed
LFGRU model for tool wear prediction.

D. Wu et al [25] have worked on cloud-based machine learfiingool wear prediction in milling.
The research was about the development of a n@pebach for machinery prognostics using a cloud-
based random forest algorithm. Their experimergalit have shown that despite the fact that random
Forests give the best accuracy for large dataasd|lpl random forest algorithm has the best raiming
time/accuracy. Future more, they will predict teaar with other machine learning algorithms such as
support vector machines as well as to make a casguawith their actual algorithms.

For machining result prediction, similar algorithomuld be used but the recurrent problem is how to
increase the accuracy of those algorithms. K. Jagedl. [26] have worked on an enabling health
monitoring approach based on vibration data fousate prognostics. They have shown that prognostic
efficiency is closely related to the extracted éieas and by the same way proposed a method foliegab
features that can lead to simple and accurate pstigs.

K. Durmus [27], by using neuronal networks, worle@d the prediction and the control of surface
roughness in CNC lathe using artificial neural retw His study has concluded that artificial neural
network (ANN) can produce an accurate relationgl@fween cutting parameters and surface roughness.
Based on the ANN training model, he could find best machining parameters for obtaining a desired
surface roughness.

By also using neuronal artificial neural network Kzlan [28] has developed a surface roughness
prediction models for end milling machining, in tlogic to find the best ANN network structure for
surface roughness prediction.

Another approach consists to measure and analyzedtive power (for example by current
measuring) [31], which is not applicable in our esment. In this paper few artificial intelligence
methods are tested: random forest (RF), standaitli&fer perceptrons (MLP), Regression Trees, and
radial-based functions.

In our work, a smart milling diagnosis has beenefigyed for composite sandwich structures based
on honey-comb core. The use of such material hasrgconsiderably in recent years, especially in the
aeronautic, aerospace, sporting and automotivesirids. Recent development projects for Airbus A380
or Boeing 787 confirm the in-creased use of theejoomb material. But the precise milling of such
material presents many difficulties.

The objective of this work is to develop a dataseni industrial surface quality diagnosis for the
milling of honeycomb material, by using supervisedchine learning methods. Therefore, cutting forces
are online measured in order to predict the regybkurface flatness.

2 Description of the Experiments
2.1 Workpiece material and tools

The workpiece material studied in this investigatis Nomex® honeycomb cores with thin cell
walls. It is produced from aramid fiber dipped mepolic resin (Fig. 1).
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Figure 1:Nome® honeycomb cores and the main geometrical charsiits

The honeycomb cores consist of continuous corrdgaldons of thin foil bonded together in the
longitudinal direction. The aim of such a process$oi create a structure allowing lightness andingtis
together thanks to the hexagonal geometry of forrsetls. Figure 1 illustrates the geometric
characteristics of the honeycomb core. The useopéycomb material in sandwich composite is limited
by the fragility of each wall of the honeycomb, ahiinfluences the quality of obtained surfacesrafte
machining [7, 8, 9].

The Nomex® honeycomb machining presents severaictefelated to its composite nature (uncut
fiber, tearing of the walls), the cutting conditioand to the alveolar geometry of the structurechvhi
causes vibration on the different components otthitng effort [10].

It is clear that the use of ordinary cutting toatel also the mechanical and geometrical charatitsris
of honeycomb cores will have a crucial effect orchiaability and on the quality of the resulting fage
[11]. In fact, ordinary cutting tools for machinitgney-comb core produce generally tearing of fiber
and delamination of cell structures. Subsequetitiyse cause a reduction of bond strength between th
skin and the honey-comb core, and thus a weakarfmi composite sandwich structures.

In our study, the used milling cutter is providednh our industry partner, the EVATEC Tools
Company. As shown in figure 2, the used EVATEC tisoh combined specific tool with two parts
designed to surfacing/dressing machining operafitre first part is a cutter body made of high speed
steel with 16 mm in diameter and having ten heliwés chip breaker. This tool part is designated by
Hogger. The second part is a circular cut-ting élathde of tungsten carbide with a diameter of 818
and having a rake angle of 22° and a flank ang@%f. These two parts are mechanically linkedatche
other with a clamping screw.

Figure 2: Milling cutter used for Nomex® honeycondre “CZ10".



2.2 Milling experiments

All experimental milling tests illustrated in thisaper were carried out on a three-axis vertical
machining center Realmeca® RV-8.

For assessing the performance of the machiningepsoof Nomex® honeycomb core we monitored
and measured the cutting forces generated duritiinguby using the Kistler dynamometer model
9129AA. The Kistler table is mounted below the Namsample in order to measure the three
components of the machining force as shown in &gBir During the measurements, the x-axis of the
dynamometer is aligned with the feed directionh® milling machine and the longitudinal directiadn o
the workpiece (parallel to core ribbons and thesadion of honeycomb double wall). The three
orthogonal components of machining force (Fx, F¢f Bm) were measured according to figure 3 using the
Kistler table.

Nomex®
Honeycomb

Figure 3: Experimental test setup

The milling experiment conditions are summarizedable 1. Four different speeds (high and low
speeds) and four feed values were selected.

Spindle 2000 | 10000 15000 23000
speed (rpm)
Feed ratg 150 1000 1500 3000
(mm/min)

Table 1 : Milling experiment conditions

Two main modes of surface damage are observedré~u uncut aramid fibers along the machined
surface and tearing of the walls. The appearantkeotincut fibers is a machining defect specifithi®
composite material which depends on the type ofible#s and their orientation. The tearing of Noex
paper, linked to the cellular appearance of theejloomb structure, occurs under the shear loadfegtef
[28, 29].

Uncut fibers are observed on Figure 4 -a and -is Well known that the surface quality is of high
importance for the use of the Nonfexoneycomb in sandwich materials. The machiningasfcause a
reduction of bond strength between the skin andhiveeycomb core, and thus a weaker joint for
composite sandwich structures.



Figure : Obtained honeycomb machining surfaces.
The case (b) represents the best milling result

2.3 Measured signals

Many milling experiences have been made in ouryst&kdr example, figure 5 shows the milling
forces measured for honeycomb at 2000 rpm spiqdiedsand 3000 mm/min feed rate.
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Figure 5: Milling force measurements for 2000 rgmdle speed and 3000 mm/min feed rate:
(a) during all process; (b) during 0.2s (zoom)

Cutting forces are in the order of a few Newtohsytdo not exceed 60 Newtons. Generally, the force
in vertical direction (Fz) is quite small, thusjstadvised that to keeping vertical forces snralhilling
composite due to the delamination issue. In oue,cd® vertical cutting force component is grettan
other forces components which can be attributeatléonechanical properties of the honeycomb stractur
where the honeycomb structure is characterized bgteer out-of-plane compression behavior than its
tensile and shear strength. The evolution of ogttforces shows significant oscillations. These
oscillations are caused by vacuum in the cellshef honeycomb and the angle between the cutting
direction and the honeycomb cell wall direction.

Figure 6 shows the obtained evolution of the swrfqaality (flatness) for various combinations of
cutting conditions (spindle speed and feed rathg defect of shape is higher for low speeds. Tfars,



high feed rates that exceed the 1500 mm/min, tle¥ammess exceeds 500 pm which characterizes the
severe tearing of the honeycomb walls.
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Figure 6: Effect of cutting parameters on surfdaméss

Given the low level of cutting forces, the qualitiithe obtained machined surface allows to establis
criteria for determining the machinability of therfeycomb structures. The appearance of the urimrsfi
is a machining defect specific to the compositeemalt which depends on the type of the fibers et
orientation. The tearing of Nomex® paper, linkedtte cellular appearance of the honeycomb structure
occurs under the effect of shear loading [5, 12].

Alternatively a surface response [30] could havenbbuilt in order to predict the milling surface
guality. But close milling parameters (such asrajié speed, feed rate, depth of cut) can leadffereit
results, depending on the material, the qualitthefmachining tool, etc.

Therefore, in our approach supervised machine ilgriechniques (with labeled measurements for

the model training) are used. These tools need cthestruction of features associated with the
measurements.

Milling diagnosis using machine lear ning techniques
Machine learning techniques can be separated maimlyo categories [17, 23]:

-Unsupervised approaches: based only on input(data are unlabeled). The goal is to find groups
and structures in the data set, in order to chagsifiv observations (measurements) into the differen

groups.
- Supervised approaches: based on input and odépaiNow the data are labelled.

The raw data (measurements) are firstly filteredhwow pass filters in order to eliminate high
frequency noises, and labeled (“obtained signaisgfmd surface quality”, “obtained signals for bad
surface quality”). Then the features are calculat#iche or online.

All the experiments are then split into two groups% for the machine learning model training, 25%
for the obtained model evaluation also called m®ise in the literature (another percentage can be
chosen, for example 60% - 40%, depending on thebeumwf experiments). This can be made randomly,
but the ratio “good surface quality” and “bad sadauality” must be kept in each group.



3.1 Featurescalculation

The features are calculated in the time domaintaedrequency domain [6, 13] from the raw signal
represented on figure 7, in steady state behaviou@ct, transient zones (that means when thengutt
tool entries or exits the honeycomb core) are akrt into account.
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Figure 7: Measured milling force in time domain:
(a) total data plot, (b) signal during steady-sftase

After a first data processing (low pass filterinfijstly 19 features are calculated in the time dom
for the measured milling force signal (for exampheaximum, minimum, amplitude range, median value,
maximum of the absolute value of the signal, intargle range, average value of the signal, enefgy
the signal, Skewness, Kurtosis, Shannon entropy, ...

Secondly another 19 features are calculated iruéecy domain in a similar way for the measured
milling force signal. Therefore, the Fast Fourransform (FFT) of the signal has been calculated.

All the calculated features (in time and frequemitynains) are normalized and stored in a table
whose lines and columns respectively represenexiperimental number (also called instance) and the
associated feature values. The description of sled features are indicated in [32]

The reduction of the features is then be made inguBCA (Principal Component Analysis) [18].

3.2 Labeded data

From the evaluation of the effect of the cuttinggmaeters on surface flatness result, we defined two
classes of surface quality applied to the outptd déeach observation (see table 2)

Label | Flatness (um) Qualitative value

Al 0-600 Best surface quality

‘B' 600 — ... Worst surface quality

Table 2:Label table for the experimental observations



3.3 Applied supervised learning algorithms

In this work, several classification algorithms baleen implemented in the Matlab software
environment [20, 21]: k-nearest neighbor (KNN), Bemn trees (DT), Support Vector Machine (SVM).
The different machine learning algorithms (with ithadapted tuning parameters) are applied to the
normalized labeled training data set (75% of thal texperiments). The obtained trained models lza t
tested on the labeled test data set (25% of tlaé é@periments). The objective is to find again lddeels
of the test data set: table 3 shows the obtainedracy result of each algorithm.

Algorithms Accuracy
KNN 83.4%
KNN k=2 81.3%

Weighted KNN k=2 | 83.4%
Chebychev KNN k=2 | 87.5%

Tree 99%
Pruned tree 66.67%
Linear SVM 83.4%
Gaussian SVM 66.67%

Table 3: Prediction error for the normalized dat s

We used some news experimental data set in ord=raloate the performance of the trained model.
The goal is to predict online (during milling) tsarface quality. The results are presented her¢hor

trained model by using the linear SVM classifiggaailthm:

Predicted class

Actual A
class
A TP = 83%

TN = 100%

(TP: true positive rate; FN: false negative rafe; false positive rate; TN: true negative rate)
Table 4: Performance of the prediction using SMa&sifier

The class B was the best predicted class. Despéefdct that linear SVM algorithm lost in
performance for data set with large predictors. (eege number of features), it has been an aceurat
algorithm with a good prediction rate and the lowtegining time.

4 Conclusion

The milling's performance is qualified by evalugtithe roughness or the flatness of the resulted
surface. In this work, different supervised machiearning algorithms have been implemented and
compared. To do this, features were firstly calmdafrom measured milling forces and then each
Artificial Intelligence (Al) based model has beemited by the labeled set of features. From the
prediction results, SVM algorithm seems to be adgefficient diagnosis algorithm in this applicatioh
honeycomb material milling. The developed diagn@giproach can also be applied to the milling of

other material.
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