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Abstract 
The manufacturing industries more and more pay close attention to artificial intelligence (AI). For example, 
smart monitoring and diagnosis, real time evaluation and optimization of the whole production and raw 
materials management can be improved by using machine learning and big data tools. 
In this work, a smart milling diagnosis has been developed for composite sandwich structures based on 
honeycomb core. The use of such material has grown considerably in recent years, especially in the 
aeronautic, aerospace, sporting and automotive industries. But the precise milling of such material presents 
many difficulties.  
The objective of this work is to develop a data-driven industrial surface quality diagnosis for the milling of 
honeycomb material, by using supervised machine learning methods. In this approach cutting forces are 
online measured in order to predict the resulting surface flatness. 

The developed diagnosis tool can also be applied to the milling of other materials (metal, polymer, …). 

 
1 Introduction 

The manufacturing industries more and more pay close attention to artificial intelligence (AI). For 
example, smart monitoring and diagnosis, real time evaluation and optimization of the whole production 
and raw materials management can be improved by using machine learning and big data tools [1]. An 
accurate milling process implies a high quality of the obtained material surface (roughness, flatness) [2]. 
With the involvement of AI-based algorithms, milling process is expected to be more accurate during 
complex operations. 

T. Mikołajczyk et al. developed an Artificial Neuronal Network (ANN) for tool-life prediction in 
machining with a high level of accuracy, especially in the range of high wear levels, which meets the 
industrial requirements [3]. 

D. Pimenov et al. evaluated and predicted the surface’s roughness through artificial intelligence 
algorithms (random forest, standard Multilayer perceptron) [4]: in their investigation the obtained 
performance depends on the parameters contained in the dataset. 

M. Correa et al. compared the performances of Bayesian networks (BN) and artificial neural networks 
for quality detection in a machining process [5]. Even ANN models are often used to predict surface 
quality in machining processes, they preferred BNs for their significant representation capability and for 
the fast model building. 

The work of C. Zhang et al. [21] focused on monitoring the condition and life of the cutting tool in 
dry milling environment. From de-noised vibration signal they extract some relevant features such as the 
root mean square, the skewness and the kurtosis in both time and time-frequency domain. Based on 
Neuro-Fuzzy Network (NFN), they implemented a tool wear prediction model which performs the best, 
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with the smallest Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) compared 
with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN) algorithms. 

Z. Rui et al. [24] implemented a hybrid approach combining handcrafted feature design with 
automatic feature learning for machine health monitoring: local feature-based gated recurrent unit 
(LFGRU) networks. By comparison with some other methods such as the Support Vector Machine 
(SVM), the k-nearest neighbor (kNN), they verified the effectiveness and robustness of the proposed 
LFGRU model for tool wear prediction. 

D. Wu et al. [25] have worked on cloud-based machine learning for tool wear prediction in milling. 
The research was about the development of a novel approach for machinery prognostics using a cloud-
based random forest algorithm. Their experimental result have shown that despite the fact that random 
Forests give the best accuracy for large dataset, parallel random forest algorithm has the best ratio training 
time/accuracy. Future more, they will predict tool wear with other machine learning algorithms such as 
support vector machines as well as to make a comparison with their actual algorithms. 

For machining result prediction, similar algorithms could be used but the recurrent problem is how to 
increase the accuracy of those algorithms. K. Javed. et al. [26] have worked on an enabling health 
monitoring approach based on vibration data for accurate prognostics. They have shown that prognostic 
efficiency is closely related to the extracted features and by the same way proposed a method for enabling 
features that can lead to simple and accurate prognostics. 

K. Durmus [27], by using neuronal networks, worked on the prediction and the control of surface 
roughness in CNC lathe using artificial neural network. His study has concluded that artificial neural 
network (ANN) can produce an accurate relationship between cutting parameters and surface roughness. 
Based on the ANN training model, he could find the best machining parameters for obtaining a desired 
surface roughness. 

By also using neuronal artificial neural network M. Azlan [28] has developed a surface roughness 
prediction models for end milling machining, in the logic to find the best ANN network structure for 
surface roughness prediction. 

Another approach consists to measure and analyze the drive power (for example by current 
measuring) [31], which is not applicable in our experiment. In this paper few artificial intelligence 
methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and 
radial-based functions. 

In our work, a smart milling diagnosis has been developed for composite sandwich structures based 
on honey-comb core. The use of such material has grown considerably in recent years, especially in the 
aeronautic, aerospace, sporting and automotive industries. Recent development projects for Airbus A380 
or Boeing 787 confirm the in-creased use of the honeycomb material. But the precise milling of such 
material presents many difficulties. 

The objective of this work is to develop a data-driven industrial surface quality diagnosis for the 
milling of honeycomb material, by using supervised machine learning methods. Therefore, cutting forces 
are online measured in order to predict the resulting surface flatness. 

 

2 Description of the Experiments 
2.1 Workpiece material and tools 

The workpiece material studied in this investigation is Nomex® honeycomb cores with thin cell 
walls. It is produced from aramid fiber dipped in phenolic resin (Fig. 1).  
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Figure 1: Nomex® honeycomb cores and the main geometrical characteristics 

 

The honeycomb cores consist of continuous corrugated ribbons of thin foil bonded together in the 
longitudinal direction. The aim of such a process is to create a structure allowing lightness and stiffness 
together thanks to the hexagonal geometry of formed cells. Figure 1 illustrates the geometric 
characteristics of the honeycomb core. The use of honeycomb material in sandwich composite is limited 
by the fragility of each wall of the honeycomb, which influences the quality of obtained surfaces after 
machining [7, 8, 9]. 

The Nomex® honeycomb machining presents several defects related to its composite nature (uncut 
fiber, tearing of the walls), the cutting conditions and to the alveolar geometry of the structure which 
causes vibration on the different components of the cutting effort [10]. 

It is clear that the use of ordinary cutting tools and also the mechanical and geometrical characteristics 
of honeycomb cores will have a crucial effect on machinability and on the quality of the resulting surface 
[11]. In fact, ordinary cutting tools for machining honey-comb core produce generally tearing of fibers 
and delamination of cell structures. Subsequently, these cause a reduction of bond strength between the 
skin and the honey-comb core, and thus a weaker joint for composite sandwich structures. 

In our study, the used milling cutter is provided from our industry partner, the EVATEC Tools 
Company. As shown in figure 2, the used EVATEC tool is a combined specific tool with two parts 
designed to surfacing/dressing machining operation. The first part is a cutter body made of high speed 
steel with 16 mm in diameter and having ten helixes with chip breaker. This tool part is designated by 
Hogger. The second part is a circular cut-ting blade made of tungsten carbide with a diameter of 18.3 mm 
and having a rake angle of 22° and a flank angle of 2.5°. These two parts are mechanically linked to each 
other with a clamping screw. 

 

 
Figure 2: Milling cutter used for Nomex® honeycomb core ‘‘CZ10’’. 
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2.2 Milling experiments 

All experimental milling tests illustrated in this paper were carried out on a three-axis vertical 
machining center Realmeca® RV-8. 

For assessing the performance of the machining process of Nomex® honeycomb core we monitored 
and measured the cutting forces generated during cutting, by using the Kistler dynamometer model 
9129AA. The Kistler table is mounted below the Nomex sample in order to measure the three 
components of the machining force as shown in figure 3. During the measurements, the x-axis of the 
dynamometer is aligned with the feed direction of the milling machine and the longitudinal direction of 
the workpiece (parallel to core ribbons and the direction of honeycomb double wall). The three 
orthogonal components of machining force (Fx, Fy and Fz) were measured according to figure 3 using the 
Kistler table. 

 

  
Figure 3: Experimental test setup 

 

The milling experiment conditions are summarized in table 1. Four different speeds (high and low 
speeds) and four feed values were selected. 

Spindle 
speed (rpm) 

2 000 10 000 15 000 23 000 

Feed rate 
(mm/min) 

150 1 000 1 500 3 000 

Table 1 : Milling experiment conditions 

 

Two main modes of surface damage are observed (Figure 4): uncut aramid fibers along the machined 
surface and tearing of the walls. The appearance of the uncut fibers is a machining defect specific to the 
composite material which depends on the type of the fibers and their orientation. The tearing of Nomex® 
paper, linked to the cellular appearance of the honeycomb structure, occurs under the shear loading effect 
[28, 29]. 

Uncut fibers are observed on Figure 4 -a and -c. It is well known that the surface quality is of high 
importance for the use of the Nomex® honeycomb in sandwich materials. The machining defects cause a 
reduction of bond strength between the skin and the honeycomb core, and thus a weaker joint for 
composite sandwich structures. 

 

Cutting force 
measurement (Kistler) 

Mounting 
system 

Nomex® 
Honeycomb 
workpiece 
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Figure 4: Obtained honeycomb machining surfaces.  

The case (b) represents the best milling result 

 

2.3 Measured signals 

Many milling experiences have been made in our study. For example, figure 5 shows the milling 
forces measured for honeycomb at 2000 rpm spindle speed and 3000 mm/min feed rate. 

 

 
 

Figure 5: Milling force measurements for 2000 rpm spindle speed and 3000 mm/min feed rate:  
(a) during all process; (b) during 0.2s (zoom) 

 

Cutting forces are in the order of a few Newtons, they do not exceed 60 Newtons. Generally, the force 
in vertical direction (Fz) is quite small, thus, it is advised that to keeping vertical forces small in milling 
composite due to the delamination issue. In our case, the vertical cutting force component is greater than 
other forces components which can be attributed to the mechanical properties of the honeycomb structure 
where the honeycomb structure is characterized by a better out-of-plane compression behavior than its 
tensile and shear strength. The evolution of cutting forces shows significant oscillations. These 
oscillations are caused by vacuum in the cells of the honeycomb and the angle between the cutting 
direction and the honeycomb cell wall direction. 

Figure 6 shows the obtained evolution of the surface quality (flatness) for various combinations of 
cutting conditions (spindle speed and feed rate). The defect of shape is higher for low speeds. Thus, for 
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high feed rates that exceed the 1500 mm/min, the unevenness exceeds 500 µm which characterizes the 
severe tearing of the honeycomb walls. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Effect of cutting parameters on surface flatness 

 

Given the low level of cutting forces, the quality of the obtained machined surface allows to establish 
criteria for determining the machinability of the honeycomb structures. The appearance of the uncut fibers 
is a machining defect specific to the composite material which depends on the type of the fibers and their 
orientation. The tearing of Nomex® paper, linked to the cellular appearance of the honeycomb structure, 
occurs under the effect of shear loading [5, 12]. 

Alternatively a surface response [30] could have been built in order to predict the milling surface 
quality. But close milling parameters (such as splindle speed, feed rate, depth of cut) can lead to different 
results, depending on the material, the quality of the machining tool, etc. 

Therefore, in our approach supervised machine learning techniques (with labeled measurements for 
the model training) are used. These tools need the construction of features associated with the 
measurements. 

 

3 Milling diagnosis using machine learning techniques 
Machine learning techniques can be separated mainly in two categories [17, 23]: 

-Unsupervised approaches: based only on input data (data are unlabeled). The goal is to find groups 
and structures in the data set, in order to classify new observations (measurements) into the different 
groups. 

- Supervised approaches: based on input and output data (Now the data are labelled. 

The raw data (measurements) are firstly filtered, with low pass filters in order to eliminate high 
frequency noises, and labeled (“obtained signals for good surface quality”, “obtained signals for bad 
surface quality”). Then the features are calculated offline or online. 

All the experiments are then split into two groups: 75% for the machine learning model training, 25% 
for the obtained model evaluation also called test phase in the literature (another percentage can be 
chosen, for example 60% - 40%, depending on the number of experiments). This can be made randomly, 
but the ratio “good surface quality” and “bad surface quality” must be kept in each group. 
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3.1 Features calculation 

The features are calculated in the time domain and the frequency domain [6, 13] from the raw signal 
represented on figure 7, in steady state behaviour. In fact, transient zones (that means when the cutting 
tool entries or exits the honeycomb core) are not taken into account. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7:  Measured milling force in time domain:  
(a) total data plot, (b) signal during steady-state phase 

 

After a first data processing (low pass filtering), firstly 19 features are calculated in the time domain 
for the measured milling force signal (for example : maximum, minimum, amplitude range, median value, 
maximum of the absolute value of the signal, interquartile range, average value of the signal, energy of 
the signal, Skewness, Kurtosis, Shannon entropy, … ) 

Secondly another 19 features are calculated in frequency domain in a similar way for the measured 
milling force signal. Therefore, the Fast Fourier transform (FFT) of the signal has been calculated. 

All the calculated features (in time and frequency domains) are normalized and stored in a table 
whose lines and columns respectively represent the experimental number (also called instance) and the 
associated feature values. The description of the used features are indicated in [32] 

The reduction of the features is then be made by using PCA (Principal Component Analysis) [18]. 

 

3.2 Labeled data 

From the evaluation of the effect of the cutting parameters on surface flatness result, we defined two 
classes of surface quality applied to the output data of each observation (see table 2) 

 

Label Flatness (µm) Qualitative value 

'A‘ 0 – 600 Best surface quality 

‘B' 600 – …  Worst surface quality 

Table 2: Label table for the experimental observations 
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3.3 Applied supervised learning algorithms 

In this work, several classification algorithms have been implemented in the Matlab software 
environment [20, 21]: k-nearest neighbor (kNN), Decision trees (DT), Support Vector Machine (SVM). 
The different machine learning algorithms (with their adapted tuning parameters) are applied to the 
normalized labeled training data set (75% of the total experiments). The obtained trained models are then 
tested on the labeled test data set (25% of the total experiments). The objective is to find again the labels 
of the test data set: table 3 shows the obtained accuracy result of each algorithm. 

 
Algorithms Accuracy  

KNN         83.4% 
KNN k=2    81.3% 
Weighted KNN k=2       83.4% 
Chebychev KNN k=2     87.5% 
Tree          99% 
Pruned tree  66.67% 
Linear SVM         83.4% 
Gaussian SVM           66.67% 

Table 3: Prediction error for the normalized data set 

We used some news experimental data set in order to evaluate the performance of the trained model. 
The goal is to predict online (during milling) the surface quality. The results are presented here for the 
trained model by using the linear SVM classifier algorithm: 

 

 Predicted class  

Actual 
class 

A B  

A TP = 83% FN = 17% 100% 

B FP = 0% TN = 100% 100% 

(TP: true positive rate; FN: false negative rate; FP: false positive rate; TN: true negative rate) 

Table 4:  Performance of the prediction using SVM classifier 
 

The class B was the best predicted class. Despite the fact that linear SVM algorithm lost in 
performance for data set with large predictors (i.e. large number of features), it has been an accurate 
algorithm with a good prediction rate and the lowest training time. 

 

4 Conclusion 
The milling's performance is qualified by evaluating the roughness or the flatness of the resulted 

surface. In this work, different supervised machine learning algorithms have been implemented and 
compared. To do this, features were firstly calculated from measured milling forces and then each 
Artificial Intelligence (AI) based model has been trained by the labeled set of features. From the 
prediction results, SVM algorithm seems to be a good efficient diagnosis algorithm in this application of 
honeycomb material milling. The developed diagnosis approach can also be applied to the milling of 
other material. 
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