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Abstract 
 

Deterministic-random separation is crucial in machine signal processing. The synchronous average is a 

widely used tool that separates the deterministic contribution from the random one.  This tool consists on 

averaging the cycles of the vibration signal. In fact, it uses the fact that, for a given location in the cycle, 

the associated samples have a constant mean. This makes possible to estimate the signal mean through 

synchronous averaging, i.e. by averaging the samples associated with each position in the cycle. However, 

in many practical applications, the cycle-to-cycle statistics can change according to many factors such as 

the speed, torque, load, etc. The resulting signal is widely referred in the literature as cyclo-non-stationary. 

This means that the mean signal is not periodic anymore, thus jeopardizing the synchronous average 

technique. This paper addresses this issue by proposing a new generalization of the synchronous average. 

The proposed method takes advantage of the smoothness of the statistics (in particular the mean) variation 

with respect to cycles. Instead of computing the average of the samples located at a given angular location, 

the time-varying mean is computed by optimally fitting the data with an appropriate curve. This defines 

the synchronous fitting idea, being a mean estimator of cyclo-non-stationary signals. Two solutions are 

proposed to solve the fitting problem. Whereas the first seeks for a global solution, the second adopts a 

local solution inspired from Savitzky–Golay filter. These two approaches are tested and compared on 

numerical and real signals captured from a helicopter engine operating under a runup regime. Overall, the 

results have asserted the superiority of the local approach over the global one. 

 

1. Introduction 

The theory of cyclostationary processes has proven to be effective in describing and processing rotating 

machine signals [Antoni 2009]. The vibration components generated by mechanical sources can be mainly 

classified into first and second (or higher) order cyclostationary classes. First order cyclostationary 

components are those deterministic, principally consisting of a set of sinusoids corrupted with stationary 

noises. Those are described by the (quasi-) periodicity of their mean. Examples of first-order phenomena 

can include gear meshing vibrations, shaft unbalance and misalignment, fan rotations and others. Second-

order cyclostationary components are random in nature, meaning that their mean equals zero or, 

equivalently, their spectrum does not exhibit clean harmonics. The periodicity of these components is 

hidden and can be revealed through the instantaneous power or, more generally, the auto-covariance 

function. In practice, those components are generated by different kind of mechanical phenomena 

subjected to some randomness. A typical example is the vibrations generated by a local fault in a rolling 

element bearing wherein the randomness is due to the presence of a slippage in the motion of the rolling 

elements [Ho 2000]. For this reason, the cyclostationary analysis offers an efficient way to detect and 

characterize the presence of clear or hidden periodicities in the signals through a thorough differential 

diagnosis. Obviously, the separation of first and second-order components is crucial for an accurate 

analysis of the signal. Nowadays, the corresponding state of the art comprises a set of supervised and 



  

 

2 

unsupervised signal processing tools that deal with this issue. Among these methods, one of the most 

widely used is the synchronous average (SA) [Braun 1975]. The latter simply consists of cutting the signal 

into slices of the same length, being equal to the fundamental period of the extracted component and 

averaging them together. As it will be shown later, this paper deals with its generalization. 

The cyclostationary modelling assumes the (hidden-) periodicity to be stable in time, which in turn requires 

a constant speed. Such a condition is however hard to obtain as the speed often undergoes some 

fluctuations. This jeopardizes the effectiveness of the SA even if the magnitude of the speed fluctuations 

is low. Since repetitive patterns in rotating machines are intrinsically locked to specific angular positions, 

it totally makes sense to rather process the signal in the angular domain. In this case, the cyclostationary 

property holds in the angle domain and, consequently, the SA is applied on the angular signal, either 

obtained by angular sampling or resampling [Antoni 2004]. 

In the case of large speed fluctuations, signals are subjected to significant distortions that jeopardize the 

effectiveness of the SA. These distortions are basically introduced by (i) variations of the machine power 

intake and (ii) the effect of linear time-invariant (LTI) transfers. Whereas the former essentially results in 

amplitude modulation, the latter also induces phase modulation. Non-periodic modulations obviously 

invalidate the (angle-) CS assumption and call for a more general description of nonstationary signals. 

Accordingly, the principle of cyclo-non-stationarity was proposed to formalize this specific type of signals. 

The consideration of cyclo-non-stationary signals requires the extension of the cyclostationary signals. 

This paper is particularly concerned in extending the synchronous average. Many previous works have 

addressed this issue. Reference [Coats 2009] proposed the improved synchronous average, being based on 

resampling the signal with a virtual tachometer signal synthesized via the demodulated phase. Another 

attempt to generalize the SA was proposed in Ref. [Daher 2010] through a parametric approach. In details, 

the authors used the Hilbert space representation of the deterministic component in which they 

decomposed the deterministic components onto a set of periodic functions multiplied by speed-dependent 

functions apt to capture long-term evolution over consecutive cycles.  In ref. [Abboud 2016], the authors 

proposed a non-parametric approach based on averaging the signal cycles that belong to a given regime, 

defined by its central speed and a pre-defined width. 

This paper proposes a different approach to generalize the SA based on a synchronous curve fitting of the 

data. The theoretical backgrounds of the proposed technique is exposed in section 2, while its performances 

are evaluated through numerical simulations in section 3. In section 4, the efficiency of the technique is 

tested on real vibration signals recorded under a varying speed condition. 

 

2. Description of the synchronous fitting technique 

In this section, the fundamentals of the proposed method are provided. First, a mathematical model for 

CNS signals is reviewed. Then, a global solution for the first order CNS estimation, which corresponds to 

the one proposed in [Daher 2009], is presented. Finally, the newly proposed technique based on a local 

solution is introduced. 

 

2.1. General 

Let 𝑥[𝑛] be a first-order CNS signal with a characteristic period 𝑁 (i.e. cycle and 1/𝑁 the normalized 

frequency) and a length 𝐿.  One can model such a signal as follows: 

∀𝑛 ∈ {1, … , 𝐿 }     𝑥[𝑛] = 𝑑[𝑛] + 𝑤[𝑛] = ∑ 𝑑𝑘[𝑛]𝑒
𝑗2𝜋𝑘𝑛

𝑁 
𝑘 + 𝑤[𝑛]      (1) 

 

where 𝑘 is an integer, 𝑑𝑘[𝑛] ∈ ℂ are deterministic smooth functions (whose real and imaginary part are 

continuous and differentiable) and whose bandwidths, noted 𝐵𝑘, are much smaller than the half the 

fundamental frequency i.e. : ∀𝑘, 𝐵𝑘 
≪ 1/2𝑁 and 𝑤[𝑛] is a random noise. The discrete-time Fourier 

transform (DTFT) of (1) reads: 

 

∀𝑓 ∈] − 1/2; 1/2]      𝑋[𝑓] = ∑ 𝐷𝑘[𝑓] ∗ 𝛿(𝑓 − 𝑘/𝑁) 
𝑘 + 𝑊[𝑓]           (2) 



  

 

3 

 

where  𝐷𝑘[𝑓] and 𝑊[𝑓] are respectively  the DTFTs of 𝑑𝑘[𝑛] and 𝑤[𝑛]. Since  𝑑𝑘[𝑛] are deterministic smooth 

functions, and according to the Weirstrass theorem, they can be approximated through a 𝑃-order polynomial 

function, i.e.:  

 

∀𝑘   𝑑𝑘[𝑛] ≈ ∑ 𝑑𝑘
𝑝

𝑛𝑝𝑃 
𝑝=0          (3) 

 

where 𝑑𝑘
𝑝

∈ ℂ. By inserting Eq. (3) into the expression of 𝑑[𝑛], one obtains: 

 

∀𝑛 ∈ {1, … , 𝐿 }    𝑑[𝑛] = ∑ 𝑐𝑝[𝑛]𝑛𝑝 𝑃
𝑝=0       (4) 

 

where 𝑐𝑝(𝑛) = ∑ 𝑑𝑘
𝑝

𝑒𝑗2𝜋𝑘𝑛/𝑁 
𝑘  is a periodic function of period 𝑁. Equation (4) indicates that the deterministic 

component can be approximated by a sum of periodic functions multiplied with the polynomial basis: it is 

actually a polynomial with periodic coefficients. 

 

Let’s first define �̅� = ⌊(𝑛 − 1)/𝑁⌋ + 1 as the sample location within the period N (⌊𝑎/𝑏⌋ denotes the 

remainder of the division of 𝑎 by 𝑏) . Since 𝑐𝑝(𝑛) is periodic with period 𝑁, we have 𝑐𝑝[�̅�] =

𝑐𝑝[�̅� + (𝑞 − 1)𝑁] for all integer 𝑞 = 1, … , 𝑄 (𝑄 is the number of cycles). Thus,  Eq. (4) can be equivalently 

written as follows: 

 

       ∀𝑞 ∈ {1, … , 𝑄 }  ∀�̅� ∈ {1, … , 𝑁 }    𝑑[�̅� + (𝑞 − 1)𝑁] = ∑ 𝑐𝑝[�̅�](�̅� + (𝑞 − 1)𝑁)𝑝 𝑃
𝑝=0               (5) 

 

Using the binomial theorem ( (�̅� + (𝑞 − 1). 𝑁)𝑝 = ∑ 𝐶𝑖
𝑝

𝑁𝑖  (�̅� − 𝑁)𝑝−𝑖𝑞𝑖 
𝑝
𝑖=0   where 𝐶𝑖

𝑝
is the binomial 

coefficient), one can deduce from Eq. (5)  that the samples associated with the same location �̅� in the period, 

𝑠𝑞[�̅�] = 𝑑[�̅� + (𝑞 − 1). 𝑁] for all integer 𝑞 ∈ {1, … , 𝑄}, defines a polynomial of order 𝑃 with constant 

coefficient, i.e.: 

 

∀𝑞 ∈ {1, … , 𝑄 } ∀�̅� ∈ {1, … , 𝑁 }    𝑠𝑞[�̅�] = ∑ 𝑏𝑝[�̅�]𝑞𝑝 𝑃
𝑝=0         (6) 

 

where 𝑏𝑝[�̅�] = 𝑁𝑝 ∑ 𝐶𝑝
𝑗
 (�̅� − 𝑁)𝑗−𝑝𝑐𝑗[�̅�].  𝑃

𝑗=𝑝 Note that 𝑏𝑝[�̅�] is parametrized by �̅�.  

 

 

2.2. A global LMS solution 

In the case of a noisy signal 𝑥[𝑛], a good estimate of the deterministic component 𝑑[𝑛] is then to find the 

best fit of the curve 𝒔[�̅�] = [𝑠1[�̅�], … , 𝑠𝑄[�̅�]]
𝑇

   for each �̅� ∈ {1, … , 𝑁} which reduces to find an estimate 

of 𝒃[�̅�] = [𝑏1[�̅�], … , 𝑏𝑃[�̅�]]
𝑇
for each �̅� ∈ {1, … , 𝑁} for a given polynomial of order 𝑃. A common way to 

do this is to find the curve which minimizes the least mean square error, i.e.:  

 

 ∀�̅� ∈ {1, … , 𝑁}    �̂�[�̅�] = argmin(∑ 𝑤[�̅� + (𝑞 − 1)𝑁]2𝑄
𝑞=1 )

 = argmin (∑ (𝑑[�̅� + (𝑞 − 1)𝑁] − 𝑥𝑞[�̅�])
2 𝑄

𝑞=1 )

 = argmin (∑ (∑ 𝑏𝑝[�̅�]𝑞𝑝 𝑃
𝑝=0 − 𝑥𝑞[�̅�])

𝑄
𝑞=1

2
)

                       (7) 

 

where 𝑥𝑞[�̅�] = 𝑥[�̅� + (𝑞 − 1)𝑁]. Let’s define the 𝑄 × (𝑃 + 1) matrix  𝚽 such that   𝚽𝑞,𝑝 = 𝑞𝑝−1 (with 

𝑞 ∈ {1, … , 𝑄} and 𝑝 ∈ {1, … , 𝑃 + 1}, and  𝒙[�̅�] = [𝑥1[�̅�], … , 𝑥𝑄[�̅�]]
𝑇

. One can rewrite the  Eq. (7) as: 

 

  ∀�̅� ∈ {1, … , 𝑁}  �̂�[�̅�] = argmin‖𝚽𝒃[�̅�] − 𝒙[�̅�]‖2     (8) 

 

whose solution expresses as follows: 

 

  ∀�̅� ∈ {1, … , 𝑁}  �̂�[�̅�] =  (𝚽𝐓𝚽 )
−1

𝚽𝐓 𝒙[�̅�]  (9) 
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Once the coefficients are calculated, one can find the estimated deterministic component located at �̅� in 

the form: 

 

  ∀�̅� ∈ {1, … , 𝑁}  �̂�[�̅�] = 𝚽�̂�[�̅�] = 𝚽(𝚽𝐓𝚽 )
−1

𝚽𝐓 𝒙[�̅�]   (10) 

 

The deterministic signal can then be deduced as follows: 

 

 ∀𝑛 ∈ {1, … , 𝐿 }   𝑑[𝑛] = 𝑠𝑞[�̅�]   where   �̅� = ⌊(𝑛 − 1)/𝑁⌋ + 1  and  𝑞 = 1 +   (𝑛 − �̅�)/𝑁 (11) 

 

 

2.3. A local LMS solution 

This subsection describes the proposed method. The basic idea is excerpted from the “Savitzky-Golay 

filter” which is a widely known method to smooth or fit the data based on the least mean square solution 

of local polynomial fitting [Savitzky 1964]. Precisely, for every 𝑞 ∈ {1, … , 𝑄 }, let’s consider the data set 

𝑥𝑞[�̅�] being a function of 𝑞 and parametrized by �̅�; we try to find the best LMS polynomial fit, with a 

fixed order 𝑃 at the point �̅�, from the 2𝑀 + 1 subset centered at 𝑞, i.e. {𝑥𝑞−𝑀[�̅�], … , 𝑥𝑞+𝑀[�̅�]}. That being 

said, this problem can be stated in a similar way as the previous subsection, i.e.: 

 

 ∀ 𝑞 ∈ {1, … , 𝑄} ∀�̅� ∈ {1, … , 𝑁}    �̂�(𝒒)[�̅�] = argmin‖𝐉 𝒃(𝒒)[�̅�] − 𝒙(𝑞)[�̅�]‖
2
  (12) 

 

where  𝒙(𝑞)[�̅�] = [𝑥𝑞−𝑀[�̅�], … , 𝑥𝑞−𝑀[�̅�]]
⊤

represents the 𝑞th subset, 𝒃(𝒒)[�̅�] = [𝑏0
(𝒒)

[�̅�], … 𝑏𝑃
(𝒒)

[�̅�]]
⊤

 are 

the 𝑃 + 1 polynomial coefficients associated with the 𝑞th subset, and 𝐉  the (2𝑀 + 1) × (𝑝 + 1) matrix  

such that ∀𝑚 ∈ {1, … ,2𝑀 + 1 } ∀𝑝 ∈ {1, … , 𝑃 + 1 }  𝐉𝑚,𝑝 = (𝑚 − 𝑀 + 1)𝑝−1 . The (2𝑀 + 1)-length 

curve that best fits the 𝑞th subset writes: 

 

 𝑠𝑚
(𝑞)[�̅�] = ∑ 𝑏𝑝

(𝑞)[�̅�]𝑃
𝑝=0 . (𝑚 − 𝑀 + 1)𝑝   (13) 

 

The Savitzky-Golay method suggests to estimate the deterministic component at the 𝑞𝑡ℎ data point by 

retaining the value of the polynomial at the central point i.e. at 𝑚 = 𝑀 + 1: 

 

  ∀ 𝑞 ∈ {1, … , 𝑄} ∀�̅� ∈ {1, … , 𝑁}   �̂�[�̅� + (𝑞 − 1). 𝑁] = �̂�𝑀+1
(𝑞) [�̅�] = 𝑏𝑀+1

(𝑞) [�̅�]       (14) 

   

Following the same lines as for Eq (9), one can show that the coefficients of the polynomial write: 

 

     ∀ 𝑞 ∈ {1, … , 𝑄} ∀�̅� ∈ {1, … , 𝑁}     �̂�(𝒒)[�̅�] =  𝑯 𝒙(𝑞)[�̅�]                                                  (15)
        

   

with 𝑯 = (𝐉𝐓𝐉 )
−1

𝐉𝐓 a matrix of size (𝑃 + 1) × (2𝑀 + 1) whose elements are independent of �̅� and 𝑞 . 

The (𝑀 + 1)𝑡ℎ element of the above vector namely �̂�𝑀+1
(𝑞) [�̅�] is actually a linear combination of 𝒙(𝑞)[�̅�] 

with the 2𝑀 + 1 elements of the (𝑀 + 1)𝑡ℎ row, 𝒉𝑻 = [ℎ−𝑀 , … ℎ𝑀], of 𝑯 being independent of 𝑞 and �̅�: 

 

 �̂�𝑀+1
(𝑞)

[�̅�] = 𝒉𝑻𝒙(𝑞)[�̅�]       (16) 

 

Considering equations (14) and (15), one can write the estimate of the deterministic component 

 

�̂�[�̅� + (𝑞 − 1). 𝑁] = ∑ 𝑥𝑞−𝑚[�̅�] 𝑀
𝑚=−𝑀 ℎ𝑚

 = ∑ 𝑥[�̅� + (𝑞 − 1). 𝑁 − 𝑚. 𝑁] ℎ𝑚
 𝑀
𝑚=−𝑀

 = ∑ 𝑥[�̅� + (𝑞 − 1). 𝑁 − 𝑖] 𝑀𝑁
𝑖=−𝑀𝑁 ℎ̃𝑖

   

       (17) 
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where �̃�𝑻 = [ℎ̃−𝑀𝑁, … , ℎ̃𝑀𝑁   ] is obtained by zero-padding  𝒉 as follows: 

 

{
ℎ̃𝑖 = ℎ𝑚          𝑖𝑓  𝑖 = 𝑚𝑁, ∀ − 𝑀 ≤ 𝑚 ≤ 𝑀

ℎ̃𝑖 = 0                                               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
    (18) 

 

It becomes obvious that the estimated deterministic component turns to a LTI filtering of the original signal 

𝑥[𝑛] with the  (2𝑀𝑁 + 1)-length filter �̃�𝑖: 

 

�̂�[𝑛] = ∑ 𝑥[𝑛 − 𝑖] 𝑀𝑁
𝑖=−𝑀𝑁 ℎ̃𝑖          (19) 

 

 

 

3. Numerical evaluation 

In this section, the performance of the synchronous fitting techniques are tested and compared on a 

synthetic signal. The deterministic signal is modelled as a sum of four speed-varying sinusoids whose 

envelopes and phases are functions of the cyclo-non-stationary λ[𝑛] (which can be in practice the torque, 

load, speed, etc.): 

 

 𝑑[𝑛] = ∑ 𝐴𝑘[𝑛] sin(2𝜋𝑘𝑛/𝑁 + 𝛷𝑘[𝑛]) 4
𝑘=1        (20) 

 

Where: 

 𝐴𝑘[𝑛] and 𝛷𝑘[𝑛] are functions of  𝜆[𝑛] (see Fig. 1); 

 𝑁 = 100 is the fundamental period; 

 𝐿 = 15000 is the signal length. 

 

The deterministic signal is exposed in Fig 2 together with its noisy version constituted by adding a white 

Gaussian noise such that the initial signal to noise ratio is equal to -3 dB.  

 

 

In the following, the global and local approaches are applied to the noisy signal with respect to the cycle 

𝑁 with the aim of recovering the deterministic component, being here the signal of interest. For the global 

approach, the degree of polynomial was set to 30, knowing that the results were stable for higher 

polynomial degrees. For the local approach, the window length was set to 49 (i.e. 𝑀 = 24) and the 
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Figure 1: The plot of the cyclo-non-stationary agent λ[𝑛] (top), the 4 amplitudes 𝐴𝑘[𝑛] (middle) 

and the 4 phase modulations Φ𝑘[𝑛] (bottom) associated with the sinusoids of the synthetic signal. 
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polynomial order to 3. The obtained results are exposed in Fig. 3 together with the error signal obtained 

by subtracting the estimated signal from the actual one. Both approaches tend to estimate with good 

accuracy the deterministic signal, with a clear superiority of the newly proposed local approach over the 

global one: the estimation error of the latter is almost twice larger than the former. 

Eventually, the performance of these methods are compared for different signal-to-noise ratios (SNR). For 

this purpose, the relative error defined as the energy of the error normalized by the signal energy: 

 

 𝜖𝑛[𝑛] = 10log10 (∑ (𝑑[𝑛] − �̂�[𝑛]) N
𝑛=1

2
/ ∑ 𝑑[𝑛]2 N

𝑛=1 ).       (21) 

 

The obtained results are exposed in Fig. 4. The SA returns poor and consistent results as this latter only 

estimates the average periodic component existing in the signal. The reason is that the number of average 

is big so it was slightly affected by the SNR: the average periodic part was almost the same for all SNR. 

When it comes to the synchronous fitting techniques, the local approach evidences better estimation 

performances. In fact, the local approach returns an estimation error less than -6 dB when the SNR greater 

than -6 dB, while the global approach needs a SNR greater than 10 dB to get this accuracy. The results 

highlight the effectiveness of the local approach as compared with the global one. The reason is that the 

local approach assumes that the mean is locally smooth which is a more accurate assumption. 

 

Figure 2: The deterministic component (top plot) and the noisy signal (bottom plot) constituted by adding 

a white Gaussian noise whose standard deviation equals twice of the former. 

 

Figure 3: The deterministic component (top plot) and the noisy signal (bottom plot) constituted by adding a 

white Gaussian noise whose standard deviation equals twice of the former. 
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4. Application: a helicopter engine 

In this section, the proposed approach is applied on real vibration signals captured from the gas generator 

of a helicopter engine. The aim is to extract the component related to the centrifugal compressor while the 

engine speed operates under a runup regime. An encoder is also present to measure the shaft location and 

to provide an accurate estimation of the engine speed. The encoder signal is used to resample the signal in 

the angular domain and the synchronous fitting techniques are both applied with respect to the blade pass 

period of the centrifugal compressor. It is worth noting that the blade pass period equals the shaft period 

divided by the compressor blade number. The blade number as well as the signals magnitude are not given 

for confidentiality reason. Figure 5 exposes the raw acceleration signal, the synchronous fitting estimations 

via the global and local approach. It is obvious that the signal associated with the local approach is much 

more accurate presenting a clear resonance starting at 10s. The related spectrograms are exposed in Figure 

6 wherein the speed-varying harmonics of the centrifugal compressor are clearly shown. Though the 

extraction seems good in both techniques, it was hard to compare the performance of the extraction 

techniques. The order spectrum of the signals are computed by the Welch estimator applied to the angular 

resampled signals. The obtained spectra are exposed in Fig. 6 for comparison. Whereas the latter show 

better noise rejection in the global solution case especially for the noise floor, the close-ups clearly 

evidence the superiority of the local approach in accurately estimating the peaks. The global approach 

tends to loose accuracy as the frequency (order) gets high, this is because the global interpolation tends to 

confuse high frequency sinusoids with high frequency noises. Overall, the newly proposed local approach 

evidences better performances than the global one. 

 

 

 

Figure 4: Performance of the SA, the synchronous fitting with the global and the local approach. 
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Figure 5: The raw acceleration signal (top), the synchronous fitting with the global approach (middle) and 

local approach (bottom). 
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Figure 6: Spectrograms of the raw acceleration signal (top), the synchronous fitting with the global 

approach (middle) and local approach (bottom). 

 

 

Figure 7: Order spectra of the raw acceleration signal (blue continuous line), the synchronous fitting with the 

global approach (red dotted line) and local approach (green dotted line). 
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5. Conclusion 

This paper proposes a new technique for the extraction of a deterministic component in variable regimes. 

It can be seen as an extension of the classical synchronous averaging. In fact, instead of computing the 

cyclic mean via the synchronous average, the latter is computed via a synchronous fitting. This leads to 

two ways to tackle the issue. The first way seeks a global solution and compute the mean, for the data 

associated with a given position in the cycle, by finding the best polynomial that minimizes the least mean 

square error. It turns out that the solution of this problem was previously proposed in a previous 

publication. However, the second way is original and addresses differently the same problem by seeking 

a local solution based on the Savitzky-Golay filter. Numerical simulations are conducted showing a clear 

superiority of the newly proposed local approach over the global one. In fact, the local approach returns 

an estimation error less than -6 dB when the SNR greater than -6 dB, while the global approach needs an 

SNR greater than 10 dB to get this accuracy. The results highlights the effectiveness of the local approach 

as compared with the global one. An additional advantage of the local approach over the global one is the 

computational cost. As the first turns to a linear-time-invariant convolution, its implementation is much 

easier than solving a global least mean square problem which requires a matrix inversion. Eventually, both 

techniques are successfully tested on a real vibration signal measured on a helicopter engine under a runup 

condition with the aim of extracting the vibratory component emitted by the centrifugal compressor of the 

gas generator. Both techniques were able to extract the component of interest, yet the local approach 

evidences much better extraction than the global one. 
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