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Abstract
Rolling Element Bearings (REB) are present in most of the rotating machines being the ones in charge of
supporting the charge of the shaft, being the cosntant charge of the shaft a reason to make the REB prone to
fail. Failures under real conditions such as variable speed/load are a subject of interest in the state of the art in
digital signal processing of vibration signals, lastly, defined as a cyclo-nonstationary process due to the intrinsic
cyclic behaviour of the REB and the nonstatinarity introduced by the variations of the Instantaneous Angular
Speed (IAS). The most direct approach to deal with a REB failure under time-varying IAS, is to compensate
the IAS transforming the vibration signal to the angular domain, then highlight the cyclo-stationary part of the
signal in the angular domain. To obtain the IAS, the direct approach is to measure the IAS via an encoder to
obtain the so-called tachometer signal, to place an encoder usually requires a modification of the machine. In
cases where it is not possible, the IAS could be extracted directly from the vibration signal. To extract the IAS
from a vibration signal is a hard task due to to the low Signal to Noise Ratio (SNR); consequently, a short-
time approach methodology robust to noise for IAS estiamtion termed, Short Time Non-Linear Least Squares
(STNLS) estimation is proposed. However, even with the IAS to identify the failure requires an additional step
that is to highlight the impulsive behaviour, several techniques in the literature makes use directly or indirectly
of the Spectral Kurtosis (SK) to highlight impulsive behaviour. The SK is designed to work under small
variations of the IAS, even when the variation on the IAS could be compensated through the transformation to
the angular domain; there are components angle-variant like the transfer function, that could mask the impulsive
components. Thus, a short-angle method based on the SK named Short Time/Angle Spectral Kurtosis (STSK)
is introduced. The STSK method is compared with the traditional approach outperforming in both numerical
an a challenging case study of an aircraft engine. Similarly, the STNLS is tested on a numerical database for
robustness to noise and in the real signal showing a Mean Square Error bellow 5×10−3.

1 Introduction

The Instantaneous Angular Speed (IAS) alongside the acceleration data is one of the most important pa-
rameters to measure in condition monitoring. In our case study, to identify a rolling element bearing (REB)
failure under variable speed is mandatory to deal with highly non-stationary conditions, mainly caused by the
variation of the speed, that modifies the underlying cyclo-stationary process. Due to for REB failures the failure
frequency is a function of the angular speed, it is impossible to identify a failure without this parameter [1];
consequently, the IAS is one of the most important parameters to measure. However, the speed measurement
is sensitive to disturbances like loss of samples or artifacts[2]. Alternatively, the IAS can be extracted directly
from the vibration signal, where this is the most challenging situation. Due to the multi-component nature of
the signal, where different families of harmonics may coexist, alongside with the interaction between the orders
and the structural resonances of the machine, and the low Signal to Noise Ratio (SNR) where noise comprises
any component in the signal which is not of direct interest for the analysis [3]. The importance of the IAS
measurement/extraction is of the continuous interest in the literature for REB fault detection under variable
IAS; the subject was recently addressed in [4] where is concluded that the uniform angular re-sampling using
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the IAS profile is the most common pre-process to identify A REB failure under variable speed. As it is ex-
pected to deal with low SNRs, the proposed approach must be robust. For such a reason, it is proposed the
use of a Short-Time Non-Linear Least Squares (STNLS) method to estimate the IAS, assuming that a signal is
stationary in a short-time segment.

A mandatory pre-process when dealing with vibration signals under variable speed is to transform the signal
into the angular domain. The signal is transform throughout the uniform angular re-sampling a technique that
transform a signal vibration signal in order to have the same amount of samples per rotation [5]. Nevertheless,
as stated in [3] a vibration signal is affected by noise, where the noise is understood as any component in the
signal which is not of direct interest for the analysis. Such noise is not entirely removed by any method even by
the Spectral Kurtosis (SK). The SK is a low computational and effective tool to highlight impulsive behaviour
in a seemly constant speed scenario, like in the case of a cyclo-stationary process [6]. Besides the SK, the
traditional approach is to apply the envelope analysis to an angular re-sampled vibration signal [1]; however, the
traditional approach is effective only in the case of small fluctuations[7]. Therefore, there is a need to develop
more robust, automatic algorithms, suitable for different operating conditions, which leads to the relaxation of
the constraint of the constant speed [8]. Recently, [9] proposed an extension of the cyclic spectral correlation
for a time-varying speed scenario. However, it is assumed that time-dependent components are independent of
the operating speed, which may be acceptable for modest speed variations; thus, its compensation constitutes
an emerging field of investigation.

For such a reason, to highlight a REB failure under variable speed under highly non-stationary conditions. It
is proposed in the present work a parametric methodology named STNLS for IAS estimation short-time based,
and after the angular re-sampling by means of the IAS. It is proposed a REB highlight method that makes use of
a Short-Time/Angle frequency 2D filter based on the Spectral Kurtosis (STSK), given that a signal it is expected
to be stationary regardless the domain (time or angle) if a window small enough is considered. The robustness
of the STNLS method is tested in a simulated signal contaminated with different levels of two different types
of noise (pink and white). Finally, the STNLS and STSK are successfully applied in a case study of an aircraft
engine publicly available in[4].

2 Theoretical background

This section intrudes the theory about the IAS estimation and the REB failure detection. First, a multi-
harmonic model is introduced, and grounded in that model it is proposed the STNLS IAS estimation procedure.
Likewise, a model for a REB failure as a superposition of impulses under constant IAS is introduced to nu-
merically prove the proposed STSK filter to highlight a cyclo-stationary process. To do so, the influence of the
time-varying IAS on the signal with respect to the traditional model, can be seen as a change of variable, and
its compensation is the traditional Computed Order Tracking (COT), with that model in mind it is introduced a
Short-Time/Angle Spectral Kurtosis (STSK) filter.

2.1 IAS estimation

The IAS of a given shaft is defined as the fundamental frequency of a multi-harmonic sum measured in a
time interval T = [t1, t2] ⊂ R+ with a duration T = t2− t1. Let us define { fi,k(t)}I,K

i,k=1 such that fi,k(t) ∈ R+ is
the set of instantaneous frequencies of interest1, where {i,k} denotes the i-th fundamental frequency of the k-th
reference shaft. In general a vibration signal x(t) ∈ C for the IAS extraction task is modelled as:

x(t) =
I,K

∑
i,k=1

ai,k(t)e jφi,k(t)+η(t) (1)

where ai,k(t) ∈ C is the time-varying amplitude for the i-th harmonic and the k-th harmonic family, the Instan-
taneous Angular Displacement2 φi,k(t) ∈ R+ is defined as:

1the Instantaneous Angular Speed is an Instantaneous Frequency fi,k(t) for which the index i = 1, and it is in rad.
2the angular displacement is related to the physical phenomenon of interest but in Signal Processing in general it is the phase of the

signal.
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φi,k(t) =
∫

t∈T
fi,k(t)dt (2)

fi,k(t) = i f1,k(t) (3)

and η(t) ∼N (µ, σ2) is stationary Additive White Gaussian Noise (AWGN) with µ = 0. The reader should
notice that in practice the noise η(t) comprises any component that is not of interest, but as the AWGN is
the worst and most common noise that can be found on a signal, the noise in the Eq. (1) is modelled as such.
Consequently, the stochastic signal x(t) has two parts: the sum that is the deterministic part, and the stochastic
part modelled as AWGN. Adding as a restriction that the signal has a dominant multi-harmonic family, the
vibration signal is modelled as a signal from a machine with only one shaft, consequently, the Eq. (1) is
rewritten as:

x̂(t) =
I

∑
i=1

ai(t)e jφi(t)+η(t) (4)

where φi(t) = iφ1,1(t) and ai(t) = ai,1(t). Note that in general x̂(t) 6= x(t), using x̂(t) it can be estimated f̂1(t)
with a Non-linear Least Squares estimation procedure. As in theory x(t) is a quasi-stationary signal of real
domain and complex range3, it is assumed that in a short-time window the stochastic signal is stationary, for
such a reason a Short-Time Non-Linear Least Squares (STNLS) estimation procedure is studied in the present
work.

2.1.1 Short-time Non-Linear Least Squares IAS estimation

As the signal x(t) is said to be quasi-stationary on a short-time interval. Thus, the proposed STNLS proce-
dure is the traditional Non-Linear Least Squares estimation, but, applied to all the obtained short-time segments
through a sliding window 4. As x(t) is quasi-stationary if the interval in which t ∈ [tc− tT/2, tc + tT/2] ⊂ R+

is small enough, for convenience let us define a short-time signal in discrete time notation. A signal in dis-
crete time is defined as x[n] = x(n∆t) for a given sampling time ∆t ∈ R+ and a time index n ∈ N. Therefore,
the n-th short-time segment is x[n] = [x[n],x[n+ 1], · · · ,x[n+L− 1]]T , where L is the length of the segment,
i.e, x[n] ∈ RL×1. Please note that in this case a rectangular window function is used as recommended in [10].
Eq. (4) can be rewritten using a matrix notation, as follows:

x[n] = Z(φ1[n])a[n]+η [n] (5)

Z[n] = [e jφ1[n],e jφ1[n+1], ...,e jφ1[n+L−1]]T (6)

e jφ1[n] = [e j1φ1[n],e j2φ1[n], ...,e jIφ1[n]] (7)

a[n] = [a1,a2, · · · ,aI]
T (8)

a[n] = [A1e jψ1 ,A2e jψ2 , · · · ,AIe jψI ]T (9)

where Z(φ1[n]) ∈ CL×I or shorted Z[n] is a Vandermonde matrix that has the non-linear exponential complex
base, the amplitudes are a[n]∈CI×1, being {Ai}I

i=1 the set of real value magnitudes, {ψi}I
i=1 the set of real value

initial phases, and η [n] ∈ CL×1 is stationary AWGN. The STNLS method alongside the model described on
Eqs. (5) to (9) are used to estimate the IAS, please note that as stated in [11], under the assumption of AWGN,
the NLS method is equivalent to the maximum likelihood method. Consequently, the NLS is a maximum
likelihood estimator for the considered model for the vibration signal. The estimation of the IAS is as follows:

φ̂1[n] = argmin
{φ1k[n]}K

k=1

‖x[n]−Z(φ1k[n])a[n]‖2 (10)

3the signal is complex in range for convenience to make use of the analytic signal in practice
4the simplest window function will be used on this work, i.e, the rectangular function Π

(
t− tc

tT

)
, a function centred at tc with

duration tT , and a height of 1.

3



Eq. (10) has as argument φ1k[n], where k here is the index of the set for the optimization problem not the
k-th harmonic family. As baseline it will be assumed the IAS in a short-time segment to be constant, i.e.
φ1[n] = β2[n], as in [11]. But this estimation has a main limitation, the compromise between the length of
the segment L, the sampling period ∆t, and the IAS bounded interval f1(t) ∈ [ f1, f2]. Attempting to relax the
aforementioned constraints and to deal with a low SNR, it is proposed a linear model for φ1[n] = ∑n∈N f1[n]∆t,
given the segment x[n]:

φ1[n] = β1n2/2+β2n (11)

= β1[n]+β2[n] (12)

where β1 is the quadratic term and β2 an initial phase for the given segment, as a consequence the Eq. (10) is
rewritten as:

φ̂1[n] = argmin
{β1,k1 [n],β2,k2 [n]}

K1,K2
k1,k2=1

‖x[n]−Z(β1[n],β2[n])a[n]‖2 (13)

In order to simplify the notation the dependence on the IAS and the n-th time segment are removed from
the matrix Z, for the two cases two matrices are introduced, for the constant case Z1[n] = Z(0,β2[n]), and the
linear approximation case Z2[n] = Z(β1[n],β2[n]). To solve the optimization problem in the Eqs. (10) and (13)
it is necessary to remove the dependence of the amplitudes a[n], to do so, a projection is done through its least
squares estimation:

âi[n] = (Zi[n]HZi[n])−1Zi[n]Hx[n]|i = 1,2 (14)

after removing the amplitude dependence algorithmic strategies are introduced to solve the optimization
problem in Eqs. (10) and (13), it has to be noted that as it is a Non-Linear problem the immediate solution it is
an exhaustive search building the set of possible solutions {β1,k1 [n],β2,k2 [n]}K1,K2

k1,k2=1 and to choose the argmin .
The two models for φ1[n] and some further constrains to have faster convergence will be examined in the
Section 3.

2.2 REB highlight: a short-time/angle SK filtering approach

Before introducing the proposed filtering scheme, let us model a REB fault. A REB Fault at constant IAS
can be modelled as a superposition of periodic impulses, where T is the period of the fault frequency, i.e., the
average time between impacts, the model is proposed in [12] as follows:

x(t) =
I

∑
i=1

Ais(t− iT − τi)+η(t) (15)

where {Ai}I
i=1 is the set of real value amplitudes, {η(t)}t∈R is AWGN as in the previous model (see Eq. (1)),

the difference lies in the function s(t) that models an impact and {τi}I
i=1 is a random process to introduce

small variations in the period T, in the case of time-varying IAS the period is no longer constant is time-
varying consequently, a time-dependent function T̄ (φ1(t)) = φ1(t)− iT −τi should be introduced to explain the
influence of the IAS in the REB failure vibration signal. Consequently, the variation in the IAS can be seen as
a Parametrization of x(t). Consequently, a REB time-varying failure signal can be written as:

y(t) =
I

∑
i=1

Ais[T̄ (φ1(t))]+η(t) (16)

where the function T̄ (φ1(t)) controls the time-varying fault period making the signal cyclo-nonstationary. In
contrast, a typical cyclo-stationary signal is the model in Eq. (15). Therefore, it is necessary to transform the
signal y(t) to be as close as possible to x(t), i.e, a vibration signal at constant speed. In practice the operation to
arrive from y(t) to x(t) is performed through uniform angular re-sampling named also computed order tracking
(COT) a technique described in [5]. Traditionally, in the literature of COT it is assumed to have y(t), a signal
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with a time-varying IAS, the signal in angular domain is y(Θ) which is similar to x(t), i.e, a version of y(t)
where the IAS is constant, more precisely is equal to 1. Due to a vibration signal with an IAS of 1Hz it is
equivalent to have the vibration signal in rotations, i.e, in angular domain.

An important identity of the angular domain is that in the case of constant speed it is trivial to see that if
the speed is the unity, i.e, φ1(t) = t then y(t) = x(t), so considering any constant speed scenario in practice the
angular re-sampling is not necessary, even more, the influence of the speed is nothing more than a scale in the
time and/or frequency axis, considering a simple example be y(γ) a signal in angular domain for φ1(t) = ct
the angular domain variable is γ = ct, the operation is inversely proportional (the orders Γ = 1

c f ) in frequency
domain. After the COT the time axis is termed angular domain, and its frequency domain order domain.

In general the model is only valid after filtering the impulsive behaviour of the signal due to a REB failure
under variable IAS is present the vibration signal in practice is a superposition of the two used models Eqs. (4)
and (16), for such a reason if a REB failure scenario is considered is mandatory to consider a filtering step to
highlight the failure. The most common filter is based on the SK, consequently, a brief description of the SK
will be given in the next subsection.

2.2.1 Short Time/Angle SK

To deal with a signal with a time-varying IAS the angular domain is a mandatory step, consequently, the
most general approach is to first transform the signal to the angular domain, for such a reason, let us assume
that the signal x[n] is in the angular domain regardless if the speed is constant or time-varying. Let us consider
a L length segment x[n], being this the n-th segments of a signal x[n] with more than L point, this notation of an
n-th segment is mandatory to make the estimation of the SK. Usually the consideration of segments is given per
se, due to it is necessary to compute the estimation of the spectral order monments for the SK, but in the present
work the distinction is made due to it is assumed that the angle-varying structural response will produce an
Angle-varying SK. Consequently, the SK will be computed per n-th segment, consequently an estimator based
on the Short Time Fourier Transform (STFT) of the n-th segment for the SK (a detailed definition can be found
on [6]), given a window function w(n), and a time lag m is introduced. Let us define the STFT of x[n] as:

STFTx[m, fn] :=
L

∑
n=0

x[n]w[n−m]e− j2π fn (17)

Based on this definition, the SK can be estimated through the second and fourth order empirical spectral
moment of STFTx[m, fn] defined as:

Ŝ2x[ fn] :=
〈
|STFTx[m, fn]|2

〉
m (18)

Ŝ4x[ fn] :=
〈
|STFTx[m, fn]|4

〉
m (19)

being 〈·〉m the average operator through the index m. The SK is finally defined utilizing its second and fourth
order empirical moment as:

SK[ fn] =
Ŝ4x[ fn]

Ŝ2
2x[ fn]

−2 (20)

Please note that SK[ fn] is the SK for the n-th segment of length L, for such a reason let us note the SK
of the n-th segment as SKn[ fm]. As the model in Eq. (16) is a superposition of impulses it is necessary to
use second-order moments to isolate the fault frequency, but those second-order moments are conditioned to
a constant speed and stationary vibration signals, for such a reason to work with the signal in the angular
domain is mandatory. The most common descriptor when dealing with REB failures is the spectral correlation,
a bi-spectrum which average in frequency is equal to the envelope spectrum, a brief description is made in the
following subsection for a more detailed explanation view [12].

2.2.2 Envelope analysis & spectral correlation

The relationship between the traditional envelope spectrum and the spectral correlation can be summa-
rized as the equivalence between the spectrum of cyclic frequencies Mx(α), i.e., the spectrum obtained in-
tegrating the spectral correlation function Sz(α, f ) through the frequency axis f , and the envelope spectrum
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Ft→ f {E{|z(t)|2}}, where z(t) is the analytic signal5 of x(t) being |z(t)|2 the squared envelope of x(t). As
the spectral correlation is the double Fourier transform of the auto-correlation function, let us define the auto-
correlation function for a zero mean signal z(t) as:

Rz(t,τ) := E{z(t + τ/2)z∗(t− τ/2)} (21)

then the spectral correlation is defined as:

Sz(α, f ) = F
τ→ f

{
F

t→α
{Rz(t,τ)}

}
(22)

The procedure for the proof is straightforward, the main result used is that the signal is dominated by its stochas-
tic part then Rz(t,0) = E{|z(t)|2}. With the definition given in Eq. (22) and its integral across the frequency
axis, the relationship between the envelope spectrum and the spectral correlation function is:

Mz(α) =
∫

R
Sz(α, f )d f (23)

= F
t→α
{Rz(t,0)} (24)

= F
t→α
{E{|z(t)|2}} (25)

the previous Eq. (24) is obtained making use of the Fubini’s theorem and the definition of spectral cor-
relation (view Eq. (22)). The Eq. (25) comprises the desired relationship, thus, the integral of the spectral
correlation through the frequency axis is equal to the traditional envelope spectrum. Nevertheless, the envelope
spectrum can be hard to read due to the noise that masks the impulsive behaviour, such behaviour could be
highlighted making use of the SK. Yet the SK is designed for stationary processes and a high time-varying IAS
will produce a non-stationary signal even in angular domain, consequently, a short-time/angle filtered envelope
spectrum estimation procedure is proposed in the next subsection.

2.2.3 Short Time/Angle Filtered Envelope Spectrum: welch’s based estimation

Before introducing the estimation of the squared envelope spectrum using the proposed Short Time/Angle
SK (STSK), it is mandatory to highlight the impulsive behaviour to be as close as possible to the model given
by Eq. (15), so, for a n-th segment of length L ∈ N of a real signal in angle domain noted as x[n] = [x[n],x[n+
1], · · · ,x[n+L−1]]T , let us consider a filtered version using the SK as:

xSK[n] = DFT-1
fm→n

{Xn[ fm]SKn[ fm]} (26)

where Xn[ fm] := DFTn→ fm {x[n]} being DFTn→ fm {·} the Discrete Fourier transform of a given signal, and
DFT-1

fm→n {·} the inverse Fourier transform, it should be pointed out that the Eq. (26) in practice is a filter
that makes use of the convolution theorem due to a convolution in time is a product in frequency. The result
is a filtered n-th segment where the impulsive behaviour is highlighted, afterwards the envelope spectrum is
estimated grounded on the Welch’s method of periodograms as follows:

Ŝ|zSK|2 [ fm] =
1

NU

N

∑
n=1

∣∣∣∣DFT
n→ fm
{|zSK[n]|2}

∣∣∣∣
2

(27)

where zSK[n] is the analytical signal, a signal whose modulus is approximately the envelope6 of x[n] for a
detailed explanation on how good the approximation is given in [13], and U = ∑L

n=1 |w[n]|2 is the energy of the
window. The result is a short-angle filtered approximation of the envelope spectrum noted Ŝ|zSK|2 [ fm]. Which
it is expected to produce an improvement of the SNR, given that the proposal has an optimal angle-variant
SK filter (angle-frequency 2D), using the Welch’s method of periodograms in short segments that makes the
computation of the filtered envelope spectrum faster with respect to the traditional approaches in the state of
the art.

5an analytic signal is a signal without negative frequencies where z(t) := x(t)+ jH {x(t)} being H {·} the Hilbert transform.
6the instantaneous envelope and phase are well defined only for mono-component signal, then is advisable to pre-filter zk(t) in order

to have a mono-component signal.
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3 Experimental set-up

Two experiments are proposed, one in a numerical dataset and a case study of an aircraft engine, for both
the numerical and the case study, the IAS is estimated employing the proposed STNLS and a fault in REB is
highlighted by the 2D short-angle filter STSK. The robustness of the IAS STNLS estimator will be studied
under the influence of two types of Noise, Pink and Additive White Gaussian Noise (AWGN). The robustness
test is made only in a numerical case, due to, only in a numerical signal, the SNR can be controlled. For the
proposed STSK filter, the REB highlighting is compared against two methodologies, a naive approach and the
traditional state of the art approach. Regarding the case study, the IAS estimation is compared against the
reference signal measured from the tachometer signal, and for the failure in a REB, a visual comparison is
made as well as for the numerical case.

3.1 Numerical test: IAS estimation & REB highlight

Usually the models in the state of the art for time-varying IAS does not take into account the effect of
the transfer function, consequently, to have a more realistic and challenging signal it is introduced the transfer
function h[n] in the model presented in the Eq. (4) as follows:

x̂[n] = h[n]~
I

∑
i=1

ai[n]e jφi[n]+η [n] (28)

where ~(·, ·) represents the convolution operator between two functions, an example of the numerical signal
with the influence of the transfer function as stated in the Eq. (28) is shown in the Fig. 1, to be even more
challenging the signal presents a random discontinuity in all the orders comprised by a piecewise formulation,
i.e., the amplitudes ai[n] = 0 for all i ∈ I and for all n in an interval [n1,n2] ⊂ [0,L], where n1 ≈ 2.5fs and
n2 = n1 +0.1fs. In this case the interval is of 0.1sec, such discontinuity is as misleading for any IAS tracking
algorithm as an impulse, like the one produced by a REB failure.

Figure 1: Numerical signal with AWGN of 3dB, a) in time, b) transfer function H( f ), c) spectrogram showing
a random discontinuity of 0.1 sec reflected on all orders.

The considered sampling frequency fs is of 212 samples per second, and the signal is contaminated with
AWGN to accomplish a SNR of 3dB, also in order to be as realistic as possible the IAS φr[n] is from the real
case study described in Section 3.2, only that the time indexes are compressed by a factor of 4, i.e., the used
IAS φ1[n] = φr[4n]. The compression is done for computational reasons.
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3.1.1 IAS estimation: robustness test

In order to prove the robustness of the proposed IAS estimation methodology the numerical signal in the
Eq. (28) will be contaminated with different levels of AWGN and Pink noise7 with a SNR in the interval
[−10,10]dB, and as baseline it is considered the IAS estimated with a null quadratic term, i.e., β1[n] = 0, as
measure of estimation error it is used the Mean-Squared-Error (MSE), which is defined as:

MSE{ f1[n], f̂1[n]}=
1
N

N

∑
n=1
| f1[n]− f̂1[n]|2 (29)

where f̂1[n]∈RN is the estimated IAS, and f1[n] the real IAS profile for the entire signal of length N, being being
N > L, and L has as length the amount of samples equivalent to 0.2sec. Recalling the minimisation problem
in the Eq. (13) a minimisation algorithm should be used but as there is no an explicit Jacobian, the Nelder-
Mead algorithm is selected. The parameters of the algorithm are: an initialization value ({β1,nd [0],β2,nd [0]}),
the optimization function that will produce an scalar value using the logarithmic version of the Eq. (13) for a
faster convergence. The amount of orders I, conditioned by the sampling frequency (all the possible orders are
considered), and a tolerance for the convergence of 10−6. The initialisation is made through the minimum of
the cost function using a grid for the first segment n = 0; nevertheless, the problem is non-convex as shown in
the Fig. 2, for such a reason the initialisation is of extreme importance due to the functional to optimize could
fall into a suboptimal solution.
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Figure 2: Cost function in the Eq. (13) for a segment of the the exemplary signal in Fig. 1 at 35sec.

As the optimisation is made per segment, it is assumed that the IAS does not variates significantly from
the n-th segment with respect to the n+ 1-th segment, so after the initialization using the cost function, the
parameters are initialized as βi,nd [n+1] = β̂i[n] for i = 1,2 for n > 0.

The resulting estimated parameters β̂1[n], and β̂2[n] for the piecewise estimation (for each n-th segment)
for the robustness test ([−10,10]dB of SNR) are shown in the Figs. 3 and 4 for the AWGN and Pink Noise
case respectively, alongside with the reconstruction of the IAS f̂1[n] by means of the Eqs. (11) and (12) for the
entire signal. The reconstruction is made taking into account that it is used an overlap of half of the points L/2.
It should be noticed that when the quadratic term β1[n] is null the linear term β2[n] is in fact the IAS, being
the IAS the derivative of the phase and the derivative of β2n = β2 per each n-the segment. where the n in β2n
could take values from [n+1,n+L−1]. As can be seen in Figs. 3 and 4 all the estimations are superposed for
different levels of noise where each colour represents a SNR level.

In the Fig. 3 is shown that the AWGN is the worst kind of noise to be expected, due to its presence in the
whole spectrogram, meanwhile the estimation in the Fig. 4 contaminated with Pink Noise it is almost perfect
due to the noise is decreasing with respect to the frequency, making the harmonic model extremely robust

7where the Pink Noise is defined in terms of its Power Spectral Density (PSD) as ηPN[ fm]≈ 1/ fm.
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Figure 3: AWGN test, first-column:β1[n], β2[n], and IAS estimated no linear approximation, second-column:
β1[n], β2[n] and IAS estimation after linear approximation, for all the considered signal polluted with noise in
to achieve a for SNR in [−10,10]dB.
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Figure 4: Pink noise test, first-column:β1[n], β2[n], and IAS estimated no linear approximation, second-column:
β1[n], β2[n] and IAS estimation after linear approximation, for all the considered signal polluted with noise in
to achieve a for SNR in [−10,10]dB. Figure to compare with the Fig. 3
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to Pink Noise. The Fig. 3 shows that for the AWGN case are two critical segments the one that comprises
the segment with the discontinuity of 0.1sec around 30sec and the segment where the speed has the highest
variation at 45sec.
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Figure 5: SNR vs MSE tests for an SNR between [−10,10]dB, in the left the AWN scenario, and in the right
the Pink-noise scenario, for the baseline and linear IF reconstruction of the IAS f̂1[n] using Eqs. (11) and (12)

The Fig. 5 shows the MSE for the baseline, and the linear approximation for the two types of considered
noise, as expected a decreasing behaviour of the MSE by respect the SNR is shown, for both the baseline and
the linear approximation. Nevertheless, the linear approximation of the IAS with low SNR, i.e, less than 6dB
for AWGN and −3dB for Pink Noise, is worst with respect to the baseline (quadratic term null). Due to the
introduction of the quadratic term (the slope of the IAS) amplifies the errors at low SNR, in contrast with a
good SNR improves the estimation. It should be pointed out that there are misleading errors (peaks in Figs. 3
and 4) those errors could be erased with an additional filter, like a median filter, yet it is not part of the scope of
the work and taking into account the challenging theoretical signal, the results are encouraging, experimentally
proving the robustness of the parametric methods.

3.1.2 REB failure detection

As it is not defined an standard scalar bearing fault indicator, the fault detection is usually made through
visual examination for such a reason it will not be considered an SNR test in this subsection. The numerical
signal in the Fig. 6 is modelled using the Eq. (16). The signal simulates a Ball Pass Frequency Inner-race
(BPFI) fault with a fault frequency (with period T ) of 5.875Hz, with a linear IAS profile creasing from 5Hz to
60Hz and contaminated with AWGN to achieve a SNR of 3dB.

The signal in time, the IAS profile, and its spectrum is shown in Fig. 6, as it is expected from the visual
examination of the spectrum of the considered bearing fault, a second-order descriptor like the envelope spec-
trum should be used. Furthermore, as the speed variates the angular domain transform is a mandatory step. The
resulting filtered envelope spectrum through the proposed STSK filtering approach are shown in Fig. 7, where
the only parameters for the STSK are the size of the windows: for the computation of the standard SK is of
4096 samples and a larger window for the Short-angle SK of 65536 samples given a sampling frequency of 512
samples per revolution.

The Fig. 7 shows a comparison between two baseline methodologies and the STSK proposed approach,
initially it is assumed a naive approach that does not take into account that the transfer function h(t) (LTI)
becomes angle-variant (Non-LTI), so the vibration signal x[n] is re-sampled to the angular domain and after
the state of the art SK filtering and posterior envelope spectrum estimation. With this naive approach the first
fault harmonic x1 is almost destroyed. The second approach is to isolate with the SK the impulsive band, i.e,
the frequency band with highest SK, assuming that the signal filtered by the SK is close to the model in the
Eq. (16). This approach gives the expected decreasing spectrum, but surprisingly the highest energy is located
in the second harmonic of the fault frequency x2. Finally, the proposed STSK approach is summarized in the
Eq. (27) which is short-time/angle based, as it is short-angle based the transfer function will remain LTI, and
the failure is better highlighted due to the SK filter is optimal segment based, i.e, each segment will follow the
model Eq. (16), as result the first harmonic of the failure x1 is dominant and there is a decreasing distribution
of the energy for the rest of the harmonics, making the failure highly diagnosable visually examining the filter
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Figure 6: Top-row: left) numerical signal in time with a BPFI at 5.875Hz, right) IAS profile, bottom-row:
spectrum of the simulated signal.
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envelope spectrum.

3.2 Case study: an aircraft engine

Figure 8: General overview of the engine and the accessory gearbox. Shafts (L1-L5) are identified by labels in
amber colour (image taken from [4]).

The data was acquired during a ground test on a civil aircraft engine. The Fig. 8 gives a general overview
of the engine with the damaged bearings and the sensors locations. The engine has two main shafts and an
accessory gearbox with pieces of equipment such as pumps, filters, alternators, and starter. The accessory
gearbox is linked to the high-pressure shaft HP by a radial drive shaft and a horizontal drive shaft. The records
have a sampling frequency of 50kHz, it should be noted that the fault it is only in the record ACC2, and it is
taken close to L5, for such a reason it is expected to view mainly the fault in outer race of that line, also, as
there are several lines, L5 is chosen as reference for the fault frequencies, the table with the fault frequencies
referenced to L5 are shown in Table 1. For a more detailed explanation (kinematics) of the dataset and the
recorded signals please refer to [4].

L1(L5) L4(L5) L5(L5)
Speed 1,34 0,984 1
Cage 0,55 0,40 0,43

Rolling element 3,46 2,44 3,56
Inner race 7,95 5,87 10,24
Outer race 5,45 3,97 7,76

Table 1: Table of fault frequencies of bearings for the supporting shafts L1, L4, L5, taking as reference the
speed of L5.

3.2.1 IAS estimation

The short-time estimation of the IAS has only as critical parameter the window size L and the overlap is
L/2, the window size is two times the period of the minimum expected frequency of 170Hz, there are have two
records to study ACC1 normal condition and ACC2 with a fault. The spectrograms of the records are shown in
Fig. 9, in the left column it is shown the signals with the entire frequency spectrum from 0 to 25kHz, and in the
right the signals with a down-sampling of 16 times. For the record ACC2, it is not expected to extract accurately
the IAS due to, the information from the down-sampled record is almost destroyed by the transfer function of
the structure, i.e., a redistribution of the energy to a high-frequency band. A typical phenomenon when dealing
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with bearing failures. For such a reason it makes more sense to extract the highest energy harmonic, that is the
one related with the amount of teeth for gear located at L5, i.e., the harmonic 62 of the IAS.
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Figure 9: Top-row: spectrograms ACC1, left, full frequency range [0,25]kHz, right, down-sampled to
[0,1.56]kHz, bottom-row: spectrograms for ACC2 same frequency ranges than in top figures.

As it is expected in the Fig. 10 is shown that the STNLS method is not able to extract the IAS from the
ACC2, in contrast, the IAS extracted from the ACC1 is a perfect match visually comparing the IAS obtained
from the tachometer signal, and the one obtained employing the proposed methodology. In terms of MSE the
IAS obtained through the proposed piece-wise linear approximation is of 4.93× 10−3 and 14.56× 10−3 for
the proposed methodology with and without quadratic term β1 respectively. Similarly, without down-sampling
the corresponding MSEs are: 2.15× 10−3 and 2.94× 10−3, the improvement in the MSE it is expected, due
to there are more points to compute the cost function. The results are consistent concerning the numerical test
where it is verified that the influence of the quadratic term could introduce errors when dealing with low SNR.

As in the previous experiment Fig. 10 the IAS was not successfully extracted for the ACC2 record, conse-
quently, the most natural approach is to extract the highest energy harmonic ×62 after the visual examination
of the Fig. 9, as a result it is shown in the Fig. 11 that the proposed methodology could extract the IAS even
from a challenging record. Yet the results are far from the ones obtained for the record ACC1. Being the MSE
for the record ACC2 of 3.21 and 3.19 for the estimation without and with the inclusion of the quadratic term
β1 respectively.

The critical point is after 50sec where the estimation partially lost the optimal point, and followed a sub-
optimal as previously analysed in the numerical cost function in Fig. 2 the optimization problem is not convex
and prone to fall into a sub-optimal. That point is critical disregard the inclusion of the quadratic term, for such
a reason the IAS extraction on a record under a REB failure at high variable speed such as ACC2 continues to
be a subject of research.

3.2.2 REB failure detection

In this subsection is done the angular re-sampling with the signal from the tachometer to not to bias the
experiment, the signal was recorded located on HP tacho (L4), and the ACC2 record the only record with
the bearing failure. In order to filter the vibration signal to obtain a signal as close as possible to the model
Eq. (16), the experiment is the same as the previously done in the Section 3.1.2. As a result there are three
scenarios to highlight the REB failure: first the naive approach, then, angular re-sampling, then SK filtering,

13



0 25 50 75 100 125 150 175 200
0.05

0.00

0.05

Ch
irp

 ra
te

1[n]

0 25 50 75 100 125 150 175 200
Time [sec]

180

190

200

210

220

230

240

250

Fr
eq

ue
nc

y 
[H

z]

2[n]

0 25 50 75 100 125 150 175 200
0.05

0.00

0.05

Ch
irp

 ra
te

1[n]

0 25 50 75 100 125 150 175 200
Time [sec]

180

200

220

240

260

Fr
eq

ue
nc

y 
[H

z]

2[n]

0 25 50 75 100 125 150 175 200
0.0025
0.0000
0.0025

Ch
irp

 ra
te

1[n]

0 25 50 75 100 125 150 175 200
Time [sec]

180

190

200

210

220

230

240

250

Fr
eq

ue
nc

y 
[H

z]

2[n]

0 25 50 75 100 125 150 175 200

0.0

0.5

Ch
irp

 ra
te

1[n]

0 25 50 75 100 125 150 175 200
Time [sec]

180

200

220

240

260

Fr
eq

ue
nc

y 
[H

z]

2[n]

0 25 50 75 100 125 150 175 200
Time [sec]

170

180

190

200

210

220

230

240

250

260

Fr
eq

ue
nc

y 
[H

z]

Piecewise approx f0[n]
IAS from tachometer

0 25 50 75 100 125 150 175 200
Time [sec]

170

180

190

200

210

220

230

240

250

260

Fr
eq

ue
nc

y 
[H

z]

Piecewise approx f0[n]
IAS from tachometer

Figure 10: Left-column ACC1, right-column ACC2, rows: i) phase estimation without linear approximation,
ii) phase with linear approximation {βi[n]}2

i=1, iii) IAS estimation after linear approximation.
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Figure 11: ACC2: IAS estimation approximation taking as fundamental frequency f31[n], top-row: without
linear approximation, bottom-row: with linear approximation.

then envelope spectrum, the state of the art approach) SK filtering, then angular re-sampling, the envelope
spectrum (valid only for small variations on the IAS), and finally the proposed approach short-angle based the
STSK, angular re-sampling the short-angle SK based filter and the envelope spectrum obtained by means of the
Welch’s method of periodograms (filtered periodograms).

The results of the three considered scenarios are shown in the Fig. 12, where it is made a zoom close to
the fault frequency 7.68evp (events per revolution). For the naive approach there is no highlight of the energy
in the fault frequencies, for the traditional state of the art method the fault is highlighted, yet, the spectrum is
noisy due to the SK is conceived for stationary signals a condition that is not fulfilled, given the significant
variation of the IAS. Finally with the proposed STSK method the failure is highlighted and now appears some
side-bands corresponding to half of the cage failure frequency of the other bearing failure in L1 a failure that
only is made present with the proposed approach. The method is not sensible to the parameters, due to the only
parameters necessaries are the window for the short angle SK (a larger window than the one of the SK itself),
and a window for the SK computation itself (SK computation is based on the STFT). The first window is the
next power of 2 of the period of the smallest expected frequency (131072 samples), and the window for the
computation of the SK is 4096 samples, given a sapling frequency of 256 samples per revolution.

4 Conclusion

In the present work, a REB failure identification methodology under variable IAS is proposed, two tasks
are addressed, the IAS failure estimation and the impulsive behaviour filtering for failure identification. Due to
the fact that IAS introduces non-stationarities assuming that a signal in a short time window is highly stationary
(cyclo-stationary), short-time/angle approaches are proposed for the two tasks at hand. For the proposed STNLS
IAS estimation technique a robustness test is done building a database of contaminated signals with AWGN and
Pink Noise and measuring the MSE between the theoretical IAS and its estimation for different levels of Noise.
Also, to corroborate the methodology in a real scenario, the IAS is successfully retrieved from two records
from an aircraft engine under a failure in REB. The second contribution is a short-angle SK filtering approach
(STSK) to highlight the impulsive behaviour that has the information related to the failure. The proposed
STSK is tested in a numerical signal and the aircraft engine, successfully highlighting the fault frequencies, and
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Figure 12: Top-row: baseline one, angular domain transform, SK filtering, then envelope spectrum, Middle-
row: SK filtering, angular domain transform, then envelope spectrum, Bottom-row: proposal angular domain
transform, then, envelope spectrum convolved with a time-frequency dependent SK based filter.
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outperforming the traditional methodologies of the state of the art. As future work it will be interesting to study
another parametric approaches for IAS estimation like the particle filter and polynomial Fourier transform. The
algorithms are publicly available in https://github.com/efsierraa.
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Abstract
The encoder is the only sensor needed to perform Instantaneous angular speed (IAS) analysis, an alternative
technique used to monitor gears, bearings or other electro-mechanical elements. The encoder is subject to an
intrinsic defect called Geometric Error (GE). Although it has various origins, GE can be simplified as being
related to the variable angular size of every encoder segments forming the theoretically uniform pattern. As a
result, GE introduces a cyclic perturbation observed on the spectrum of the estimated IAS. These perturbations
exhibit a first order cyclostationary behaviour which replicates themselves in each revolution of the shaft. Since
the impacted frequency channels can also be studied to monitor the health status of the shaft line, GE should be
corrected for a better IAS estimation.
In this study, a rotation domain averaging based algorithm is developed to compensate the GE of the estimated
IAS signals. The GE signature of a given signal is estimated and is used to compensate the GE of the other
signals as well as itself. The term cross-correction is introduced to mention the correction of signals with each
other’s GE signature. The quality of the correction is analysed and is shown that it depends on several operating
conditions. In other words, signals obtained for certain operating conditions are shown to be better at correcting
GE than signals obtained for different operating conditions.
The developed algorithm is tested on a 2-MW wind turbine campaign which is instrumented with a magnetic
encoder. These observations makes it possible to qualify the properties of the best GE corrector signals and
dress an optimized correction algorithm suitable for any database. Since there were several interventions on the
wind-turbine like re-installation of the encoder, gearbox change and gear defect, it is also possible to observe the
influences of these interventions on the GE compensation. The results of this work are expected to be useful
for gearbox operators as it represents a probable solution for early fault detection especially in demanding
operating conditions.

1 Introduction

In the specific domain of varying speed rotating machine diagnosis, Instantaneous Angular Speed (IAS)
monitoring is one of the very interesting alternative to classical vibration measurement system. It has been tried
to detect chatter in milling [2], bearing defects on wind turbines [3] or on truck wheels [1]... This technology
first presents the advantage to be easy to install, since only one encoder is sensible to speed variations induced
by components installed far away from it: in [4], the encoder installed on the high speed shaft of a turbine was
shown able to monitor the low speed shaft characteristic frequencies, beyond the mechanical coupling and the
three stage gear box. Moreover, the elapse time acquisition technique present the benefit to be intrinsically made
in the angular domain, and therefore easily deal with macroscopic speed variations. However, this technique
does not benefit from the same feedback than classical vibration monitoring, and plenty of questions need to
be tackled before it can compete with it on an industrial scale. It has been shown able to detect different kinds
of bearing problems, and mechanical models have been built up to justify the small speed variations induced
by such defects [6]. The peculiar quantification error, specifically linked to the elapse time technique, along
with the inability of IAS monitoring to be protected from aliasing phenomenon has been thoroughly studied in
[7] and [8]. Geometric Error (GE) is another major limitation for IAS, since it is present on both acquisition
techniques (ADC based and Elapse Time). This error is linked to several aspects: imperfection of the encoder
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gratings, the interpolation process unproperly tuned, or even the imprecise installation of the encoder. the
common feature of all these aspects is their cyclic signature. Leclere et al proposed a technique to extract the
from the IAS signal using rotation domain averaging [8], based on rotation domain averaging and used for
steady speed signals. Bruand proposed two extra methods to adapt the GE estimation and correction to varying
speed scenario [9]. The first is a data-driven approach based on a local weighted least squares method, while
the latter is a model-based approach. The main drawback of all these approaches is linked to the fact that it
is yet impossible to distinguish the GE from actual speed variations whose frequency is synchronous with the
GE. In other words, if unbalance or gear mesh frequency happen to be coincident with the GE, they might
disappear along with GE. This is troublesome if one is aiming at monitoring the unbalance of the gear-mesh
health status. This paper comes within the scope of monitoring a defect whose frequency is synchronous with
the shaft carrying the encoder. The main idea is to correct every measurement using the GE estimated using
always the same signal, and to assume that the GE will not change from one measurement to the next. An
evolution of the synchronous content would therefore be considered as actual speed variation, and therefore be
assigned to the monitored element.

This paper aims at designing which signal(s) should be used to correct all consecutive measurement: to find
the measurement that will rule the all... or to find the operating conditions that has an influence over the GE.

In order to avoid any terminological conflict, the measurement whose GE is used to correct all the measure-
ments is called as the Corrector Signal. When one of the measurement is selected as the corrector signal, the
other measurements are named as the Signal to be Corrected. When a measurement is corrected with the GE
signature of the corrector signal, this measurement is called as the Corrected Signal. This terminology will be
used throughout this manuscript. In the subsequent chapters the details are presented.

In the first part, the paper presents the method employed to estimate, to correct, and then to designate the
what signals should be used to correct every others. The results obtained using a magnetic encoder on a long
term measurement campaign are presented in the second part.

2 Method

This section first explains how is estimated the GE of an encoder using an elapse time measurement. Then,
the correction process used on the corrected signal is presented. In the 3rd section, a quality indicator is pre-
sented to assess the quality of the processed corrected signal using the corrector signal. Finally, the maps used
to synthesise the results will be introduced to efficiently show the influence of the operating conditions on the
GE correction.

2.1 Geometric Error assessment

In the first step the GE signatures of both Corrector Signal and Corrected Signal are estimated. The method
used in this paper is based on the one proposed by Leclere et al and quickly adapted to deal with non stationary
speed [8]. Let first introduce the Rotation Domain Averaging (RDA) applied directly on the Elapse Time signal
τ[ j], j ∈ [1 : N ·R] with R the resolution of the encoder, N the number of revolution in the measurement. The
RDA result is defined on one revolution: τ[ j], j ∈ [1 : R], such as:

τ[ j] =
1
N

N

∑
k=1

τ[ j+ k ·R] (1)

Let then assume that the resulting RDA τ[ j] is only due to the GE on one hand, and to the macroscopic
speed trend on the other hand. The latter is deduced from the original measurement with any kind of Low pass
Filter (LF), whose cut-off frequency is lower than 1 per revolution. The RDA of the macroscopic trend is noted
ωLF( j), j ∈ [1 : R]. Then, the GE can be deduced from:

τ[ j] =
∆θ

ωLF [ j]
→ ∆θ [ j] = ωLF [ j] · τ[ j] (2)

In the special but ordinary case where the speed trend is steady once it is observed on the RDA (see figure
1 the left bottom plot) which means the average speed trend is steady and that every originally speed variation
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Figure 1 – GE Estimation of one of the measurements

rightfully compensates themselves, it is even possible to skip the low frequency filter and use the simplification
proposed here under:

∆θ [ j] =
τ[ j]

∑N
i=1 τ[i]

(3)

This steady speed assumption does not need the speed to be equal from one revolution to the next. However,
it assumes that once the speed is averaged on every revolution, the resulting speed (1 revolution long) is steady.
In the general case, and in this paper, the formulation proposed in Eq. 2 is preferred.

2.2 Cross Correction of the Geometric Error

The discrete integration of ∆θ obtained in the previous section gives access to the angle θ between the
launch of the counter clock and each consecutive encoder segment. These angles are not uniformly divided
(that’s the main reason of the paper!) and therefore influence the observed elapse time. From now on, these
irregularly sampled angles are noted θ2, j ∈ [1 : N ·R]. As already mentioned, these errors are expected not to
change from one revolution to the other, and from one measurement to the other.

θ1(1) θ2(1) θ1(2) θ2(2) θ1(3) θ2(3)

t1(1)

t2(1)

t1(2)

t2(2)

t1(3)

t2(3)

Angle (θ)

Time (t)

θ1(4) θ2(4)

t1(4)

t2(4)

Figure 2 – Angle versus Time
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The original elapse time measurement, obtained with irregularly sampled angles, are noted t2[ j], j ∈ [1 :
N ·R] once they are cumulated. A classical interpolation process is used to estimate the cumulated elapse time
values t1[ j], j ∈ [1 : N ·R] corresponding to the regularly sampled θ1[ j], j ∈ [1 : N ·R]. In this section as in Fig.
2, presenting the correction process on a Time-Angle scheme, the index 2 stands for GE-Noised signal when
the index 1 stands for the GE-corrected signal. the spline interpolation method has been chosen to estimate the
GE-corrected values.

In this paper, one signal is used to correct an other. The corrector signal is used to obtain the angles
θ2[i] = θ2[ j]+k ·N. θ1[i]. The signal to be corrected is cumulated in t2[i] = ∑i

k=1 τ2[k], interpolated to give t1[i]
and finally differentiated to estimate the elapse time we would get without GE: τ1i= t1[i]−t1[i−1], i∈ [2 : N ·R].
τ1i is the corrected signal.

2.3 Correction quality assessment

In order to asses the ability of one signal to accurately remove the GE from any other signal, the estimation
of the GE removal quality is needed. The GE being concentrated on integer orders, due to its first order
cyclostationnary behaviour, the energy contained by the integer orders appears as the ideal indicator.

L1 =
1
N

N/2

∑
m=1

Fθ
x (m) (4)

with Fθ
x (m) the DFT of the signal x computed for the order frequency m. This equation sums up the integer

orders of the amplitude spectrum of the finite length signal. This corresponds to the sum of the TSA amplitude
spectrum, and this is therefore not only representative of the GE, but also from every actual synchronous speed
variations.

Fortunately, the order frequency of the most energetic synchronous speed variation are known. Unbalance
and blade pass frequency is energetic up to the sixth order; gears frequencies are inducing energetic peaks
on integer multiples of 93... Therefore we propose to remove these frequencies, and others, from the quality
indicator. Equation 5 presents an example of such an indicator. More frequencies have been removed, but this
paper will not bring out of the shadows these details for the sake of simplicity.

I =
1
N

(
N/2

∑
m=1

Fθ
x (m)−

9

∑
m=1

Fθ
x (m)−

44

∑
m=1

Fθ
x (93 ·m)

)
(5)

2.4 Operating parameter analysis

This part presents the cross-comparison of several measurements obtained on one machine under various
operating conditions, in order to investigate the quality of the correction process, and to designate the best op-
erating to conditions to estimate GE. Cross-comparison is applied on a group of M measurement, where every
measurement is used to successively correct every others. Once the corrected signal is corrected with the GE
signature of the corrector signal, the GE correction efficiency is observed using the quality index presented in
the previous section. Then, every measurement are arranged according to an operating parameter. For example,
if the average power is the analysed operating parameter, the measurement are arranged in ascending order of
mean power: the first signals are those acquired while the machine is not producing any current while the lasts
were acquired at nominal power.

The result of the computation/arrangement is a matrix I[M×M] which columns designate the corrector signal
while its rows designate the corrected signal. Therefore, Ii, j is presenting the quality index of the ith measure-
ment GE corrected using the jth. Finally, Every rows are normalized with their corresponding auto-corrected
values. Diagonal terms present the quality index obtained when the measurements are auto-corrected, ie they
are corrected using their own GE estimation. Hence, the cross-correction matrices are obtained as in eq. 6.
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The results presented hereafter will plot such cross correction matrices in greyscale colormaps. In this
study, the number of measurements in each cross-comparison group is limited to M = 300 to save computation
time.

3 Experimental results

3.1 Campaign presentation

A long term study is being carried over a MM92 wind turbine. The wind turbine set-up is presented in
Figure 3 for the reader to realize the easiness of the involved instrumentation in regards with the kinematic
complexity of the turbine line shafting. The speed transmission is made of one star epicyclical gear train and
one parallel stage mounted in serial configuration to obtain a global speed ratio approximately equal to 119.
The IAS signal can be computed from the generator optical encoder, which is the high quality incremental en-
coder used by the converter to correctly synchronize the asynchronous generator; but also from a lower quality
magnetic encoder, installed in a retrofit operation on the low speed shaft directly carrying the rotor hub. It has
been decided to equip the low speed shaft since the most expensive shaft line elements are kinematically and
physically closer from it. This study will focus on this 20480 pulses per rev magnetic encoder installed beyond
the slip ring, on the low speed shaft.
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Figure 3 – Kinematic Scheme of the wind turbine set-up.

The measurement have been acquired between august 2017 and October 2018 on the same machine. Since
the machine was suffering a major gear crack on the epicyclic ring, the gear box and the magnetic encoder were
changed on the 25th of September. Nothing but the new gearbox running in was expected to be seen later on.

The acquisition card, FPGA type, is embedded in an industrial PC directly installed in the nacelle and reads
the elapse time signal with a 120MHz counter clock. The signals are 300 revolutions long, and are synchronized
with 1hz process data describing the operating conditions:

• date

• wind speed / direction,

• active/reactive/actual power,

• nacelle orientation,
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• inside/outside temperature

All these operating parameters were analysed through the process detailed in the previous part. This paper will
only present the most interesting results.

3.2 Resulting maps

This section successively presents the parameters that have been seen to play a role in the GE correction
quality, starting from the most influential.

3.2.1 Influence of the Date

The 300 measurements on the cross-comparison map shown in Fig. 4 have been selected randomly before
and after the encoder removal date. The only condition was set on the minimum gearbox speed, which must
be greater than 800rpm to avoid start/stop measurement. Those measurement have been successively cross-
corrected according to every available operating parameter. And the date criteria appeared as the the most
informative one. The diagonal of the plot presents the lowest values: 1. This reminds that the auto-corrected
values are used as references.
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Figure 4 – Cross correction map sorted by date. The bottom plot reads the date of each measurement.

Unlike the maps obtained using other parameters, this map clearly exhibits vast light and dark regions.
Lighter regions means every signal within it correct and are corrected in a better way between themselves. The
top left region is limited by the measurement 105th, which has been acquired just before encoder removal, on
25th September, 2017. If the measurements obtained before this date are corrected by measurement obtained
after: the quality of the correction is lower. This observaiton confirms that the removal of the encoder, the
orientation and the geometric position between the encoder ring and the reader head modifie the GE.

Moreover, still looking at figure 4, one may pay attention to the bottom right region, starting on the 244th

measurement. There is no clear explanation to this sudden change of behaviour. The history of this machine
was checked by its owners: it was noticed that there was only one distant reset on the machine but no encoder
removal. A distant reset is the routine action performed remotely by the supervising operators when a minor
alarm stops the machine. Such an alarm is sometimes reseted without further analysis if it does not repeat. This
coincidence is interesting, though not demonstrative.

3.2.2 Influence of the Power and Wind Speed

Let’s now investigate the next most influential parameter. 300 new measurements are selected using the
same conditions as before, plus a date criteria: measurement must be acquired between May and August (the
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bottom right region observed in the previous section). Among the different re-sorted matrices, the matrices
sorted according to their mean power and the mean wind speed were observed to be the best classifiers. The
sorted maps demonstrate the similar behavior as observed on figure 5a and figure 5b, which is fairly normal:
actual power and wind speed are linearly correlated.
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Figure 5 – (a)Cross correction map sorted by wind speed. The bottom plot reads the date and the average wind
speed of each measurement. (b) Cross correction map sorted by actual power. The bottom plot reads the date
and the average actual power of each measurement.

3.2.3 Influence of the Nacelle

Let’s now investigate the next most influential parameter. 300 new measurements are selected using the
same conditions as before, plus a power criteria: measurement must be acquired between 0 and 300 watts.
Among the different re-sorted matrices, the matrices sorted according to their mean nacelle direction were
observed to be the best classifier. Figure 6 present an interesting cross shape, showing that low values are
well corrected by low and by high nacelle direction values. Indeed, low and high nacelle direction values both
correspond to the north direction, while 180 degrees correspond to the south direction. The most reasonable
explanation is that the earth magnetic field influences the magnetic encoder GE. An alternative explanation was
linked to the topographic environment of the turbine, but the monitored machine was actually shown to stand
in the middle of a naked plain, far away from any forest, hills, or other turbine’s wake effect.
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Figure 6 – Map demonstrates the influence of the nacelle values on GE correction efficieny. The map is sorted
by mean nacelle values.

4 Conclusion and perspective

Instantaneous angular speed monitoring is often based on the use of an angular sensor, such as an encoder,
whose gratings are often perturbed by an unequal distribution. This problem might be due to the manufacturing,
the installation of even to the calibration of the electronics used to interpolate the signal. Anyhow, this kind
of defect is called Geometric Error, and is interpreted as speed variations whose frequencies are the orders of
the shaft carrying the encoder. Among the various techniques existing to remove GE, none spare the actual
synchronous speed vibration. therefore, how to monitor a gear whose amplitude is biased by GE ? The solution
proposed in this paper is to correct every signals GE obtained on a machine with one reference signal. if
something evolves: it’s the synchronous component! Finally, one signal is not yet enough to characterise the
GE. low speed measurement appear as a good corrector, but the GE need to be reseted when the encoder ring or
sensor is reinstalled. Moreover, the orientation of the sensor regarding the earth magnetic field has to be taken
into account. The latest issue might be tackled by a model correcting the influence of the magnetic field on the
sensor, knowing the orientation of the gratings during the reference and the corrected measurement.
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Abstract
The lack of experimental information can lead to an inaccurate prediction of hydroelectric turbine runners
fatigue damage. Therefore, to recover this information, this research aim is the use of existing data measured by
strain gauge to interpolate the unknown or not observed information about runner strain over the complete range
of the steady-operating conditions for hydroelectric turbine. At steady-operating conditions, a strain signal,
measured on the runner, can be separated into three principal components: static, periodic and stochastic. This
paper presents the first step of our research that extracts and interpolates the periodic part at steady-operating
states. A case study is used to compare two different kriging interpolation methods: the Spatial Kriging Method
(based on 2D semivariogram) and the Spatio-Temporal Kriging Method (based on 3D semivariogram). The
interpolation results are compared and validated with the experimental values.

1 Introduction

Strain levels play an important role in the fatigue reliability evaluation of hydroelectric turbine runners. Due
to high costs and downtime required for the instrumentation, the experimental strain measurements on turbine
runners are often limited (short measurement length, limited number of operation conditions, limited number
of measured locations...), which could lead to an inaccurate evaluation of fatigue damage. Over the past years,
many researches have tried to improve the limitation of experimental measurements. Poirier et al. (2016) regen-
erated strain signal over a long period by extrapolating a few minutes collected from the experimental measures
[1]. Firas (2012) realized spatial interpolations between different locations on turbine runners to evaluate the
distribution of damage and uncertainty propagation [4]. Gagnon et al. (2012) developed a model of turbine
runner reliability by considering the High Cycle Fatigue (HCF) onset as the limit for the fatigue evaluation [2].
This model highlights the role of HCF, which is mainly linked to hydroelectric turbine Steady-Operating Con-
ditions (noted as SOC). Currently, we are unable experimentally to obtain the dynamic strain in runner blades
over all the possible operating conditions. Therefore, our research aims to estimate the missing experimental
data by interpolating existing measured data. The idea is to develop an interpolation tool between different
SOC available experimental data (Figure 1). This tool should help to make more accurate maintenance plan,
leading to time and cost reduction.

The initial parameters used for interpolation are from measurements obtained by the strain gauges installed
on a Francis turbine runner blade. Strain signals are complex and contain several physical phenomena. Some
of these phenomena are hidden by others. Therefore, the interpolation of the complete signal is difficult. The
proposition is to interpolate each phenomenon independently. We propose that the strain signals at SOC are
separated into three principal components: static, periodic and stochastic. This paper presents a method that
extracts and interpolates the periodic part. The periodic phenomenon hidden in the signal is linked with the
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synchronous rotation speed of the turbine and is extracted by using the synchronous average operator to obtain
the first order cyclostationary components. In this study, the interpolation method chosen is kriging. Kriging is
a well-known spatial interpolation method that is commonly used in many domains, especially geostatistics. In
general, the strain signal on turbine runner varies based on time and operating conditions of the turbine, but the
influences of these two “dimensions” during interpolation phase are unclear. Thus, two kinds of kriging process
were studied, spatial kriging and spatio-temporal one, for the interpolations of the periodic component. This
initial interpolation between different operating conditions provides the basis for interpolations of the other
components of the signal.

Figure 1 – Proposed interpolation tool

The paper is organized as follow: First, in Section 2, a description of the synchronous averaging, which
extracts the periodic phenomenon in the signal, is presented. Then, in Section 3, the interpolation process is
presented with spatial and spatio-temporal kriging. Finally, the interpolation results are shown and discussed
in Section 4 and 5.

2 Synchronous Average - First order of cyclostationary

The strain signal in the case of the turbine consists of static, periodic and stochastic parts. The periodic parts
in the strain signal measured on runner are typical phenomena related to hydroelectric turbine runners rotation
(especially in the steady states where the speed of rotation is synchronized to the electrical network) while the
stochastic phenomena correspond to the asynchronous parts (residue parts, stochastic vibrations, noises...). The
separation will facilitate the interpolation because the relation between the phenomenon assigned to different
operating conditions is less complex than the relation between whole signal where some phenomena are hidden
by others. This separation leads to cyclostationnarity process, which will make possible the formalization of
principles to extract hidden periodic signals. For the cyclostationary domain, the dynamic part of an experi-
mental strain signal S[n] measured on runner can be decomposed into three components: the cyclostationary
moment of order 1 (noted as CS1[n]) linking to the rotation speed synchronous, the order 2 (noted as CS2[n])
referring to the periodic fluctuation of energy, and the residue part R[n] [1].

S[n] =CS1[n]+CS2[n]+R[n] (1)

Synchronous Averaging is one of the extraction tools which allow the extraction of the CS1 (periodic part)
hidden in the signal. The synchronous average (noted as SA), hidden in a signal S[n] of finite cycles K, is
extracted by using the equation (2).

CS1[n] =
1
K

K−1

∑
k=0

S[m+ kN] (2)

where K is number of cycles, N=L/K is length of cycle (L is full length of signal), m= mod[n,N]= n-[n/N]N.
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This formula is applied for experimental strain signal to extract information at a cyclic frequency (including
its harmonics), which relates to the synchronous rotation of the runner at steady-operating conditions. The
periodic part can be directly extracted in the time domain. However, in the case of the rotating machinery like
the hydroelectric turbine, the cyclostationnarity model is often based on the study of the angular domain rather
than time. Therefore, an angular sampling of time signal (proposed by Bonnardot [5]) before the extraction
is required in order to improve the quality of the synchronous average extraction. Figures 2 and 3 show the
synchronous average at some operating conditions of the turbine and the statistic tests of residual part (after
subtracting the average). Two statistic tests: the normal probability plot and the Kolmogorov-Smirnov test
(noted as KS test) have been applied to verify the quality of the synchronous average extraction. Small KS
statistic value and good fit between sample and theoretical quantiles verified that the residual part is almost
aleatory. These results mean that the periodic part was almost fully extracted from the strain signal. The word
“almost” is mentioned because there are slight divergences at extremity observed in Normal Probability graph.
Higher order cyclostationary extraction could be applied to obtain a more aleatory residue. However, by these
statistic test results, the synchronous average operator is an appropriate method for the initial extraction of
periodic phenomena hidden in runner strain signal.

(a) (b) (c)

Figure 2 – Results of SA extraction process at 65 %OV. (a) Extracted Synchronous Average ; (b) Normal
probability test of the residual part; (c) Kolmogorov-Smirnov test of the residual part.

(a) (b) (c)

Figure 3 – Results of SA extraction process at 100 %OV. (a) Extracted Synchronous Average; (b) Normal
probability test of the residual part; (c) Kolmogorov-Smirnov test of the residual part.

3 Interpolation process

In this case study, the interpolation of periodic phenomenon is performed between different levels of guide
vane opening (noted as %OV). The guide vanes is a part of the turbine that controls the flow rate as a function
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of vanes opening. We consider that the interpolation space in this study is different steady-operating conditions
(different %OVs) of the hydroelectric turbine. The proposed interpolation process consists of three steps as
shown in Figure 4.

Figure 4 – Proposed interpolation process

Before applying kriging interpolation, the first step is to align the synchronous averages (noted as SA) of
measured and known operating conditions (considered as known locations in the interpolation process). The
SAs figure in the polar domain (figure 5) shows that there are small lags between values at 0◦ runner rotation of
different %OVs. These lags do not affect the measurement results, they can cause however a systematic error
for the interpolation process. For aligning these SAs, the first step is to choose a SA reference from which
the other SAs can be aligned (e.g., the reference selected in this case study is the SA at 50 %OV (See figure
5)). The correlation coefficients, between value at 0◦ rotation of the reference with values around 0◦ rotation of
other SA (from other conditions), is then determined until the best correlation for each condition is found. The
final step is to re-arrange all SA by following the new values at 0◦ rotation corresponding to the best correlation
found in the previous step (figure 5).

Next steps of interpolation process relate to the application of kriging interpolation. Kriging allows the
estimations of missing values at given locations (from known observed data) by determining the “linear regres-
sion weights” which minimize the error variance. The error variance (also called the estimation variance [6]) is
theoretically defined as a variance of the difference between the experimental strain value S and the interpolated
strain value S* at the same location u (Equation 3). The location u can be a spatial location, time location or
both depending on the choice of kriging method.

σe(u)2 =Var[S(u)−S∗(u)] =Var[S(u)]+Var[S∗(u)]−2Cov[S(u),S∗(u)] (3)

Each type of kriging has a different way for minimizing this estimation variance. In this study, the Ordinary
Kriging (noted as OK) is applied for the interpolation process. According to interpolation results between
different points on runner blade in [4], the OK gave the smallest estimation variances between three traditional
linear kriging methods: Simple Kriging, Ordinary Kriging and Universal Kriging. The estimation function and
the modeling equations for error variance for OK (detail in [4] and [6]) are expressed in equations (4) and (5).

S∗OK(u) =
n

∑
i=1

λiS(ui) (4)
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Figure 5 – Synchronous Average in polar field

{
LOK(λi,µ) = σe(u)2 +2µ(∑n

i=1 λi−1)
σ2

OK = ∑n
i=1 λiγ(u,ui)−µ (5)

where the first equation of (5) is Lagrange function applied in OK to optimize the mean squared error, the
Lagrange multiplier µ associates with the constraint ∑n

i=1 λi = 1, which is the OK constraint [6]. The second
equation of (5) is the estimation variance obtained after minimizing the Lagrange function. Therefore, in OK,
to minimize the estimation variance σ2

OK , it is necessary to choose not only the weights λi, but also the Lagrange
multiplier µ . γ is the semivariogram value (detail in the following paragraphs).

The minimization of estimation variance requires a model for the covariance between value of different lo-
cations (both interpolation and known locations). According to equation (5), these covariances are replaced by
using the semivariogram values γ . In this paper, two types of semivariogram are applied: the Spatial Semivari-
ogram and the Spatio-temporal Semivariogram. These two methods show the influences of two different types
of information (operating conditions and temporal/angular information) on the kriging interpolation process.

Kriging interpolation with spatial semivariogram

To verify the intrinsic hypothesis that the finite variance of increment [S(u) - S(u+h)] does not depend on
location u, the variogram can be defined by the following function:

Var[S(u+h)−S(u)] = 2γ(h) = E[S(u+h)−S(u)]2 (6)

where h is the distance increment, γ is the semivariogram.

According to the equation (6), the spatial semivariogram can be defined as the half-variance between pairs
of values and depends only on the distance increment h of these two locations. The spatial semivariogram is
used for modeling spatial variability in kriging [6]. In this research, the spatial semivariogram is calculated by
determining the dispersion of two different observations of a strain data set.

∧
γ(h) =

1
2N(h) ∑

(i, j)∈N(h)
[S(ui)−S(u j)]

2 (7)
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where N(h) is number of paired points separated by a distance increment h, S(ui) and S(u j) are respective ex-

perimental strain values at positions ui et u j. The positions ui or u j are defined for each kriging method. The
∧
γ

means the experimental semivariogram.

To use the semivariogram, a scatter plot (called as experimental semivariogram) has to be built using equa-
tion (7) with the measured data and then fitted with a numerical model by using the least square method. The
experimental semivariogram cannot be directly used for kriging interpolation because it sometimes consists of
“negative variance”. So, the kriging interpolation is performed by using the numerical model of semivariogram
for the covariances. The numerical model of semivariogram can be defined by sill, range and nugget effect
parameter (if it is necessary). The range parameter is the distance from which there are no longer correlations
(null covariance) in the data set. The sill parameter defines the average variance where the experimental var-
iogram stabilizes and it is reached at the range level. The nugget effect parameter is sometimes added to the
semivariogram model to represent a very short range variability in the data set and also the error of the experi-
mental measurement. This nugget parameter is added into the sill parameter to obtain the total sill of the model.
Some semivariogram models are presented in the following equations:





γexponential(h) = sill.[1− exp(− 3h
range)]

γGaussian(h) = sill.[1− exp(− (3h)2

range2 )]

γhole−e f f ect(h) = sill.[1− cos( h
range .π)]

(8)

Figure 6 – Semivariogram model

For the case of spatial semivariogram, two different approaches are compared. For the first, an interpolation
location u is defined by only one coordinate %OV. The influence of angular/temporal information is ignored.
Thus, the interpolation is accomplished between different %OV for each degree of rotation. An extracted syn-
chronous average of each %OV contains points values of a complete rotation of runner (0◦ to 360◦). Therefore,
this approach requires many semivariograms (number of semivariograms is equal to number of SA point values
that is about 1000 points), leading to many interpolations to execute. To reduce the calculation time, only three
simple models are used to fit the experimental semivariogram: Spherical, Exponential and Gaussian. Moreover,
because of experimental limitations, the number of operating-conditions measured is also limited, which can
affect interpolation results.

For the second approach of spatial semivariogram, the angular information θ (or time information) of
measurement is taken into account as a “second spatial coordinate”. An interpolation location is now defined
by two coordinates, %OV and rotation angle of runner (ui = (%OVi, θi)). The distance between two locations in
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this interpolation space is calculated as the Euclidian distance. However, these two coordinates do not have the
same range to the spatial dimension, which can lead to an error of kriging interpolation. Thus, a normalization
is required before building the semivariogram. Contrary to the first approach, this second one has more points
in the scatter plot of semivariogram and requires only one semivariogram for interpolation. Therefore, to fit
the experimental semivariogram, some nested variogram models are used in order to improve the performance
of kriging interpolation. The nested model is a linear combination of several simple models like a combo
presented in the result part: nugget model combines with a long-range Gaussian model and a short-range hole
effect model (figure 7b). Since kriging uses the semivariogram model for covariances, the nested model helps
to avoid the lack of information during the interpolation process.

Kriging interpolation with spatio-temporal semivariogram

In the second interpolation method, the spatio-temporal semivariogram is built with two independent di-
mensions: spatial and temporal/angular (respectively %OV and rotation angle of runner in this research). The
half variance between two “locations” depends not only on distance increment h, but also on time/angle incre-
ment a (see equation 9). This type of semivariogram is often used in geostatistics for the case that the temporal
dimension does not have the same range to the spatial one. Therefore, using this spatio-temporal semivariogram
helps to independently observe the influences and the contributions of time (or angular field) to the interpolation
process.

∧
γ(h,a) =

1
2N(h,a) ∑

(i, j)∈N(h,a)
[S(%OVi,θi)−S(%OV j,θ j)]

2 (9)

The experimental semivariogram is now a 3D scatter plot with an axis of half variance and two axes of
distance and time increment (figure 10). For modeling covariance, semivariogram model is now presented by
combining the spatial semivariogram and the temporal/angular semivariogram (there is also the joint semivar-
iogram in some models[7].) with different mathematical operators. To fit the 3D experimental semivariogram,
each semivariogram is first independently fitted by a simple model (the definition of model parameters, like
sill and range, for the temporal/angular semivariogram model is similar to the spatial one presented in the first
method) and they are then combined by using the spatio-temporal semivariogram model function. Separable
model function [7], which is used in this case study, are presented in equation (10). This Separable model and
the other spatio-temporal semivariogram models are available in code library Gstat [7]. This library is used to
execute the calculation and the graphic observation of the spatio-temporal semivariogram in this study.

{
Cseparable(h,a) = Cs(h).Ct(a)
γseparable(h,a) = sill.(γ̄s(h)+ γ̄t(a)− γ̄s(h)γ̄t(a))

(10)

where Cs(h) and Ct(a) are respectively the spatial and temporal covariance, sill is the overall sill parameter, γ̄s

and γ̄t are respectively spatial and temporal semivariogram [7].

4 Interpolation results

To deal with the limited experimental data, the interpolation is performed from a part of known observed
operating conditions and the remaining ones are used for comparison. Input and Output data is shown in the
Table 1. As mentioned in the previous section, the semivariogram model directly influences on the kriging in-
terpolation quality. Therefore, only results of the best model are shown for each method. Using cross-validation
technique helped to find out these best models. The principle of cross validation technique is to temporary re-
move one or several data and then to re-interpolate these data from the remaining data by kriging, this process
is repeated several times (100-1000 times) to find at the end a set of correlation coefficients between real and
interpolated data. Moreover, in the case of spatio-temporal semivariogram, the Mean Absolute Error (MSE)
has been also calculated to verify the interpolation quality of model [7]. In the following, only two interpolation
results at 20 %OV and 55 %OV are presented.

For the Spatial Semivariogram method, the interpolation results of the first approach are presented in fig-
ures 8a and 9a. These results show a low quality of interpolation because of many disturbances throughout
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Input: SA(θ )
Semivariogram model

Output: SA(θ )
Spatial Semivariogram Spatio-temporal Semivariogram

At 30 %OV, 40
%OV, 50 %OV, 60
%OV, 70 %OV, 90
%OV

First Approach:
Exponential model

Separable model:
+) Gaussian model (with
Nugget effect) for the spatial
semivariogram
+) Gaussian model (with
Nugget effect) for the temporal
semivariogram

At 20 %OV, 45
%OV, 55 %OV, 80
%OV, 100 %OVSecond Approach:

Nugget effect +
long-range gaussian
model + short-range hole
effect model

Table 1 – Information of input, ouput and semivariogram model used in this study paper

the angular axis (temporal axis). This observation highlights the importance of angular/temporal information
in the kriging interpolation process. The high frequency noises observed in these figures confirm that the an-
gular/temporal information must be considered in this interpolation study. Moreover, the limited experimental
data for the semivariogram might also contribute to this. However, the interpolated signals are smoother with
the second approach (figures 8b and 9b). This can be explained via a large number of information points taken
by the nested semivariogram model (figure 7b).

(a) (b)

Figure 7 – Experimental semivariogram and fitted model in the case of spatial method: (a) First approach; (b)
Second approach

The interpolation results of the spatio-temporal semivariogram method are presented in figure 11. By
graphically comparing to the spatial semivariogram method, the form and the amplitude level of the interpolated
signal in this case have better correlations with the experimental signal. However, these results are not enough
to confirm which process is better for the synchronous average interpolation, a proper validation is required.

5 Discussion

In this paper, using the interpolation tool, a representation of the periodic phenomenon, varying through
time and operating conditions, are generated. It is unable to foresee all variations of this phenomenon. With
this kind of data, the generation of an interpolated signal that perfectly matches the experimental signal is not
a requirement of this study. To verify the quality of interpolation process, the load spectrum, which is mainly
used in the fatigue evaluation process, is presented. This graph, based on the Rainflow algorithm, allows the
representation of the strain cycles contained in the signal as a function of cumulative number of cycles for
fatigue. Figure 12 presents load spectrum curves of two kriging methods. The load spectrum curve found
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(a) (b)

Figure 8 – Experimental and interpolated data at 55 %OV in the case of spatial method: (a) First approach; (b)
Second approach

(a) (b)

Figure 9 – Experimental and interpolated data at 20 %OV in the case of spatial method: (a) First approach; (b)
Second approach

for the spatio-temporal method is clearly closer to the experimental value than for the spatial one. It can be
observed from these load spectrum performances that the spatio-temporal semivariogram is better adapted this
type of data.

The spatio-temporal semivariogram seems better but it is unable to conclude that this method satisfies our
requirements. We need not only a unique interpolation result, but also a confidence interval. In this paper,
the conditional stochastic simulation is used to generate a first assessment of the confidence interval. The
conditional stochastic simulation is a statistic simulation process based on kriging and experimental data. The
simulations are commonly used to correct the smoothing effect of kriging method [4][6]. The figure 13 presents
1200 conditional stochastic simulations at 20 %OV based on the Separable spatio-temporal model (see Table
1). The interpolation value and the experimental value mostly fall into the set of conditional simulations.
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(a) (b)

Figure 10 – (a) Experimental spatio-temporal semivariogram; (b) Separable model used to fit the experimental
semivariogram

(a) (b)

Figure 11 – Experimental and interpolated data in the case spatio-temporal method: (a) 20 %OV; (b) 55 %OV

6 Conclusion

The periodic phenomenon has been extracted as the first order of cyclostationarity from the runner strain
signal by applying the synchronous average operator. Even if the periodic part does not give all the needed
information to assess the runner fatigue, the results in this paper set the first bases to build an interpolation
tool for the whole signal. The synchronous average signals are considered as a function depending on the
different %OV and the runner rotation angle in the interpolation process. The spatio-temporal kriging has a
good interpolation performance for the synchronous average. Although the spatio-temporal kriging process
might not be the most appropriate interpolator for other phenomena in signal, it can be a good start nonetheless.
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(a) (b)

Figure 12 – Load spectrum comparison between original SA and interpolated SA of two kriging methods: (a)
20 %OV; (b) 55 %OV

Figure 13 – Confidence interval by 1200 conditional stochastic simulations at 20 %OV
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Abstract 
Rolling bearing faults are the leading causes of downtime in rotary machines. In recent years, numerous 

and various vibration-based approaches have been put forwarded for rolling bearing fault detection. In the 

vibration-based techniques, order tracking-based methods are considered as very effective techniques. In the 

current reported order tracking methods, auxiliary devices are essential to obtain the instantaneous angular 

speed (IAS) of the machine. Aiming at this shortcoming, estimating IAS from vibration signals has been 

studied and some tacho-less order tracking (TLOT) techniques have been put forwarded. However, the 

effectiveness of the current available TLOT algorithms rely on the manually selection of the initial 

parameters for IAS estimation, which bring about user-friendliness. In order to tackle the aforementioned 

obstacles, a novel adaptive tacho information estimation method based on nonlinear mode decomposition 

(NMD) is proposed. In the proposed method, the nonlinear mode decomposition (NMD) method is improved 

and its computational burden is reduced. And then, the tacho information is adaptively estimated. The 

vibration signal collected from an aircraft engine is used for signal analysis and the effectiveness of the 

proposed is successfully validated. 

1 Introduction 

Rolling element bearing (REB) is especially important part of a rotatory machine, it usually works with 

variable load and speed, hence, failure is more possible happened here [2][3]. The failure of REB not only 

decreases machine working efficiency, but may also causes enormous lost in some extreme circumstances. In 

this way, it is of vital significance to detect the REB failure. 

Vibration signal analysis is a kind of classic tool to detect machine fault [4], for the reason that vibration 

signal usually owns sufficient operating state information, it is viable to detect fault from it. However, most 

of the now existing methods are based on the assumption of stationary operating condition, which are 

impractical for accurate fault detection. To obtain a better fault detection results, the order tracking (OT) 

method [5][6] which is very suitable for speed variation condition is proposed and been widely studied. OT 

method transfers the non-stationary vibration signal in time domain into cyclostationary vibration signal in 

angular domain by resampling the non-stationary vibration signal with uniform angular increment, and fault 

can be accurately estimated from the order spectrum. Before resampling, the instantaneous angular speed 

(IAS) is needed. The conventional method uses auxiliary equipment [7], such as tachometer, to acquire the 

IAS information.  

 However, the auxiliary equipment brings extra cost and is not convenient in all conditions, and the 

tacho-less method is rapidly needed and catch considerable researchers’ attention [8]. Zhao et al. [9] 

proposed a generalized demodulation based tacho-less OT method, this method combined the advantages of 

tacho-less OT method and envelope order spectrum, and could detect the REB fault under variation speed 
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condition. To tackle with the inaccuracy of phase information estimation for OT method in large speed 

variation condition, Schmidt et al. [10] put forward a tacho-less OT methodology which is based on 

probabilistic approach, and the effectiveness is validated by both simulated and experimental signals. Sound 

signal also includes the REB healthy state information, Lu et al. [11] proposed a sound analysis-based 

method for bearing fault detection under speed fluctuation condition, the bearing fault can be uncovered 

from envelope spectrum of resampled signal successfully. In our previous study [12], a tacho-less OT 

tracking method which acquires better ISA information from adjacent vibration signal is proposed and can 

discover compound fault on wind turbines. Hu et al. [13] proposed an adaptive tacho-less OT method which 

is based on enhanced empirical wavelet transform (EEWM), this method introduces EEWM to analyse the 

characteristics of resampled signal and is relatively robust to noise.  

Though tacho-less OT method shows great advantage to detect REB fault under speed fluctuation 

condition and researchers have make a lot progress about it, because of the unclear TFR of analysed signal 

caused by background noise and irrelevant components in the OT method, expertise knowledge and must be 

needed to extract the IAS information for resampling, which cannot ensure the detection accuracy and is 

inconvenient for real industry application. Hence, an adaptive IAS calculation strategy is urgently needed for 

tacho-less OT method. The Empirical Mode Decomposition (EMD) based fault detection method [14] is a 

kind of adaptive method and extracts mon-component via numerical approximation. However, because the 

phenomenon of spectral mixing among different modes caused by spectral overlaps between different 

components, biased IAS information for resampling and inaccuracy fault detection results may be obtained 

in some circumstance.  Therefore, a more reliable adaptive IAS estimation strategy for tacho-less OT method 

in REB fault detection needs to be developed.  

Aiming at the abovementioned requirement in the current existed tacho-less OT method for REB fault 

detection under speed variation condition, this paper proposed a new adaptive IAS information estimation 

strategy which is on the basis of Nonlinear Mode Decomposition (NMD) [15]. NMD is a hybrid product 

which combined the TFA and surrogate test, it shows great application prospect and could adaptively 

decompose a mixed signal into a set of mono-component which possesses clearly physical meanings. Our 

main works in this paper can be summarised as follows. First of all, the computation efficiency of NMD is 

meliorated to fit the high sampling frequency of the analysed vibration signal. Then, an adaptive IAS 

information estimation strategy is raised with the utilization of NMD. Last but not least, a noise-robust 

adaptive tacho-less OT method for REB fault detection under speed variation conditions is proposed, in 

which the expertise knowledge for IAS information extraction is not need and a broad industry application 

can be seen.  

The remaining paper is organized as follows. In section 2, the theory of improved NMD is introduced 

and the detailed implemented procedures of our proposed method are given. In section 3, the validity 

verification of proposed method is given by the field test data experiments. And a conclusion is drawn in 

section 4. 

 

2 The theory of meliorated NMD and implementation of the adaptive 

tacho-less OT method 

In order to adaptively calculate the IAS information for resampling in a tacho-less OT method, the NMD 

theory is introduced in our study and elaborated in this section. And then, the realization process of the 

corresponding tacho-less OT method for REB fault detection is given. 

2.1 The improved NMD theory for adaptive extraction of IAS information 

As mentioned before, the EMD based IAS information extraction strategy is not robust in some cases, 

and an advanced technique is urgent to developed for tacho-less REB fault detection. The NMD is a newly 

developed method integrating with the advantage of parameterized TFA and surrogate test, it could 

decompose a complex signal into a series of physically meaningful oscillations. Therefore, it’s possible to 

adaptively extract IAS information using NMD. 

The whole frequency range in TFR of analysed signal is searched in original NMD method, for a high 

sampling vibration signal, this is not necessary and takes long time. Hence, the NMD method must make 
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some improvement in calculation speed for adaptive IAS information extraction. The detailed illustration of 

our improvement on NMD method is given in our former works [16], and the basic thinking is as follows. 

For the reason that the interested harmonics won’t exist in the entire frequency range, and frequency 

searching range can be restricted to a special area decided by some equations which takes the peaks of TFR 

into consideration. With calculation efficiency of NMD method improved, the procedures of adaptive IAS 

information extraction strategy can be drawn like this. 

Step 1: obtain the TFR of the REB vibration signal via Short-Time Fourier Transform (STFT). 

Step 2: using Fourier transform surrogates test method to distinguish the extracted reference component 

from the noise. 

Step 3: extract the subharmonics of the reference component, and investigate the consistency of the 

subharmonics by time-shifted surrogate. 

Step 4: confirm the fundamental harmonic and find its possible higher order harmonics through 

consistency test. 

Step 5: obtain the fundamental signal and its harmonics for further analysis.  

Repeat step 3 to extract all of its harmonic signals from the TFR plane. Continue to perform the above 

steps on the residuals of analysed signal until a stopping criterion is satisfied. For details of the NMD method, 

please refer to [15]. 

2.2 The realization process of NMD based tacho-less OT method for REB fault 

detection 

The meliorated NMD method are shown in last subsection, and the realization process of NMD based 

tacho-less OT method for REB fault detection can be summarized as follows. 

Procedure 1: Utilize the meliorated NMD method to adaptively calculate the IAS information from the 

vibration signal. 

Procedure 2: Resample the analysed signal with the obtained IAS information. In this way, this non-

linear and non-stationary signal is transformed into cyclostationary signal in angular domain. 

Procedure 3: Figure out the order spectrum with conventional means, such as Hilbert demodulation and 

spectral kurtosis. 

Procedure 4: Recognize the fault type from order spectrum by analysing fault characteristic order.  

3 The performance of the proposed method for aircraft engine tacho 

information estimation 

3.1 An Overview of the Investigated aircraft engine 

In this section, a difficult industrial case data is used to validate the effectiveness of the proposed 

method. The signals are acquired during a ground test campaign on a civil aircraft engine with two damaged 

bearings. The data is provided by Safran contest, Conference Surveillance 8, October 20–21, 2015, Roanne, 

France [1].  

 
Figure 1: General overview of the engine and the accessory gearbox. [1] 
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Figure 2: kinematics of the aircraft engine gearbox. [1] 

An overview of the investigated engine and its accessory gearbox is demonstrated in Figure.1, and the 

kinematics of the accessory gearbox is depicted in Figure.2. The data used in section is collected by three 

sensors, named "Acc1", "Acc2" and "Tacho" in Figure.1, respectively. The sampling rate during signal 

collection process is 50 kHz and the sampling length is 200 s. The sensor "Tacho" is used to collect the 

rotating speed signal from shaft L4. One of the accelerometers is located on the intermediate case near the 

radial drive shaft and the other one is on the flange of the accessory gearbox in the vicinity of shaft L5. 

3.2 The experimental results obtained by the proposed method 

The partially enlarged drawing of the TFD of the original noise signal is shown in Figure 3, in which 

some frequency components are apparent. To conduct tacho-less order tracking on aircraft engines, it is very 

essential to extract one certain harmonic which is mono-component of the fundamental or higher harmonics 

of the rotating speed signal. In the conventional tacho-less order tracking techniques, the beginning of the 

interested harmonic is manually selected according to the fluctuation trend of IRF ridges in TFD. As a result, 

the current techniques are not applicable when the expertise knowledge is not available. To address the 

shortcomings encountered by the conventional techniques, the proposed method based on NMD is applied 

and its performance is demonstrated as follows.  

Firstly, the dominant component with much higher energy in TFR is extracted as a reference component 

( )rx t  by ridge detection, and the corresponding instantaneous amplitude ( )A t , phase ( )t  and frequency 

( )f t  are reconstructed. And then, Fourier transform surrogate test against null hypnosis of noise is 

conducted to check whether the extracted signal is a true component. Totally 40 surrogates are created, the 

significance sD  of each surrogates and significance 0D  of the extracted component as depicted in Figure 4. 

All of surrogates with 0sD D  , it indicates that the extracted component is true, therefore the null 

hypothesis of noise is rejected and continue the decomposition.  

Further, the extracted dominant component ( )rx t is assumed to be the fundamental one, and 

subsequently, time-shifted surrogate test against null hypothesis is conducted to investigate the independence 

between the extracted component ( )rx t  and its subharmonic candidates. The surrogate signals with a number 

=20sN  are generated. The consistence (1,1,0)i
d  of the time-shifted surrogates and 0(1,1,0)i  of the 

candidate subharmonic with zero time shift 0 0T V , are calculated as shown in Figure 5. For the candidates 

subharmonic of ( )rx t ,  all of the its time-shifted surrogates' consistency values are lower than the threshold, 

i.e. 1/2
mind  , which is equal to 0.25 [15]. In this circumstance, all of the candidate subharmonics are 

identified as false, because it does not pass the time-shifted surrogate test. Therefore, the extracted 

component ( )rx t is taken as the fundamental harmonic of the rotating speed signal and regarded reference 

component for nonlinear mode extraction a step further. Similarly, based on the time-shifted surrogate test, 

the higher order harmonics are investigated and are also tested against the null hypnosis of noise. As a 
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consequence, the second order harmonic passed the surrogate test and confirmed as a true component. 

 

Figure 3: The partially enlarged drawing of the TFD of the original signal. 

 

Figure 4: The Fourier transform surrogate test. 

 

Figure 5: The consistency of the candidate sub-harmonics obtained by time-shifted surrogate test. 

 

Figure 6: The extracted component in TFD domain. 
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The extracted rotating fundamental signal and its second order harmonic signal in TFD domain are 

depicted in Figure 6. Furthermore, the extracted fundamental component of the rotating speed signal is 

presented in Figure 7, while the extracted second order harmonic is depicted in Figure 8. On the basis of the 

extracted mono-component of the fundamental signal, the instantaneous frequency of the aircraft engine is 

calculated as shown in Figure 9. When compared with the instantaneous frequency estimation result reported 

in [1], the instantaneous frequency ridge is adaptively obtained by the proposed method successfully 

characterized the true fluctuation trend of the rotating speed.  

 

Figure 7: The extracted fundamental component of the rotating speed signal. 

 

Figure 8: The extracted second harmonic of the rotating speed signal. 

 

Figure 9: The estimated instantaneous frequency of the rotating speed signal. 



7 

4 Conclusions 

To overcome the shortcomings of the conventional techniques for tacho information estimation under 

non-stationary operating conditions, a novel method based on improved NMD method is proposed in this 

paper. The merit of NMD method, which can adaptively separate mono-component from non-stationary 

signals and determine the fundamental harmonic, is inherited in our proposed method. The original NMD 

method is improved and the computational burden is reduced to make it applicable for aircraft engine 

vibration signal processing. On this basis, the shaft speed signal is adaptively extracted by improved NMD 

method and the tachometer information of the entire drivetrain is obtained. The effectiveness and improved 

features of the proposed are demonstrated by real aircraft engine vibration signals. The validation results 

indicate that the proposed method is more flexible for tacho information estimation, and provide a promising 

tool for fault diagnosis of rotating machines operating under nonstationary conditions. 
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Abstract
Ride comfort is considered as one focus for a chassis system. To ensure a satisfying comfort performance of a
vehicle in development, a detailed damper characterization needs to be pre-defined in the early phase of project
with the help of simulation results in virtual proving ground. However, the current damper model integrated in
whole vehicle simulations is sometimes difficult to fit to test results due to its over-simplifications especially in
low speed excitation regimes. Thus this article proposes an enhanced shock absorber model to improve simula-
tion predictions without increasing substantially calculation costs. The parameterized model is mainly based on
a modified Bouc-Wen model considering its capability of reproducing highly nonlinear hysteretic phenomena.
In order to identify the parameters, a multi-objective optimization using NSGA-II algorithm has been applied.
The excitations on test bench have been separated into several groups according to their force-velocity curve
shapes. Finally an optimum set which represents the compromises between the objectives is obtained and forms
a Pareto front. Comparative examples in virtual proving ground show that the correction quality is well im-
proved for chassis’ comfort prediction using the proposed model. This example demonstrates the effectiveness
of the modelling and its potential in comfort improvement with the help of design of experiments.

1 Introduction

Ride comfort is one of the focuses of vehicle suspension design. To ensure that the comfort performance
has been satisfied, the technical specification has been defined at the early stage of new vehicle projects and then
validated after the chassis system is designed. With the development of numerical technologies, the prediction
of ride comfort at an earlier phase of project is becoming important because several specifications need to
converge at the same time and the unsatisfied comfort specification may cause the retreat of the designing
choices during validation stage.

One main difference between simulations for ride comfort and simulations for other specifications such as
chassis durability or dynamic behaviour is that the low velocity regime of the shock absorbers is more important
since it plays a critical role to filter small road oscillations [1] . In order to improve the quality of prediction
by comfort simulations, a detailed damper model which is capable of reproducing the physical damping forces
around zero velocity is searched. In virtual proving ground simulation, several damper models are proposed.

The classical way is to define a one-to-one look-up table between force and velocity according to the
measurements. A single curve with several slopes is easy to define at the early development stage and this
model requires the least calculation resources. So it is commonly used in durability test track simulations,
where the acceleration peaks with high velocity will cause more damage to chassis components. However, the
single curve model may be over-simplified in low velocity regime where hysteresis force tends to ’open’ the
damping curve. As a result, more details should be extracted from the measurements and included in the model.

The second way is to construct a semi-physical damper model through a combination of several sub-models
such as spring, damper or friction parts. These parts can be expressed in analytical expressions by partial-
derivative equations, which cost larger but still acceptable calculation resources. The main difficulty of applica-
tion is to find the parameters of these sub-models which cannot be derived directly from physical construction
of components. Different identification methods have been developed based on the experimental data ( [2–5]) .
In [4], it has been shown that this model is suitable for real-time hardware-in-the-loop simulations.
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The third way is to construct a physical damper model which aims at simulating the phenomena in real
components, such as the circulation of oil. The physical parameters such as the piston diameter and valves’
opening pressures need to be identified basing on real shock absorbers. However, the influence of these param-
eters on damping curves may be indirect and thus it is hard to be predefined in early development phases. This
kind of model is usually provided by shock absorber suppliers as a black-box model. In [6, 7], a model estab-
lished in AMESim has been proposed and it can be integrated into virtual proving ground by co-simulation. It
is theoretically the most precise but takes the longest time to solve.

An alternative way is to identify a data-driven model without concerning its physical characters [8]. The
method is efficient when the physical modelling is too complex to be identified or some specific characters may
be neglected because of its complexity. However, as in virtual ground simulation, it is preferable to keep some
physical relations into shock absorbers as a reference for further designing.

In this paper, the semi-physical method is selected as it is the compromise between the single-curve model
and the physical model in terms of configuration process and calculation costs. Another advantage of the
functional model is that it is easy to reconstruct each sub-model in MSC ADAMS/Car environment without
introducing a third software for co-simulation, which makes it more user-friendly to deploy the method in
vehicle projects. Before being integrated into a full-vehicle simulation, the damper model is first identified
by a multi-objective optimization algorithm, which is also used in [9, 10] for a Bouc-Wen model. However,
based on the measurements it is shown that a set of parameters is not capable of satisfying all the excitations
with different frequencies or velocities for a given shock absorber. By contrast, by separating the objectives
into several groups, a set of non-dominated optimums can be obtained and then the model parameters can be
decided according to the type of frequency needed.

Part 2 of this paper summarizes the friction models, especially Bouc-Wen one. Part 3 introduces the Bouc-
Wen based damper model and its identification process using a multi-objective optimization plan. Part 4 applies
the proposed model into a full vehicle comfort simulation, which indicates that the new model can produce
better test correlation than a single damper curve.

2 Hysteresis models

A vehicle suspension shock absorber is based on a mono-tube or bi-tube technology. One of the difficulties
is its non-linear hysteresis response which is non-negligible in low velocity regime. Different models have been
proposed to model the hysteresis phenomenon which is a combination of the effect of oil viscosity and interior
friction. In Renault, the measurement procedure of a shock absorber is realized by a series of sinus excitations
with different amplitudes and frequencies. Figures in Table 1 have shown the strong non-linearity character of
a measured shock absorber. The force-velocity curve may be very different with the same damping velocity but
different excitation frequencies. To model this phenomenon, several sub-models are introduced.

2.1 Coulomb friction model

This is the basic friction model. The friction force changes direction with the velocity, but its absolute value
is a constant. The mathematical equation can be expressed as

f =−sign(v)FCoulomb (1)

where the signum function sign(x) =
{

1 x > 1
−1 x <−1

, v is the damping velocity, FCoulomb is the constant

friction force. However, the discontinuity at the zero velocity may cause numeric problems in simulation [4].

2.2 Dahl model

The Dahl friction model can solve the discontinuous problem of Coulomb model by introducing two more
variables σ0 and i. It was first proposed by P.R Dahl in 1969 [11]. The equations of the model are

f = σ0u
u̇ = v · sign(1− sign(v)σ0u

Fc
)|1− sign(v)σ0u

Fc
|i (2)
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where u is a state variable, Fc is the maximum friction force which equals to the constant of Coulomb model
[12]. σ0 defines the stiffness of model and it can be translated to the slope of the curve when F = 0. When
σ0→ ∞ the model will approach the Coulomb model. i models the shape of the curve at the beginning of the
velocity change. The normalized friction force under different σ0 and i are showed in Figure 1.
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Figure 1 – Comparison of different parameters settings of i and σ0 of Dahl model

2.3 Bouc-Wen model

The Bouc-Wen model gives a smooth description of the process from the elastic deformation to sliding
between the contact surfaces. It was proposed by Bouc in 1967 and then developed by Wen. The equations of
Bouc-Wen model [13] are

F = cv+ kx+ f − f0
f = αz

ż = δv−βv|z|n− γz|v||z|n−1
(3)

where F is the total damping force and f is the hysteresis force. x is the relative displacement of two ends
of the shock absorber and v is the damping velocity. c is the viscous coefficient. k is the stiffness of the damper
and f0 is preload. Each part of the total damping force is described in Figure 2. In the hysteresis sub-model
αz, z is a state variable. α defines the maximum hysteresis force which is equivalent to Fc in Dahl model. δ
defines the linear stiffness of the hysteresis part. β ,γ define its non-linear stiffness and damping character. n
has an influence on the smoothness of the system. Figure 3-5 show the influence of each parameters.

Figure 2 – Construction of the Original Bouc Wen
model
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Figure 3 – Influence of δ on Damper
force-displacement curve

Bouc-Wen model can reproduce different shapes under various excitation frequencies (see Figure 6). In
contrast, there are more parameters to be identified than Dahl model:c,k,α, f0,δ ,β ,n.

In addition, Ref [14] has extended the model to better correct non-symmetric hysteretic responses around
zero velocity. It is called ”shifted hysteresis”.The hysteresis part of (3) can be rewritten as the function of v

ż = (δ − (β + γsign(zv))|z|n)v (4)
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then v is replaced by a shifted velocity which is defined as

v← (v−µ · sign(v)) (5)

where µ is one additional parameter to be identified. The main effect is to modify the hysteresis curve
around zero velocity without changing that of higher velocity (see Figure 7).

3 Parameter identification process

3.1 Model description

In Equation (3) and Figure 2, the original Bouc-Wen model is composed of several sub-models: spring part
(kx+ f0) , viscous part (cx) and hysteresis part (αz). In this article, a modified Bouc-Wen model where the
spring part and viscous part have been redefined is proposed. It serves as a template of which the parameters
are to be identified basing on measurements. The construction of the model is shown in Figure 8. The whole
modified Bouc-Wen model has been firstly established in Simulink for identification before being integrated
into the vehicle model in virtual proving ground simulation environment in MSC Adams/Car.

3.1.1 Viscous model

The viscous part normally takes the majority of total damper force, and it is defined as a function of damping
velocity. In this model, the linear relation has been replaced by a continuous function created from a look-up
table which groups the maximum damping velocity measured at compression and rebound phases with the
maximum force. Figure 9 shows an example of a test curve, where a strong non-linearity is observed. The
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Figure 8 – Construction of a modified Bouc-Wen
model
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Figure 9 – Example of a single damping curve

viscous model serves as a basic line for the damper force which is previously used as the damper model in
virtual proving ground simulation. By linear interpolation, the look-up table can translate the test data with an
acceptable accuracy and good calculation efficiency. However, it considers only the peaks and troughs in the
measured curves and thus the transformation information between the two is lost. The following sub-models
aim to further exploit the test results.

3.1.2 Spring model

When the shock absorber is under excitation of very low velocity (for example, < 0.01m/s), the force of
gas compression becomes dominant compared to viscous force. The shock absorber behaves like a spring. The
spring model is to model the gas compression character of a shock absorber where the force depends on the
damping displacement. In the original Bouc-Wen model, this force is linear to the displacement with a slope of
k and a preload f0. Ref [4] states that sometimes the linear model fails to perfectly represent the gas force and
the quadratic gas force model can solve this problem. The equation of the spring model thus can be expressed
as

Fgas = Ax2 +Bx+C (6)

where A,B,C are the spring model parameters. In the test progress, C is the preload after installation. A and B
can be found with quasi-static excitations. But in some practical cases, the quasi-static test is absent because
the test bench is not capable of producing a very low velocity excitation. The gas force is then considered as
linear (A = 0) with a slope calculated by two measurements of displacements. In this example, A still holds to
zero as it is neglectable for small damping displacements and B and C are considered with a certain tolerance,
thus are also involved into the group of parameters to be identified.

3.1.3 Hysteresis model

The Hysteresis model is the identification focus of a Bouc Wen model. From the measurement curve in Ta-
ble 1 and in other test results, hysteresis phenomenon is more significant in rebound phase than in compression
phase. In compression phase, the curve keeps ’closed’ when velocity is larger than 0.2m/s, which is difficult
to be reproduced by an original Bouc-Wen hysteresis sub-model. An additional switch has been added after
the hysteresis model which aims to forcedly ’switch off’ the hysteresis for large compression velocities. The
modified hysteresis curve is showed in Figure 10.

3.1.4 Compensation curve

The compensation part aims to cancel the double-counted contribution of hysteresis model to the maximum
damping force because the saturation viscous part has already involved in the viscous model. The hysteresis
model is first characterized individually under several sinus excitations in order to identify the maximum Bouc-
Wen force under excitation velocities. Then compensation curve is defined by another look-up table.
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Figure 10 – The hysteresis force-velocity curve after passing the switch

3.2 Identification process

3.2.1 Optimization objectives

The model identification is to find the set of parameters which can produce the most similar damper char-
acter curves. The process can also be regarded as a multi-objective optimization plan aiming to minimize the
quadratic errors between the model and the tests.

The algorithm schema of identification plan is showed in Figure 11. The same sinus signals are inputs to
a physical shock absorber as well as the numeric model. The outputs of two models are differenced to obtain
error signals, which are then post-treated to single indicators. The quadratic error of correction to i-th excitation
(ei) be defined as

ei(x) =
1
N

N

∑
j=1

(εi(x, t j))
2 =

1
N

N

∑
j=1

(Fi(x, t j)− F̂i(t j))
2 (7)

where F(x, t) is the force sample at time t obtained from the numeric model with a vector of parameters x.
F̂i(t j) is the force curve from the test. t1, t2..tN are the sample points on F(x, t) or Fs(t). N is the total number of
sample points. The optimization objective is to minimize e(x). However, it should be noted that ei(x) contains
not only the correction error but also disturbances such as the measurement noises on the test bench, so there is
no meaning to pursue a model with zero correction errors which will result in an over-fitted problem.

Figure 11 – The hysteresis force-velocity curve after passing the switch
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A classical objective of identification is to minimize the sum of all the correction errors as shown in (8).

etotal(x) =
M

∑
i=1

ei(x) (8)

where M is the total number of test excitations. The first attempt to find the best correction of the sum of
all the excitations is not satisfying due to the damper’s highly dissimilarity under different excitations in Table
1. The reason is that by summing all the errors the optimization has already a preference to a set of excitations.
It is difficult to define a normalization factor of each objective at the beginning of the optimization which leads
to satisfying results. Furthermore, the simple sum of all the objectives may result in an incomplete exploration
of the designing space [9].

Group LVLF LVHF HVHF
Velocity 0.1-0.4m/s 0.1-0.3m/s 0.5-1.2m/s

Frequency 1.5Hz 12Hz 12Hz
Nb. Signal 6 3 4

Curve example

Table 1 – Repartion of Excitaion signals into several groups

Another approach is to separate the correction errors into several objectives when it is hard to find one
dominating parameter set which minimizes all the errors. Thus, the test curves are attributed into several
groups according to their curve similarities as well as the frequency regimes. Three groups have been defined
for the shock absorber studied in Table 1: low velocity low frequency (LVLF), low velocity high frequency
(LVHF) and high velocity high frequency (HVHF).

1. LVLF Group involves 6 excitations with maximum velocities smaller than 0.4m/s at the excitation fre-
quency of 1.5Hz. In this group small hysteresis phenomenon is observed with a relatively closed curve
and by the same time some irregular crossovers of the force may take place, which may be caused by the
small measurement noise.

2. LVHF Group involves 3 excitations with maximum velocities smaller than 0.3m/s and excitation fre-
quency is 12Hz. The shape of the test curve contains more hysteresis forces comparing to the same
velocity excitations with 1.5 Hz. Here the highly dissymmetric hysteresis is also observed in the com-
pression regime (v < 0m/s).

3. HVHF Group involves 4 excitations with maximum velocity between 0.5 and 1.2m/s at 12Hz. There is
less hysteresis around zero velocity comparing to HVHF group and even less at higher velocities. So the
shape of the curves is approaching a single curve model.

Then the objectives are defined as the average of the normalized mean quadratic errors in each of the groups.
As the damper curves in each group are similar to each other so the sub-objectives are compatible.

eLV LF(x) = 1
6 ∑6

i=1 ei(x)/ei(x0)

eLV HF(x) = 1
3 ∑9

i=7 ei(x)/ei(x0)

eHV HF(x) = 1
4 ∑13

i=10 ei(x)/ei(x0)

(9)

where ei(x) is the correction error defined in (7). It has been normalized by the correction results of the starting
parameter sets x0.
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3.2.2 Optimization algorithm

To solve the multi-objective problem, a set of solutions which forms a Pareto front is to be searched. The
Pareto front consists the non-dominated optimums where there exists no other solution that can improve one
objective without degrading at least one another. A vector of parameters x∗ can be defined as one Pareto
optimum mathematically if and only if

∀x ∈ ε,∀ j ∈ {1, ...,m}, fi(x)< f j(x∗)
⇒∃i 6= j, fi(x)> f j(x∗)

(10)

With iterations the solution can converge to a potential Pareto front and all the points included in the front
are optimized solutions. The Pareto front will collapse to one single point if it can minimize all the objectives
and, in this case, the multi-objective optimization is equivalent to a mono-objective one.

The genetic optimization algorithm NSGA-II has been applied after the objectives and the design space are
defined. NSGA-II can be viewed as a stochastic search method which explores the design space and selects the
parent generation according to the fitness ranks of each existed solution to generate a new generation.

The optimization starts with an initial design of experiments to establish a relationship between the design
space and the objectives by response surfaces. These response surfaces serve as the prediction functions from
which a set of potential optimums is proposed before being validated by simulation. For the next iteration the
former solutions will pass to a potentially better generations by selection, crossover and mutation operations
[15]. The optimum sets proposed by the algorithm should finally be converged to a Pareto front. Figure 12
resumes the procedure of this optimization plan.

4 Identification results

4.1 Design space

In this chapter the identification model has been carried out on the shock absorber described in Table 1 as
an example. All the designing parameters have been arranged in the vector x

x = {A,B,C,α,β ,γ,n,µ} (11)

The initial, minimum and maximum values of these parameters are defined in Table 2. In this example, the
gas pression forces are modelled linearly. Thus A remains to be zero.

Initial value Minimum Value Maximum Value
A 0 0 0
B -0.25 -0.5 -0.1
C -150 -300 0
α 120 50 320
δ 30 10 600

log(β ) 5.78 4 6
log(γ) 4.3 2 6

n 1.5 1.5 8
µ 0 0 0.001

Table 2 – Definition of design space

So the mathematical expression of the multi-objective optimization problem can be expressed as
Minimize:

F(x) = {eLV LF(x),eLV HF(x),eHV HF(x)} (12)

Under the constraints:
x ∈ DesignSpace (13)

F(x) is the target function used in generic optimization algorithm. Its compositions are the mean quadratic
error of each group which defined in (9).
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Figure 12 – Optimization process without robustness notions

4.2 Pareto fronts and surfaces

After 9 iterations, the correction objectives of non-dominated solutions are shown two-by-two in the Figure
13 and 14. The figure shows the correction objectives of three groups are incompatible especially between
two different frequencies. Due to the complexity of the real shock absorber, the better correction to the low
frequency signals may fit worse to high frequency ones and vice versa.

Figure 13 – Non-dominated solutions in LVLF-LVHF
plane

Figure 14 – Non-dominated solutions in LVLF-HVHF
plane

Figure 15 shows the projection of the 3D Pareto surface on the LVHF-HVHF plan. The darker colour means
better correction to LVLF group. This figure explains the reason why there are points far from the optimum
front in Figure 13 and 14: The solution presented on one 2D Pareto front may not be involved in another 2D
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Figure 15 – Projection of Pareto surface on in LVHF-HVHF plot

front, and thus it is hard to reach an optimised correction for all the three objectives at the same time.
Table 3 shows the selected parameters of three points numbered in Figure 13 and 14, which are on different

Pareto front but with different orientations. Table 4 shows one typical curve in each group for the three selected
points in Table 3. With the parameters of point 1, the excitation of low frequency is well fitted and thus they
are more applicable to the comfort test track. Point 2 and Point 3 are oriented to high frequency so they have
worse corrections to low frequency comparing to Point 1.

Point 1 Point 2 Point 3
A 0 0 0
B -0.1 -0.1 -0.1
C -150.5 -117 -146
α 85 265 179
δ 50 600 600

log(β ) 4 4.33 5.6
log(γ) 2.65 2 4.26

n 5 7.5 8
µ 0 0.002 0
e1 0.53 1.31 1.01
e2 0.86 0.40 0.59
e3 0.80 0.83 0.66

Table 3 – Resume of three points on Pareto Front

4.3 Post-treatment of Pareto front

Figure 16 shows the choice of α and n for the 15 best corrections to each group on Pareto front. Table 1
shows that the hysteresis force is relatively small for low frequencies, so the NSGA II proposed a smaller α
comparing that to LVHF group. n has also a great impact on identification results and a smaller n is preferred
for the LVLF group. It can be noticed that the interaction of parameters of Bouc-Wen model is not negligible
which explains that several solutions with a smaller n also fit well with HVHF groups. These regimes can be
served as reference data for the further robust analysis.

5 Comfort simulation

To validate the identified shock model, a comfort simulation in virtual proving ground has been realized.
The full vehicle assembly has been posed on a virtual 4-cylinder test bench which provides 4 vertical degrees
of freedom [16]. A simultaneous sweep frequency sinus signal (0.5Hz-6Hz) is defined as the displacement of 4

10



Point 1 Point 2 Point 3

LVLF

LVHF

LVLF

Table 4 – Correction of test results from choice of different orientations (Point 1: Best correction for low
frequency. Point 2 and 3: Best corrections for high frequency)

Figure 16 – Resumes of α (left) and n (right) of 15 best corrections in each group

cylinders (see Figure 17, 18).Two transfer functions of displacement from front or rear car body to the cylinder
displacement have been calculated and serves as a criteria for ride comfort specification.

The best correction sets of low velocity regime and low frequency group of the modified Bouc-Wen model
have been chosen for front and rear suspensions and are integrated into the full vehicle simulation. At the same
time, the comparative simulations are launched with single curve models. The transfer function can be seen
in Figure 19. With the modified Bouc Wen model, there is no great correction to the amplitude around the
proper frequencies of front and rear suspensions. However, at the beginning phase of the signal, a richer model
containing the hysteresis force can improve the quality of simulation especially for the rear suspension. The
damper force at the first 20 seconds has shown that the shapes are very different for small excitations but after
that the damper force from two models becomes almost identical.
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Figure 17 – The full vehicle comfort test bench 0 10 20 30 40 50 60
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Figure 18 – One part of excitation signal

Figure 19 – Comparison of transfer function for front (left) and rear (right) suspensions

Figure 20 – Comparison of transfer function for front (left) and rear (right) suspensions

6 Conclusion and perceptive

In this article, a damper model based on Bouc-Wen model and its identification method are proposed. By
a multi-objective optimization process, the model can reproduce the test curves with different velocities and
frequencies. A comfort simulation in virtual ground orienting to low frequencies has been realized and it
showed the impact of hysteresis model to the ride comfort prediction.

The next step will be the robust tests of parameters to the simulation results according to the analysis in
Section 4.3 because measurements have shown that the curves may be slightly different for the two shock
absorbers from the same technical definition.
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[16] P. G, “Déploiement et validation du confort,” Renault, Rapport dâExpertise, 2018.
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Abstract 
The requirement of high performance in the industry has led to the introduction of industrial robots in 

the machining field. Machining robots have become a potential and promising alternative to standard 

machine tools because of their important workspace and their high flexibility in the machining of 

complex parts. However, their lack of precision and rigidity is still a limit for precision tasks. 

Therefore, the modal identification of a machining robot is important for an accurate knowledge of its 

dynamic behavior. Usually, the characterization is carried out through an experimental modal analysis 

performed at rest. However, the excitation, artificially, created by a hammer or a shaker is not 

representative of the real cutting force applied in machining. Unfortunately, the dynamic behavior of a 

machining robot in rest differs significantly from that identified in service. 

In this paper, an experimental modal analysis of an ABB IRB 6660 robot is firstly investigated. Then, 

modal parameters are identified during a machining operation through an operational modal 

identification. A significant variability of modal parameters identified at rest from those identified in 

service is observed, which highlights the need to identify robot modal parameters under operational 

machining conditions. 

1. Introduction 

Industrial robots have an important role in the industry. They are used in a large area of applications 

such as welding, assembling and painting. Due to their significant advantages of high flexibility, large 

workspace, more accessibility, high productivity, and relatively low cost compared to a CNC machine 

tool (MOCN), industrial robots have been introduced in the machining field. However, many factors are 

degrading the accuracy of the machining operation performed. One of the main problem is the low 

performance of  the  robot  in  terms  of  stiffness  that  strongly  affects  the machining stability and the 

quality of the workpiece during machining operations. Therefore, it is interesting to evaluate the robot 

structure modal parameters. As a part of the proposed study, we focus on the identification of modal 

parameters of a poly-articulated industrial robot ABB IRB 6660 (located at SIGMA Clermont) equipped 

with a HSM Spindle (36000 rpm, 15.2kW). 

 

Despite the huge amount of work present in the modal identification domain, the modal 

identification of machining robots is still nowadays considered as an open issue [1-2]. Most  of  the  

scientific  works  presented  in  literature  are  related  to the modal parameters identification through an 

Experimental Modal Analysis (EMA) under an artificial excitation using an impact hammer or shaker 
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tests, at rest [3]. However, the dynamic behavior of machining robots at rest is not the same as that 

observed in service, due to numerous differences such as the command influence and the machining 

interaction with the workpiece. Thereby giving rise to the need to identify this dynamic behavior in 

machining conditions, using an Operational Modal Analysis (OMA) approach.  

 

The objective of this work is to identify modal parameters of a machining robot in order to point out the 

influence of the task position in the robot workspace concerning the modal behavior of the structure. 

The paper is organized as follows: in section 2, an experimental modal analysis of the ABB IRB 6660 

robot is conducted in different configurations of the robots in its workspace. The identified modal 

parameters vary significantly from a configuration to another, at rest, which introduces the need to 

identify modal parameters continuously in operational conditions. For an accurate knowledge of the 

dynamic behavior of the considered robot, an operational modal analysis is carried out in section 3 

during a milling test. The identification is investigated using the Transmissibility Function Based (TFB) 

method. Finally, section 4 concludes this paper. 

 

2. Experimental modal analysis  

2.1 Experimental setup and measurements 

An experimental Modal Analysis (EMA) of the ABB IRB 6660 machining robot is conducted in 

different positions in its workspace, in order to observe the evolution of the modal behavior of the robot 

at rest. Four positions (𝑃1, 𝑃2, 𝑃3, 𝑃4) along the Y direction, as shown in Figure 1, corresponding to four 

robot arm extension configurations are considered.  

 

Figure 1: Robot Tool Center Point (TCP) positions along the Y direction in the robot’s workspace 

The EMA is based on an experimental identification of the Frequency Response Functions (FRFs), 

where the responses are measured with accelerometers and the excitation is performed using an impact 

hammer. Exciting forces are measured with force transducers. Two tri-axis PCB accelerometers, with a 

sensitivity of 99.9 mV/g and 101.2 mV/g respectively, were mounted on the spindle head in the two 

directions X and Y, as shown in Figure 3. Model identification was performed by applying impact 

hammer shocks in the two directions X and Y.  
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Figure 2: Experimental protocol for an impact testing on an ABB IRB 6660 machining robot 

Two FRFs 𝐻𝑥𝑥 and 𝐻𝑦𝑦  were measured from the two experimental tests. 
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2.2 Results and discussion 
The PolyMAX method is then investigated in order to estimate modal parameters from the two 

measured FRFs 𝐻𝑥𝑥 and 𝐻𝑦𝑦. Natural frequencies f and damping ratios ξ identified from the measured 

FRF  𝐻𝑥𝑥  for each configuration of the robot in position 1 from are given in Table 1. 

 

Mode 1st position (𝑃1) 2nd position (𝑃2) 3rd position (𝑃3) 4th position (𝑃4) 
f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) 

1 11.09 1.70 11.06 1.47 11.09 1.81 10.30 2.01 

2 16.98 1.25 18.17 1.26 18.29 0.72 ---- ---- 

3 23.54 1.44 23.44 0.91 23.39 0.32 24.15 0.31 

4 43.30 3.69 45.28 4.35 46.33 4.26 46.50 3.58 

5 61.09 3.40 62.58 4.65 62.95 4.73 62.94 4.85 

6 136.76 3.11 137.61 3.12 138.54 2.90 139.48 2.51 

7 155.08 2.24 155.15 2.13 155.57 2.31 156.4 2.21 

8 177.71 4.40 179.35 4.12 179.28 3.75 178.89 3.87 

9 ---- ---- ---- ---- ---- ---- 210.82 0.75 

10 213.09 2.26 213.39 2.29 217.58 2.30 221.85 0.21 

11 285.25 5.16 280.23 0.55 282.50 0.97 283.87 1.04 

12 359.37 0.57 359.54 0.49 359.56 0.59 360.50 0.70 

13 407.62 1.01 403.56 0.71 403.56 0.69 403.53 0.66 

14 457.66 0.59 449.48 2.52 440.86 0.62 447.54 1.01 

15 511.65 0.96 509.99 0.86 510.2 1.08 510.55 1.22 

16 553.82 0.99 545.64 1.16 542.47 1.40 ---- ---- 

Table 1: Identified modal parameters of the robot ABB IRB 6660 in position 1 through an EMA 

Results show that by changing the robot position, different structural modes are excited and 

identifiable. In order to quantify the variation of the identified natural frequency as a function of the 
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configuration and the position of the robot in its workspace, the relative standard deviation is calculated 

as follows: 

 

𝜍 =
𝜎 ∗ 100

𝜇
 

(2) 

 

Where 𝜎 is the standard deviation and 𝜇 is the mean value of the identified frequencies. 

 

 
Figure 3: Evolution of the natural frequencies of the robot ABB IRB 6660 in function of its position 

The figure 3 shows the evolution of the natural frequencies, corresponding to the first seven robot modes 

as a function of its position in its workspace. These modes are retained because they are systematically 

present in the four considered positions of the robot. 

Results show that the identified natural frequencies of the considered modes vary between 1.28% 

and 7.76% in function of the robot position, at rest. This demonstrates that experimental modal analysis 

is not sufficient for an accurate knowledge of the dynamic behavior of the machining robot, and leads 

to the necessity of in-service modal parameter identification. Nevertheless, EMA provides an idea about 

the modal model of the robot structure. For this reason, EMA is carried out as a preparation step before 

performing an operational modal analysis of the machining robot ABB IRB 6660. 
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3. Operational modal analysis 

3.1 Experimental setup 

An operational modal analysis is carried out, when robot is in the first position (𝑃1), in order to 

identify modal parameters of the robot in service and compare results with those identifies through 

impact tests . Four different machining operations in the X and Y directions (pass 1, pass 2, pass 3 and 

pass 4), as illustrated in Figure 4, are performed with the ABB IRB 6660 robot, using a three-tooth, 16 

mm end-mill cutting tool. Machining operations are carried out on a square aluminum (2017) piece of 

100 mm per side, at a constant spindle speed of 10000 rpm. The axial and the radial depth of cut are 

equal to 3 and 12 mm, respectively. The feed rate is set to 0.3 mm/rev, resulting in chip loads of 0.1 

mm/tooth. 

 
  

Figure 4: Machining operation when robot is in position 1 and configuration 1 

Two PCB-type tri-axis accelerometers, with a sensitivity of 99.9 mV/g and 101.2 mV/g respectively, 

are mounted on the spindle head in the X and Y directions. Four each pass, two acceleration signals are 

recorded simultaneously using the LMS TEST.Lab acquisition system. The rotational spindle speed is 

equal to 10000 rpm, so harmonic components will be multiple of 166,66 Hz. It is clear in Figure 5, the 

first harmonic frequency is around 166 Hz. 

 
Figure 5: FFT of the measured acceleration in the x direction in pass 1 and presence of harmonics 

associated to the machining process 

2.2 Operational modal identification by the Transmissibility Function Based 

(TFB) method 

The operational modal analysis method based on transmissibility functions, proposed by Devriendt 

et al. [5], is the only OMA technique able to identify modal parameters in presence of preponderant 

harmonic components during machining process [6-7]. 

A transmissibility function is defined as the ratio between the motion response 𝑋𝑖
𝑘(𝜔) and the reference 

motion response 𝑋𝑗
𝑘(𝜔) under a single force located at k. 
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𝑇𝑖𝑗
𝑘(𝜔) =

𝑋𝑖
𝑘(𝜔)

𝑋𝑗
𝑘(𝜔)

 
(3) 

 

From the measured acceleration signals during the cutting path, four transmissibility functions are 

calculated: 
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(4) 

Transmissibility functions cross each other at the resonant frequencies, corresponding to the poles of the 

rational transmissibility functions ∆𝑇𝑖𝑗
−1. 

 

∆−1𝑇𝑖𝑗
𝑘𝑙(𝜔) =

1

𝑇𝑖𝑗
𝑘(𝜔) − 𝑇𝑖𝑗

𝑙 (𝜔)
 

(5) 

 

When considering the TFB method, modal parameters are obtained from the transmissibility functions. 

In this case, six rational transmissibility functions ∆𝑇𝑖𝑗
−1 are calculated: 
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(6) 

 

Theoretically, not all of the zeros of ∆−1𝑇𝑖𝑗
𝑘𝑙 are the system's poles. In Figure 6, the six rational 

transmissibility function are illustrated. The red dashed lines indicate the location of the harmonic 

frequencies. It’s clear that in ∆𝑇𝑖𝑗
−1 most of the harmonics are reduced or even eliminated. Hence, the 

rational transmissibility function contains harmonic components in addition to the system poles. 
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Figure 6: Rational transmissibility function ∆𝑇𝑖𝑗

−1 and presence of harmonic components 

It is therefore necessary to distinguish the physical poles of the system from spurious ones. For this 

reason, this two steps identification procedure is proposed: 

 

a. Step 1: Stabilization diagram 

Stabilization diagram shows the stability of the poles as a function of ∆𝑇𝑖𝑗
−1 and as a function of 

increasing model order were used to distinguish the spurious modes from the physical poles. The 

identification of the modal parameters is performed by applying the frequency domain estimator 

"PolyMAX" to ∆𝑇𝑖𝑗
−1.Then, the modes corresponding to the order "n" are compared to the lower order 

modes "n-1". If the modal parameters variation doesn’t exceed the defined tolerances (variation of 5% 

in frequency and 5% in damping ratio corresponding to the identified pole), the mode is considered 

stable and indicated by the letter (s), otherwise it is unstable and indicated by the letter (o). 

The sum ∆−1𝑇 of the six measured functions ∆𝑇𝑖𝑗
−1 is plotted when the stability diagram is generated, 

in order to take the robot behavior in its entirety. 

∆−1𝑇 = ∆−1𝑇12 + ∆
−1𝑇23 + ∆

−1𝑇34 + ∆
−1𝑇14∆

−1𝑇13 + ∆
−1𝑇24 (7) 

 

The figure 7 shows the stabilization diagram, established for an order varying from 33 to 72. 
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Figure 7: Stabilization diagram ( s: stable pole, o: unstable pole) 

The stabilization diagram is considered in order to identify the physical poles and to separate the digital 

poles. However, some modes are identified and verify the frequency and damping stability criteria, 

although they are not structural modes. This is largely due to the fact that the ∆𝑇𝑖𝑗
−1 functions contain 

modes that are not related to the robot's modal behavior. 

 
b. Step 2: Selection of the system’s poles by means of singular value decomposition of the 

transmissibility matrix 

To select only the correct system poles, the following transmissibility matrix T is considered, and a 

singular value decomposition is performed. 

 

𝑻 = [
𝑇𝑥𝑦
1 𝑇𝑥𝑦

2

𝑇𝑥𝑦
3 𝑇𝑥𝑦

4 ] 
(8) 

 

At the system poles 𝜆𝑟, the rank of the transmissibility matrix is equal to one. Consequently, 𝜎1(𝑠) > 

𝜎2(𝑠) ≥ 0. The peaks of 
1

𝜎2 
 as a function of frequency indicate the system's poles. Thus, from this curve, 

we obtain the information on the location of the robot's natural frequencies. 

 

 
Figure 8: Selection of the system’s poles by means of singular value decomposition 

When applying the singular value decomposition of the proposed transmissibility matrix, all of the 

harmonics are eliminated and only the correct poles are selected, as shown in Figure 8. The modal 

parameters identified through an EMA and an OMA approach (TFB), when robot is in position 1, are 

illustrated in Table 2. 
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 AME AMO  

Mode Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%) 

1 11.09 1.70 10.29 2.54 

2 16.98 1.25 ---- ---- 

3 23.54 1.44 22.69 0.29 

4 ---- ---- 38.04 0.24 

5 43.30 3.69 49.96 0.45 

6 ---- ---- 56.98 1.24 

7 61.09 3.40 63.67 3.58 

8 ---- ---- 75.50 0.48 

9 ---- ---- 93.67 0.91 

10 136.76 3.11 134.04 0.25 

11 155.08 2.24 141.24 2.55 

12 177.71 4.40 182.37 0.98 

13 213.09 2.26 190.27 0.45 

14 ---- ---- 252.05 0.31 

15 285.25 5.16 ---- ---- 

16 ---- ---- 316.48 0.53 

17 359.37 0.57 346.35 0.43 

18 407.62 1.01 ---- ---- 

19 457.66 0.59 424.82 0.31 

20 511.65 0.96 512.25 0.19 

21 553.82 0.99 595.55 0.18 

Table 2: Identified modal parameters of the robot ABB IRB 6660 in position 1 and configuration 1 

through an EMA/OMA 

Firstly, an evolution of the identified modal parameters from the rest state to the machining state, can 

be noticed, due to the spindle rotation and the significant changes in the robot dynamic behavior. Also, 

structural modes which are not identified through experimental modal analysis, appear through the 

operational modal identification analysis. This proves that the energy delivered by the impact hammer 

is not sufficient to excite all of the structural poles of the machining robot ABB IRB 6660. Generally, 

the damping ratios, in service, are strongly reduced compared to those identified at rest. This is due to 

the tool/piece interaction that makes the robot structure more rigid. These results illustrate the 

importance of the modal parameters identification, in machining conditions. Although, the EMA is of 

great value in order to obtain a modal model as a reference for the validation of the modal parameters 

obtained, in service. 
 

Conclusions 

The evolution of the machining robot performance as a function of its position and the orientation 

of the tool center point is important in order to ensure stability during machining operations. This paper 

aims at characterizing the dynamics change of the robot dynamical behavior through several points of 

the workspace. Especially the evolution of its modal parameters for different configurations of the 

workspace is analyzed. 

In this paper, the modal identification of a machining robot is proposed. This analysis is done, 

principally, in two stages. Firstly, the identification is conducted when robot is at rest, in different 

configuration in its workspace. Frequency analysis showed a small change in owns way their four 

configurations depending on the position. Results make it possible to evaluate the evolution of its modal 

behavior at rest and introduce the need to identify modal parameters of the robots in service. Thereafter, 

the operational modal analysis of the machining robots with the transmissibility function based method 

(TFB) was studied. The TFB method is adequate for machining conditions because of its ability to 

distinguish structural poles from spurious ones [7]. Modal parameters identified from an OMA are 
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different from those identified through an EMA. This is because the conditions of the machining robot 

at rest are not the same from its real conditions during machining, due to numerous differences such as 

the command influence and the machining interaction with the workpiece. 

In perspective, an analysis of the measured vibration responses will be made in order to highlight the 

dynamic behavior in different work configurations of the robot, under machining process. Monitoring 

the evolution of the robot modal parameters in its workspace, in service, is one of the main insights of 

this future work.  
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Abstract 
The 3-D tip clearance refers to the three-dimensional space between the probe end face and turbine blade tip 
surface, which contains more abundant fault information than the traditional one-dimensional tip clearance. 
In this paper, an approach for demodulating of the three-dimensional (3-D) tip clearance of turbine blades is 
presented using BP neural network optimized by genetic algorithm (GA). Through the static calibration 
experiments, the ratios of outer circle voltage to inner circle voltage of three units from the optical fiber 
probe are used as the training and test data for demodulation. The maximum errors of the radial displacement 

0z , the axial angle   and the circumferential angle   demodulated by the demodulation model based on 
BP neural network optimized by GA are 0.1321mm, 0.9875° and 0.6456°, respectively. The mean square 
errors of the radial displacement 0z  , the axial angle   and the circumferential angle   are 0.0006mm, 
0.0528° and 0.0266°, respectively. The experiment results show that this demodulation method have an 
excellent precision, which can fulfil the requirements of the 3-D tip clearance detection and provide a basic 
guarantee for the fault diagnosis of turbine blades. 

 
1 Introduction 

As we all know, the health monitoring and fault diagnosis of the aero-engine have always been research 
hotspots and that of the aero-engine turbine blades are very important, which have been studied by many 
researchers. The monitoring of tip clearance of turbine blades is often used for both the active control and 
fault diagnosis, and it’s an effective and significant monitoring method. Nevertheless, the traditional tip 
clearance of turbine blades refers to the radial displacement, which contains limited fault information of 
turbine blades. Xie et al. have presented the 3-D tip clearance of turbine blades which refers to the three-
dimensional space between the probe end face and the surface of the turbine blade tip [1]. Teng et al. have 
utilized the 3-D tip clearance as the fault information carrier of turbine blades and have analysed the 
response characteristics of its characteristic parameters to a typical crack fault of the high pressure turbine 
blade by a finite element method [2]. Xiong et al. have researched on the response characteristics of the 3-D 
tip clearance of turbine blades to axial displacement of turbine rotor under the crack failure [3]. As a new 
fault feature carrier, the 3-D tip clearance contains more fault information than the traditional tip clearance 
and can reflect the health status of aero-engine turbine blades more comprehensively. 

In order to monitor the 3-D tip clearance of aero-engine turbine blades, Xie et al. [4] have designed an 
optical fiber probe with three two–circle coaxial bundles based on intensity modulation and have researched 
its output characters. Based on this optical fiber probe, Zhang et al. [5] have built an optical fiber 
measurement system for the 3-D tip clearance of the aero-engine turbine blades and successfully 
demodulated the 3-D tip clearance from the output signals from the optical fiber probe using BP neural 
network. Xie et al. [6] have proposed a new demodulation technique for the 3-D tip clearance based on the 
ratio of the difference in the signal intensities between any two sensing units of the optical fiber probe. This 
demodulation method requires high consistency for the three sensing units of the optical fiber probe and an 
additional fast search algorithms must be needed. 

The signals acquired from the optical fiber probe with three two-circle coaxial optical fiber bundles are 
modulated simultaneously by the distance and inclination angles between the optical fiber probe end face and 
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the reflective surface. Therefore, it is difficult to demodulate the 3-D tip clearance from the optical fiber 
probe output signals. In this study, an approach for demodulating of the 3-D tip clearance of turbine blades is 
proposed based on BP neural network optimized by GA. This method combines the fitting ability of BP 
neural network and the global search ability of GA, and can improve the demodulation accuracy of the 3-D 
tip clearance, which provides a possibility for the subsequent fault diagnosis of turbine blades using the 3-D 
tip clearance. 

 

2 Demodulation method 

2.1 Demodulation method based on BP neural network  

The back propagation (BP) neural network algorithm is a multi-layer feedforward network trained 
according to error back propagation algorithm and is one of the most widely applied neural network models 
[7]. In theory, any input and output function can be fitted when the appropriate structure and parameters of 
the neural network are chosen. Similarly, demodulation of the 3-D tip clearance is equivalent to fitting the 
input and output function of the optical fiber probe, which can be achieved through BP neural network. This 
study utilized an optical fiber probe with three two-circle coaxial bundles, of which the output signals are the 
ratios of the outer circle voltage to inner circle voltage corresponding to the three units respectively [8]. In 
order to demodulate the 3-D tip clearance from the output signals of the optical fiber probe, a three-layer BP 
neural network was used in this study. The input of the demodulation model based on BP neural network is 
the three ratios from the optical fiber probe and the output is the value of the 3-D tip clearance. The number 
of BP neural network input units is 3n   and the number of output units is 3m  . The number of hidden 
units 1s  is estimated according to the formula [9]: 1s n m a   , where a  is an integer between 1 and 10. 
The value of 1s is between 4 and 13, which is taken as 10 in this model according to the demodulation effect. 
The activation function between input layer and hidden layer is chosen as ‘tansig’ (Hyperbolic tangent 
sigmoid transfer function). The activation function between hidden layer and output layer is chosen as 
‘purelin’ (Linear transfer function). Figure 1 shows the structure of the three-layer BP neural network used in 
this study. 1r , 2r , 3r  refer to the three ratios corresponding to the three units of the optical fiber probe, 
respectively. 0 , ,z    refers to the radial displacement, the axial angle and the circumferential angle, 
respectively. 

Input layer

.
.
.

Hidden layer

Output layer

1r

2r

3r



0z



1( 10)s   
Figure 1: The BP neural network structure 

 
The initial weights and thresholds are selected randomly in the traditional BP neural network, which 

seriously limits the precision and convergence speed of the network training and makes the network easily 
fall into local extremum. In order to improve the convergence speed of traditional BP neural network, GA 
was used to optimize the weights and thresholds of BP neural network in this study. 

 
2.2 Genetic algorithm 

Genetic algorithm is a computational model that simulates the natural evolution of Darwin's biological 
evolution theory and the biological evolution process of genetics. It is a method to search for optimal 
solutions by simulating natural evolutionary processes. The main steps of GA are as follows： 

(1) Encode the parameters that need to be optimized to form a chromosome. 
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(2) Initialize population and related parameters such as crossover probability, mutation probability and 
population size. 

(3) Calculate the fitness of each individual in the existing population. 
(4) Select the candidate individuals based on the fitness using roulette wheel selection. As usual, the 

individual with high fitness is more likely to be selected than the individual with low fitness.  
(5) Generate new individuals according to pre-set crossover probability. 
(6) Generate new individuals according to pre-set mutation probability. 
(7) Repeat generational process until a termination condition has been reached. 
Because the search of GA only relays on the fitness not the gradient information of objective function, 

GA is fit for the problems that are complex and nonlinear. Therefore, GA is used to optimize the weights and 
thresholds of BP neural network in this study and it can improve the training accuracy and convergence 
speed of BP neural network.  
 

2.3 Demodulation method based on BP neural network optimized by GA 

There are some typical limitations of the BP neural network: The error is not sensitive to the change of 
the weights. The gradient descent algorithm is generally very slow. The number of iterations is large. The 
convergence speed is slow and the output of the neural network is easily trapped in the local minimum. As a 
global optimization algorithm, GA can compensate the deficiency of BP neural network to improve the 
accuracy of demodulation model. After determining the structure of BP neural network by the input and 
output, the initial weights and thresholds of BP neural network are encoded to generate the individuals and 
the length of individuals of the GA can be determined. Subsequently, by means of the selection, crossover 
and mutation, the best fitness value corresponding to the individual is obtained. Next, the BP neural network 
obtains the optimal initial weights and thresholds provided by the GA and predicts the demodulation output 
after the network has been trained [10-12]. 

As shown in Figure 2, the process of optimizing BP neural network by GA mainly includes [13]:  
(1) Determine the structure and parameters of BP neural network. 
(2) Optimize the initial weights and thresholds of BP neural network by GA. 
(3) Continue the training of BP neural network after obtaining the optimal initial weights and thresholds. 
(4) Predict the demodulation output using BP neural network. 

Y
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Termination criterion met?

Termination criterion met?

Predictive output

Update the weights and 
the thresholds

Calculate error

Acquire  optimal   
weights and thresholds

Initialize the weights and the 
thresholds of BP neural network
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BP neural network

Initialize population

Use the training error of BP 
neural work as the fitness 

Selection 

Crossover 

Mutation 

Calculate the fitness 

Input data

Data pre-processing
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Figure 2 Flow chart of BP neural network optimized by GA 

 
The data obtained through the calibration experiments, which contain the ratios from the output of the 

optical fiber probe and the 3-D tip clearance corresponding to the ratios, are used to build the demodulation 
model based on BP neural network optimized by GA. In other word, the three ratios ( 1 2 3, ,r r r ) obtained by 
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the optical fiber probe and the calibrated 3-D tip clearance ( 0 , ,z   ) set by adjusting the calibration table are 
used as the input and output of the demodulation model. The BP neural network is composed of three input 
units, three output units and one hidden layer with 10 units. The population size, crossover probability and 
mutation probability of GA are 20, 0.8, and 0.1, respectively.  

 

3 Experiments and analysis 

3.1 Calibration experiments 

As shown in Figure 3, the 3-D tip clearance consists of the radial displacement 0z , the axial angle   and 
the circumferential angle  , which are the vertical distance between illuminating fiber of Unit0 and the 
reflective surface, the intersection angle at x-axis direction between Unit0 and the reflective surface, and the 
intersection angle at the y-axis direction between Unit0 and the reflective surface [6]. The calibration table 
consists of a stage for adjusting radial displacement and two stages for adjusting angle. Different 3-D tip 
clearance between the probe end face and the reflective surface can be simulated through adjusting the radial 
displacement and two inclination angles of the calibration table. The range of the radial displacement of the 
calibration table is from 0mm to 10mm with the accuracy of 0.01mm. The range of the inclination angle of 
the calibration table in both direction is from -15° to +15° with the accuracy of 0.1°. 

The steps of calibration experiments are as follows: 
(1) Determining calibration points 
According to the variation range of the 3-D tip clearance of the turbine blade under typical failure [14], 

the calibration range of the radial displacement is from 1.4mm to 2.5mm at interval of 0.02mm and the 
calibration range of the inclination angle in both direction is from -0.4° to 2.6° at interval of 0.02°. The total 
number of the calibration points are 14336. 

(2) Calibrating the required points 
According to the 3-D tip clearance need to be calibrated, the radial displacement stage and both the two 

inclination angle stages of the calibration table are adjusted manually. The output signals, three ratios of 
outer circle voltage to inner circle voltage with respect to the 3-D tip clearance is recorded. 

(3) Pre-processing the calibration data 
In order to prepare for training BP neural network and building the demodulation model of the 3-D tip 

clearance, the acquired calibration data are pre-processed based on the basic rules of the output from the 
optical fiber probe. 

 

 
Figure 3 Calibration table for the 3-D tip clearance 

 
3.2 Data pre-processing 

The raw data of this study obtained according to the above calibration experiments have 14336 sets. 
Figure 4 (a), (b) and (c) show the raw data in the three-dimensional coordinate system of unit0, uint1 and 
unit2, respectively. The x-axis, y-axis and z-axis represent the axial angle, circumferential angle and the ratio 
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of the outer circle voltage to inner circle voltage, respectively. In the picture, each layer represents the data 
measured at the same radial displacement and the radial displacement of the upper layer is larger than that of 
the lower layer. As indicated by the red circle marks, the calibration data are erroneously fluctuant due to the 
instability of the hardware circuitry of the detection system. These calibration data, which can’t correctly 
reflect the input and output relationship of the optical fiber probe, will affect the demodulation accuracy of 
the neural network. Therefore, a simple processing method was utilized to deal with it. According to the 
experiment data, the ratios of the outer circle voltage to inner circle voltage of each unit increase with the 
increase of the radial displacement under the same axial angle and circumferential angle. Therefore, for each 
unit, the ratios of the outer circle voltage to the inner circle voltage and that of the adjacent radial 
displacement are compared in turn and the data that doesn’t satisfy the aforementioned rules are eliminated. 
After the pre-process, 13157 sets of data are left, and 11000 sets of data are selected as the training data and 
the left are used as the test data.  
 

 
Figure 4 The raw data collected by the calibration experiments 

 
3.3 Analysis of demodulation results 

It can be seen from Figure 5 that when the neural network training target error is the same, the epochs of 
the traditional BP neural network are 90, and the epochs of the BP neural network optimized by GA are 20. 
Obviously, the epochs of BP neural network optimized by GA are significantly less than that of traditional 
BP neural network, and the convergence speed of BP neural network optimized by GA is fast.  

 

 
Figure 5 Neural network training error curve 

 
Figure 6 shows a comparison between the predicted output of the 3-D tip clearance demodulated based 

on BP neural network optimized by GA and the expected output corresponding to that. According to the 
comparison results, it’s obvious that the demodulation model based on BP neural network optimized by GA 
can demodulate the 3-D tip clearance from the output signals of the optical fiber probe and fulfil the 
requirements of the 3-D tip clearance detection system. The detailed analysis is presented as follows 
combined with the maximum error and the mean square error. 
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Figure 6 Comparison of the predicted output and the expected output of the 3-D tip clearance 

 
Demodulated based on the traditional BP neural network, the maximum error of the radial displacement, 

axial angle and circumferential angle are 0.047mm, 0.49° and 2.32°, respectively. The mean square error of 
the radial displacement, the axial angle and circumferential angle are 0.010mm, 0.13° and 0.36°, respectively 
[5]. As shown in Figure 7, the maximum error of the radial displacement, axial angle and circumferential 
angle using the demodulation model based on BP neural network optimized by GA are 0.1321mm, 0.9875° 
and 0.6456°, respectively. The mean square error of the radial displacement, axial angle and circumferential 
angle are 0.0006mm, 0.0528° and 0.0266°, respectively. The comparison of the demodulation accuracy 
between BP neural network and BP neural network optimized by GA (GA-BP) is shown in Table 1. 

 
Figure 7 Demodulation error distribution of the 3-D tip clearance 

 

Algorithm 
The maximum error The mean square error 

z0 (mm)  (°)  (°) z0 (mm)  (°)  (°) 

BP 0.047 0.49 2.32 0.010 0.13 0.36 
GA-BP 0.1321 0.9875 0.6456 0.0006 0.0528 0.0266 

Table 1 The accuracy of BP and GA-BP 
 

From the error analysis above, the demodulation model based on BP neural network optimized by GA 
has greatly improved the demodulation accuracy of circumferential angle and the maximum demodulation 
error is reduced from 2.32° to 0.6456°. In terms of the mean square error, the 3-D tip clearance demodulation 
accuracy based on BP neural network optimized by GA is an order of magnitude higher than the traditional 
BP neural network. The reasons why the maximum error of demodulating the 3-D tip clearance is relatively 
large contain the presence of dark current in the photoelectric conversion circuit, human error caused by the 
manual adjustment of the calibration table, and fluctuations of the light source caused by power fluctuations. 
In order to reduce the maximum demodulation error and make the training data of neural network more 
reliable, the static calibration system needs to be improved from the above aspects in the future.  

In summary, the demodulation model based on BP neural network optimized by GA has a better 
performance and a higher accuracy than the demodulation model based on traditional BP neural network. 
 

4 Conclusion 
In this paper, an approach for demodulation of the 3-D tip clearance of turbine blades has been presented 

based on BP neural network optimized by GA. The large amount of data collected by the calibration 
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experiments are used as the training data and test data of the neural network after data pre-processing. The 
mean square error of the 3-D tip clearance demodulated based on BP neural network optimized by GA are 
(0.0006mm, 0.0528°, 0.0266°), which is an order of magnitude lower than that based on traditional BP 
neural network. The demodulation results indicate that the demodulation method can fulfil the basic 
requirements of the optical fiber detection system and provide the basis for the subsequent real-time 
detection of the 3-D tip clearance on the rotor laboratory bench. The maximum error of the 3-D tip clearance 
demodulated based on BP neural network optimized by GA are (0.1321mm, 0.9875°, 0.6456°).The main 
reason of the relatively large errors is that the hardware circuit of the static calibration system is not stable 
enough. The subsequent improvement of that can greatly improve the stability and accuracy of the 
calibration data, which can further reduce the maximum error of the 3-D tip clearance demodulation. 
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Abstract 
The 3-D tip clearance has some advantages over the traditional radial tip clearance in the fault diagnosis of the 

turbine blade crack. The research on the variation mechanism of the 3-D tip clearance is of great significance, 

but previous researches only focused on the steady state condition of the aero-engine, lacking considerations 

of the aero-engine acceleration process. In this study, a numerical model of high pressure turbine blisk was 

established, and the centrifugal load, thermal load and aerodynamic load of the aero-engine, varying with time, 

were considered in this model. Besides, the cracks with different length and location were added to the trailing 

edge of the blade, and the 3-D tip clearance of cracked blades was calculated. The results show that there are 

some obvious distinctions in the 3-D tip clearance between a normal blade and cracked blades, which can 

reflect blade crack information accurately and effectively. The results also indicate that the 3-D tip clearance 

is promising in fault diagnosis of the turbine blade crack. 

 
1 Introduction 

The aero-engine is known as the heart of an airplane, providing power for the flight. The turbine is one of 

key components of the aero-engine, whose health status directly affects the safety and stability of the airplane. 

One crucial parameter to monitor the health status of the turbine is the blade tip clearance, which has a 

significant influence on the performance of the turbine [1]. The efficiency of the turbine can be obviously 

improved by decreasing the tip clearance, and the fuel consumption of the aero-engine can be reduced as well 

[2]. However, if the value of the tip clearance is too small, the catastrophic rubbing fault may happen to the 

turbine. Therefore, the tip clearance can reflect the operational status information of the turbine. 

The tip clearance usually refers to the radial distance between the blade tip surface and the inner surface 

of the casing. Due to the blades are subjected to large centrifugal loads, thermal loads and aerodynamic loads 

when the turbine is running, the blades are prone to failure, and the crack is the most typical fault of the turbine 

blades. The crack will cause the deformation of the turbine blade, which will further lead to the changes in the 

tip clearance. Thus, blade crack information can be obtained by monitoring the tip clearance. 

For the purpose of diagnosing the blade crack fault through the tip clearance, it’s very crucial to research 

the variation mechanism of the blade tip clearance. Many researches have been done by numerous scholars 

and experts. Lattime and Steinetz of NASA Glenn Research Center [3] have pointed out that the loads affecting 

the tip clearance of the high pressure turbine include engine loads and flight loads. Kypuros [4] and Harish [5] 

have estimated the tip clearance value of the turbine blade by establishing simplified mathematical models of 

the tip clearance, which take into account the radial deformation of the turbine blade, disk and casing. Chapman 

[6] has established a universal and realistic high pressure turbine tip clearance model, which has been 

integrated with a gas turbine engine simulation system to build a test platform for investigating engine 

performance by adjusting the tip clearance. 
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At the same time, many researchers have studied on the fault mechanism and diagnosis method of the 

crack. Poursaeidi [7] and Wassim [8] have investigated the causes of the blade crack initiation through the 

mechanical, metallography and chemical analysis, and the stress and strain values of a cracked blade have been 

obtained by performing a finite element analysis. In regard to the diagnosis method of the blade crack, the 

blade tip timing technique has been extensively studied [9-12]. Zhang [13] has proposed an approach for the 

blade crack diagnosis, combining with the blade tip time technique and the tip clearance information. 

However, the previous researches on the variation mechanism of the tip clearance only concerned about 

the one-dimensional radial tip clearance. In fact, the deformation of a blade becomes more complicated when 

there is a crack on the blade, which will lead to three-dimensional spatial characteristics of the tip clearance, 

so the tip clearance is three-dimensional actually, such as Figure 1. Besides the radial clearance, there are two 

more angles which are called axial angle and circumferential angle respectively. Zhang and Tei proposed the 

3-D tip clearance and researched on the effect of blade crack on the 3-D tip clearance [14]. But the variation 

of the 3-D tip clearance was studied only in constant turbine conditions. 
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axial angle α 

circumferential angle β 

the inner surface 
of the casing
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circumferential 
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Figure 1: The 3-D tip clearance of a cracked turbine blade 

 

Actually, in the aero-engine acceleration process, the rapidly increasing of turbine loads can easily lead to 

the crack propagation. Therefore, it’s necessary to research the variation mechanism of a cracked blade during 

the acceleration process. In this study, first, numerical models of the fluid flow passage with a blade and the 

high pressure turbine blisk with the blade crack were established. Second, multi-loads including the time-

varying centrifugal load, thermal load and aerodynamic load were applied to the model to compute the 

deformation of the turbine blisk, and then the 3-D tip clearance was calculate. Finally, the variation rule of the 

3-D tip clearance of cracked blades in the aero-engine acceleration process was obtained, and the effect of the 

crack length and location on the 3-D tip clearance was analysed. 

 

2 Numerical method 

2.1 Geometrical model and grid 

The simplified 3-D geometries of the flow passage with a blade and the blisk are shown in Figure 2. Ansys 

BladeGen was used to create the computational domain of the fluid flow analysis, which included only one 

rotor blade shown as Figure 2(a). The turbine blisk consisted of 60 blades, but the sector with only one blade 

was created to analyse the 3-D tip clearance in order to reduce the amount of the calculation. The geometry of 

the blisk was used in both the thermal analysis and the structural analysis, shown as Figure 2(b). 

Flow

Flow

 
(a) The flow passage with one blade      (b) The turbine blisk 

Figure 2: The 3-D geometries of the flow passage with one blade and the turbine blisk 
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In order to investigate the variation mechanism of the 3-D tip clearance of cracked blades, several blade 

cracks with different length and location were added to the trailing edge of the turbine blade in this study, as 

shown in Figure 3. Three cracks with the length of 1mm, 3mm and 5mm were added to the turbine blade at 

the same location of 0.1H from the blade root, where H is the span of the turbine blade, as shown in Figure 

3(a). Moreover, three cracks at different locations of 0.1H, 0.5H and 0.9H with the same length of 5mm were 

added at the trailing edge of the turbine blade, as shown in Figure 3(b). 

0.1 H 0.5 H 0.9 H

1mm 3mm 5mm

 
(a) Cracks with different length                                         (b) Cracks at different location 

Figure 3: Different cracks at the trailing edge of the turbine blade 

 

In this study, ANSYS TurboGrid was used to generate the structured hexahedral grid for the computational 

domain of the fluid flow analysis. A total of 120 layers of grids were generated along the span-wise direction 

and 50 layers of grids were inserted to the blade tip region, and the total number of elements was more than 

2×106. Furthermore, in order to accurately obtain the thermal and flow characteristics of the computational 

domain, the grid within the boundary layers was refined to ensure y+ was equal to 1 at the blade surface. Figure 

4(a) presents the computational grids of the fluid domain with a blade. 

Crack

 
(a) The computational grids of the fluid domain                 (b) The grid of the blisk and the crack front 

Figure 4: The computational grids of the fluid domain and the turbine blisk 

 

As for the thermal analysis and the structural analysis, the tetrahedral grid was generated for the geometry 

of the turbine blisk as shown in Figure 2(b). The grid around the crack front was refined to obtain accurate 

calculation results, as shown in Figure 4(b). Furthermore, the fracture mesh was inserted to generate the crack 

grid and pre-meshed crack was used in this study. The fracture mesh is only supported in the structural analysis, 

with which the mechanical properties of the cracked blades can be simulated more accurately. 

 

2.2 Grid independence of the fluid flow analysis 

In order to ensure the reliability of the results of the fluid flow analysis and determine the appropriate 

number of elements to be used, a grid independence test was performed. Table 1 lists the detailed comparison 

of several grids with different number of nodes. The heat transfer coefficient is defined as  w awh q T T  , 

where q  is the heat flux of the wall surface. wT  and awT  are the constant wall temperature under the isothermal 

boundary conditions and the adiabatic wall temperature under the adiabatic boundary conditions, respectively. 

The area-averaged heat transfer coefficient on the blade surface and its relative error was calculated as shown 

in Table 1. The relative error between the heat transfer coefficient of the No. 4 grid and that of the No. 3 grid 

is less than 1%, thus the No.4 grid was used for the computational domain in the fluid flow analysis. 
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No. Number of nodes Heat transfer coefficient (W/(m2K)) Relative error (%) 

1 926250 5510.3362 - 

2 1226890 5166.788 6.2346 

3 1602110 5097.8388 1.3345 

4 2096280 5112.9162 0.2958 

5 2758200 5135.254 0.4369 

6 3612500 5148.3241 0.2545 

Table 1: Area-averaged heat transfer coefficient on the blade surface 

 

2.3 Boundary conditions 

The time-varying loads in the aero-engine acceleration process need to be determined to analyse the 

variation mechanism of the 3-D tip clearance of a cracked blade. As shown in Figure 5(a) and (b), the inlet 

total temperature, inlet total pressure and outlet average static pressure of the turbine were defined with regard 

to the fluid flow analysis. Figure 5(c) shows the rotating speed of the turbine rotor. To reduce the amount of 

calculation, the duration of the acceleration process was reduced to one second, and all of the parameters were 

assumed to vary with time linearly. 

 
(a) The inlet temperature           (b) The inlet and outlet pressure             (c) The rotating speed 

Figure 5: Time-varying loads in the aero-engine acceleration process 

 

The surface temperature and pressure distributions of the blade obtained from the fluid flow analysis were 

imported into the thermal analysis and the structural analysis as boundary conditions, respectively. The body 

temperature distribution of the blisk, as the result of thermal analysis, was also imported into structural analysis 

to calculate the deformation of the blisk. Because only a sector of turbine blisk was used in the thermal and 

structural analysis, the cyclic symmetry boundary was defined on the sector of the turbine blisk. 

 

2.4 Monitoring locations on the tip surface 

After the structural analysis of the turbine blisk, the deformation at the blade tip surface needs to be 

measured to calculate the 3-D tip clearance. Four monitoring locations were chosen on the blade tip surface 

and each one consisted of three monitoring points, arranged in an isosceles right triangle as shown in Figure 

6. Monitoring locations 1~3 locate at the leading edge, mid-chord and trailing edge of the blade tip respectively, 

and the distance between two monitoring points in the y axis and z axis direction is 2mm. Monitoring location 

4 also locates at the trailing edge, but the distance between two measuring points is 0.8mm because of the thin 

thickness of the trailing edge. On each monitoring point, a vertex is created so that the deformations of the 

monitoring point in x, y and z directions can be measured. 

Blade tip surface

1 2

3

4

 
Figure 6: Monitoring points on the blade tip surface 
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3 Results and discussion 

3.1 The 3-D tip clearance of a cracked blade in the acceleration process 

A cracked blade with the length of 5mm at the location of 0.1H from the blade root was analysed. The 

blade tip deformations at four monitoring locations (shown in Figure 6) were measured, and the 3-D tip 

clearance in the aero-engine acceleration process was calculated as shown in Figure 7. It should be noted that 

the radial tip clearance was represented by the radial deformations of the turbine blisk because the deformation 

of the casing was not considered in this study. 

 
         (a) Axial angle                      (b) Circumferential angle               (c) Radial deformation 

Figure 7: The 3-D tip clearance of a cracked blade in the acceleration process 

 

In the aero-engine acceleration process, both the axial angle and circumferential angle decrease with time. 

Though the radial deformation of the blisk increases with time, the actual radial tip clearance still decreases 

because the casing is not as large in deformation as the blisk. At the same time, comparing the axial angle and 

circumferential angle at the monitoring locations 1, 2, and 3, the maximums of the two angles appear at the 

trailing edge (monitoring location 3), and the values of the two angles get smaller when the monitoring 

locations are away from the trailing edge of the blade. Therefore, the closer the monitoring points are to the 

blade crack, the more sensitive the 3-D tip clearance is to the crack failure. 

However, the monitoring location 4 are much closer to the trailing edge than the monitoring location 3, 

but the axial angle and circumferential angle are much smaller at the monitoring location 4. So comparing with 

the 3-D tip clearance at the monitoring location 4, the 3-D tip clearance at the monitoring location 3 is more 

sensitive to the crack because the distance between the two monitoring points of the monitoring location 3 is 

larger. Thus, the distance between the two monitoring points have a significant effect on the sensitivity of the 

3-D tip clearance to the blade crack, and the distance of 2mm is better than that of 0.8mm in this study. 

 

3.2 The effect of the crack length on the 3-D tip clearance 

Three cracks with different length at the same location (shown in Figure 3(a)) were analysed to study the 

effect of the crack length on the 3-D tip clearance. From the aforementioned analysis, the 3-D tip clearance of 

the monitoring location 3 is more sensitive to the crack fault than the 3-D tip clearance of the other monitoring 

locations, so the blade tip deformations at the monitoring location 3 are obtained to calculate the 3-D tip 

clearance, and the results are presented in Figure 8. 

 
         (a) Axial angle                      (b) Circumferential angle               (c) Radial deformation 

Figure 8: The 3-D tip clearance of the fault blades with different crack length at the monitoring location 3 
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The radial deformation of the normal blade and the cracked blades are almost the same, but there are some 

differences between the normal blade and the cracked blades in the axial angle and circumferential angle. 

Comparing the normal blade with the cracked blade with the crack length of 1mm, the axial angle and 

circumferential angle of the two blades are nearly the same, but with the increase of the crack length, the axial 

angle and circumferential angle of the cracked blades also increase obviously. The crack has a great effect on 

the stiffness of the blade, and the longer the crack length is, the smaller the blade stiffness becomes. Therefore, 

in the identical acceleration process, the blade with a longer crack has a larger deformation, and also has larger 

axial angle and circumferential angle. 

 

3.3 The effect of the crack location on the 3-D tip clearance 

In order to study the effect of the crack location on the 3-D tip clearance, three cracks at different location 

with the same length (shown in Figure 3(b)) were analysed. As mentioned above, the sensitivity of the 3-D tip 

clearance to the crack is the highest at the monitoring location 3, thus the 3-D tip clearance of the normal and 

cracked blades at the monitoring location 3 are presented in Figure 9. 

 
         (a) Axial angle                      (b) Circumferential angle               (c) Radial deformation 

Figure 9: The 3-D tip clearance of the fault blades with different crack location at the monitoring location 3 

 

It is extremely hard to tell the differences between the normal blade and the cracked blades from the radial 

deformation, but the cracked blades at different location have different axial angle and circumferential angle. 

As shown in Figure 9, the axial angle and circumferential angle of the normal blade are the smallest compared 

with the axial angle and circumferential angle of the other cracked blades. Besides, the axial angel and the 

circumferential angle get larger when the location of the crack gets closer to the blade root. 

Under the thermal load, centrifugal load and aerodynamic load, the bending and torsional deformations 

will happen to the turbine blade, and the most severe bending and torsional deformations occur at the location 

of the crack because of the low stiffness at the crack. At the same time, the deformation of the part above the 

crack of the blade has an effect on the axial angle and circumferential angle. Therefore, the closer the crack is 

to the blade root, the larger the deformation of the blade, resulting in the increase of the axial angle and 

circumferential angle. Thus the maximums of the axial angle and circumferential angle occur at the location 

of 0.1H from the blade root in this study. 

Both Figure 8 and Figure 9 show the radial deformation of the normal blade and the cracked blades are 

almost the same, but the axial angle and circumferential angle are obviously different. So the 3-D tip clearance 

indeed contains more abundant fault information than traditional radial tip clearance, which can be used to 

fault diagnosis of the turbine blade crack in the further. 

 

4 Conclusions 

In this study, the numerical models of the flow passage with one rotor blade and the turbine blisk was 

established to research the variation mechanism of the 3-D tip clearance in the aero-engine acceleration process, 

and the thermal load, centrifugal load and aerodynamic load were added to this model. A normal blade and 

different cracked blades were analysed and four monitoring locations were chosen to study the effects of the 

crack length and location on the 3-D tip clearance. The results show the monitoring location which is closer to 

the trailing edge of the blade, is more sensitive to the crack fault, and the distance between two monitoring 
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points shouldn’t be too small. Both the length and the location of the crack have an effect on the 3-D tip 

clearance. The longer the crack and the closer the crack is to the blade root, the larger the axial angel and the 

circumferential angle, however, the radial deformations of normal and cracked blades are almost the same in 

the identical acceleration process. The 3-D tip clearance contains abundant fault information and can be used 

to the fault diagnosis of the blade crack, which will be further investigated in the future. 
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Abstract
The present paper aims at evaluating the influence of nonlinearities on the dynamic response of an helicopter
on the ground. Indeed, the helicopter on the ground might be faced to resonance and instability conditions that
could lead to high vibration levels. Nonetheless, under the effects of nonlinearities, the dynamical behaviour of
the aircraft could have substantial changes in which quasi-periodic and/or chaotic motions can occur. Poincaré
section and bifurcation diagrams are evaluated for different helicopter configurations in order to highlight the
dynamical behavior of helicopters with nonlinearities in the fuselage.

1 Introduction

Concerning the helicopter dynamics, one aims avoiding any rise of vibration level during operational con-
ditions. For this purpose, the comprehension of the dynamics of the mechanical components and how they
interact with the environment are necessaries. Beyond these aspects, the interaction of the helicopter with the
terrain during take-off and landing can cause multiples resonances which might lead to ground resonance with
fatal consequences [13, 2].

In order to suppress the ground resonance, among other existent means, elastomeric dampers can play a
significant role in the stability of the aircraft. Therefore, the modeling of the elastomeric lag dampers have
received increasing attention, specially concerning its nonlinear characteristics [1, 6, 4]. For example, Gandhi
and Chopra [1] place an additional nonlinear spring in series with the linear, parallel spring and dashpot in order
to represent the elastomeric dampers. Other possibility is to consider the inclusion of pneumatic elements on
the aircraft suspension for absorbing and dissipating the vibrating energy [13].

Nonetheless, these dissipative elements and some structural ones introduce nonlinearities that might sub-
stantially affect the dynamics of the helicopter [5].

It is known from the literature that rotating machines under nonlinear operating characteristics could attain
other than the periodic motion, predictable for linear systems, such as the quasi-periodic or chaotic motions.
Recently, Varney and Green observed the presence of quasi-periodic and chaos on the rotor dynamics by as-
suming rotor-stator contact [14]. Indeed this phenomenon is observed since precisely manufactured bearings
are used and thus reduced clearances are imposed for improving the performance of the rotating machines.

Under the hypothesis of nonlinearities for the ground resonance modelling purposes, this paper aims ver-
ifying, their effects on the helicopter response. if at certain operating conditions or design properties, the
appearance of non-periodic and/or chaotic motion are reached. The helicopter considered contains nonlinear
spring stiffness on the fuselage displacements (longitudinal and lateral). The four-bladed rotor consider rigid
structures having only lead-lag oscillations. Parametric analyses combined with examination of the Poincaré
maps and bifurcation diagrams, the nonlinear dynamical behavior of the helicopter was assessed.
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2 Mechanical Modeling

The physical model of the helicopter is based on that presented by [10]. The hypotheses assumed are
sufficient for computing accurately (through a linear model) the ground resonance instability of an helicopter
with four (Nb = 4) articulated bladed rotor.

The aircraft is considered having two translation movements, along x and y-directions (i.e.: x(t) and y(t),
respectively) for the fuselage and the angular displacement of each blade (jk (t),k=1..4). Moreover, it is sup-
posed that the fuselage and blades structures are sufficiently rigid in which they can be modeled as rigid body.
No aerodynamic effects are take into account and the rotor speed is assumed constant W.

The blades are connected to rotor hub through a hinge axis. At each blade hinge, a set of spring (Kbk) and
damper (Cbk) elements is placed. The landing skids are represented by a set of nonlinear elastic and linear
viscous damping forces in both directions of the fuselage movements. Indeed, the nonlinear elastic function
can represent the different sources of nonlinearities, e.g.: suspensions forces, lading skid structure or the soil
restitution force. In the nonlinear elastic force acting on the fuselage, the k f x and k f y are the coefficients
of the linear terms, while knlx and knly are the coefficients of the cubic ones. Others polynomial orders are
not considered in the present work. The damping coefficients are c f x and c f y along the x and y directions,
respectively. The Figure 1 sketches the mechanical model adopted for the helicopter.

Figure 1 – Sketch of Helicopter Mechanical Model

The equations of motion are obtained through the Lagrange equation [10, 9, 15] applied at the kinetic and
potential energies expressions and by considering the virtual work of the non-conservative forces on the system.
Under the hypothesis of small angular displacements jk(t), the trigonometric terms can be reduced to linear
expressions when small perturbation theory is considered [9]. Thus, the linear matrix equation, Eq. 1, can be
easily determined as:

M(t)ü+G(t)ü+K(t)u = Fnl (1)

with M(t), G(t) and K(t) are the mass, damping / gyroscopic and stiffness matrix. The vector u corresponds
to [x(t),y(t), j1(t), j2(t), j3(t), j4(t)]

T which are the helicopter degrees of freedom. The Fnl represents the
vector of nonlinear terms of the helicopter model.

It is important to note the time dependence of the matrices since the blades angular displacements are
given on a rotating frame while fuselage movements are described in the inertial one. Using the Multi-blade
coordinate transformation as showed in [12, 11], such time dependent matrix might be reduced to one with
constant coefficients. The new vector of generalized coordinates q(t) is obtained through the following relation:
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q(t) = T(t) u(t) (2)

with,

[T(t)] =

2
6666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 cos(Wt) sin(Wt)
0 0 1 -1 -sin(Wt) cos(Wt)
0 0 1 1 -cos(Wt) -sin(Wt)
0 0 1 -1 sin(Wt) -cos(Wt)

3
7777775

(3)

Once the Eq.3 has been replaced in Eq.1, after some mathematical manipulations, the helicopter dynamics
is given by:

MCq̈+GCq̇+KCq = Fnl (4)

where,

MC =

2
666664

m f +Nb mb 0 0 0 -2 b mb 0
0 m f +Nb mb 0 0 0 2 b mb
0 0 Nb (mb b2 + Izb) 0 0 0
0 0 0 Nb (mb b2 + Izb) 0 0

-2 b mb 0 0 0 Nb/2(mb b2 + Izb) 0
0 2 b mb 0 0 0 Nb/2(mb b2 + Izb)

3
777775

(5)

GC =

2
666664

cx 0 0 0 0 0
0 cy 0 0 0 0
0 0 Nb cb 0 0 0
0 0 0 Nb cb 0 0
0 0 0 0 Nb/2cb -Nb (mb b2 + Izb)W
0 0 0 0 Nb (mb b2 + Izb)W Nb/2cb

3
777775

(6)

KC =

2
666664

k f x 0 0 0 0 0
0 k f y 0 0 0 0
0 0 Nb (kb +W2abmb) 0 0 0
0 0 0 Nb (kb +W2abmb) 0 0
0 0 0 0 kt - cb WNb/2
0 0 0 0 cb WNb/2 kt

3
777775

(7)

with kt = Nb/2(kb + W2(abmb� Izb� b2 mb)) and q = [x(t),y(t), td(t), t0(t), t1c(t), t1s(t)]
T . The variables

td(t), t0(t), t1c(t), and t1s(t) are related to rotor modes of vibration and they replace the blade displacements
on generalized coordinate vector. Through this coordinate transformation, the Eq. 1 becomes time-invariant
(c.f. Eq.4).

3 Linear Stability Analysis

Several authors have addressed to the stability analysis of the ground resonance previously by considering
linear dynamical models [15, 4]. Indeed, the stability analysis of the ground resonance will contribute for
further comprehension of the behavior of the nonlinear dynamical system. Therefore, present section aims
at verifying the stability of the linear LTI system by neglecting the nonlinear efforts Fnl from Eq. 4. The
mechanical data for the stability analysis are given in Tab. 1.

It is important to note that the natural frequencies and damping factors written in Tab. 1 are defined with
respect to the helicopter dynamical properties at rest with null rotor speed. Thus,

wx =
q

k f x/(m f +Nb mb) wy =
q

k f y/(m f +Nb mb) wb =
q

kb/(Izb +b2 mb) (8)

cx = 2xxwx(m f +Nb mb) cy = 2xywy(m f +Nb mb) cb = 2xbwb(Izb +b2 mb) (9)
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Property Value Units
m f 2902 kg
mb 31.9 kg
Izb 259 kg m2

a 0.2 m
b 2.5 m

wx 6p rad/s
wbk ( k = 1 . . .4) 3p rad/s

xx = xy = xbk 0.1 %

Table 1 – Helicopter’s Data

The stability boundaries are verified through the eigenvalues (r) of the linear system investigated for several
rotor speed values (i.e., 0W 10 Hz) and for three fuselage configurations, i.e: wy = [6, 7, 8] Hz. The results
are illustrated in Figs. 2a to 2c for wy = 6, 7 and 8 Hz, respectively.

(a) wy = 6p (b) wy = 7p

(c) wy = 8p

Figure 2 – Eigenvalue Evolution with respect to rotor speed and fuselage configurations.

One notice from each graph the changes of the natural frequencies and exponential decay constant of the
dynamical system once the parameter (rotor speed) varies. For the three fuselage configurations analyzed,
clearly it can be pointed out the existence of unstable regions (i.e., R(r) > 0) for certain range of rotor speed
values. These unstable regions are associated with the natural frequencies of the fuselage at rest. As the nat-
ural frequencies of the fuselage along x and y directions become dissimilar (c.f. Fig. 2b-2c), the instability
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regions evolve leading to clearly two distinct zones: each one is related to each direction of fuselage oscil-
lation. Nonetheless, when the fuselage frequencies are equals (i.e., wx = wy), the instability regions are then
superposed. Specially concerning this last case, it is observed that two pairs of eigenvalues become unstable
simultaneously, indicating the existence of double hopf bifurcation. Otherwise, only one pair of eigenvalue
becomes unstable and therefore a single hopf bifurcation happens.

In order to determine the critical rotating speeds for each fuselage configuration, Figure 3 shows the maxi-
mum real part of the eigenvalues with respect to the rotor speed. The boundaries of instabilities are determined
by inspecting when positive values are attained for the real part of the eigenvalues. The instability region for

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3 – Instability boundaries for different fuselage configurations

wy = 6p are given for rotor speed values within 4.25 < W < 5.3 Hz. When the fuselage natural frequency is
changed to wy = 7p , the critical speeds are within 4.33 < W < 5.87 Hz. Finally, when wy = 8p , there are two
unstable regions identified, i.e., 4.35 < W < 5.08 Hz and 5.23 < W < 6.56 Hz.

4 Bifurcation Diagrams

The present section aims at analyzing the effects of the nonlinear efforts on the dynamic response of the he-
licopter. Indeed, the restoring forces from the pneumatic components presented in some helicopter suspensions
can be expressed through nonlinear functions [13, 7, 6]. In addition, for some cases, the interactions between
the soil and aircraft might cause nonlinear efforts [2]. For this purpose, one assumes a pure cubic polynomial
function acting along the fuselage displacements with the following coefficients knlx = knly = 1x105N/m3.

Since hopf bifurcation points on the helicopter dynamics were evidenced from the linear stability analysis
(c.f. section 3), the literature shows that hopf bifurcation might leads to periodic motion which characterizes
the limit cycle oscillations. Nonetheless, the periodic motion can evolve under control parameter variation
and becomes into non-periodic one. It can further evolve from the non-periodic motion to a chaotic motion
[3]. Therefore, Poincaré sections and bifurcation diagrams are evaluated from the time history data obtained
through the numerical integration of the nonlinear equations (c.f., Equation 4). The initial condition is the same
for all simulations and it considers a shift of 0.1m for the fuselage displacements from the equilibrium position,
while others displacements and speeds are nulls. The Poincaré section is considered into the plane tc = 0.
Henon algorithm is used for precisely obtain the points intercepting the Poincaré section and, therefore, used
to obtain the bifurcation diagrams [8].

Figures 4 and 5 describe the bifurcation diagram for x(t) and y(t) with respect to W for the helicopter
with identical natural frequencies of the fuselage (i.e., wx and wy are 6p rad/s). Since the Poincaré sections
are evaluated in the plane tc = 0, and thus for the bifurcation diagrams, one observes that y(t) reaches higher
amplitude level than x(t), accordingly to Figures 4a) and 4b). This fact might be explained since the variables

6



x(t) and tc(t) are in-phase motion, while y(t) is quarter phase with tc(t). Moreover, concerning Figure 5 at
W = 4.865 Hz, the values of x(t) and y(t) are concentrated at some points instead of being uniformly distributed,
as it can be evidenced for the whole rotor speed conditions analyzed. A closer investigation is carried out for
comprehending the differences between the two cited cases. Therefore, the Poincaré section and the phase
subspace for W = 4.85 Hz and W = 4.865 Hz are represented in Figures 6 and 7. Clearly, by comparing the
Poincaré sections for two speed conditions, the Figure 6a represents a quasi-periodic behavior while at Figure 7a
a periodic signal with nine harmonics is observed.

(a) (b)

Figure 4 – Bifurcation Diagram for wx = 6p and wy = 6p: a) x(t) and b) y(t)

(a) (b)

Figure 5 – Detailed Bifurcation Diagram for wx = 6p and wy = 6p: a) x(t) and b) y(t)

The helicopter is now considered to have an asymmetry between the frequencies of the fuselage i.e., the
oscillations along x-direction is at wx = 6p rad/s while in y-direction it is at wy = 7p rad/s. The influence of
the nonlinearity in the fuselage on the helicopter is evidenced through the bifurcation diagram in Figure 8. One
observes that, as W increases, the bifurcation amplitude levels for x and y are also augmenting. At W = 5.4
there is no movements noted, since the helicopter are nearly stable (c.f. Figure 3). Moreover, the amplitudes
of the bifurcation section get increased for rotor speeds higher than 5.66 Hz. Figure 9 compares the evolution
of the Poincaré sections for different rotor speed values in order to highlight the increment of the amplitude
level on the bifurcation diagram. A closer inspection on the time response is done through Figure 10 in which
a slight modulation of the signal for W = 5.59 Hz is observed; while for W = 5.82 Hz the signal modulation has
significantly changed.

Finally, the helicopter with high asymmetry level on the fuselage frequencies is investigated, i.e., wx = 6p
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(a) Poincaré Section (b) Phase Subspace

Figure 6 – Poincaré section and phase subspace at W = 4.85 Hz of an helicopter with wx = 6p and wy = 6p
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(a) Poincaré Section (b) 3D- Phase Subspace

Figure 7 – Poincaré section and phase subspace at W = 4.865 Hz of an helicopter with wx = 6p and wy = 6p
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(a) (b)

Figure 8 – Bifurcation Diagram for wx = 6p and wy = 7p: a) x(t) and b) y(t)
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Figure 9 – Comparison of Poincaré Sections for Helicopter with wx = 6p and wy = 7p
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(a) W = 5.59 Hz
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(b) W = 5.82 Hz

Figure 10 – Temporal Responses of the helicopter with wx = 6p and wy = 7p - D Poincaré section points

rad/s and wy = 8p rad/s. The bifurcation diagram for such dynamical system under the nonlinear efforts
are presented in Figure 11. The reader should note that for 5.08  W  5.23 Hz there is no amplitudes on
the bifurcation diagram since the helicopter is stable and thus the response converges to zero (static equilib-
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rium). Moreover, similar to the previous helicopter configuration analyzed (i.e., helicopter with wx = 6p rad/s
and omegay = 7p rad/s), there exist some regions in the bifurcation diagram in which the amplitudes growth
abruptly. A closer inspection of some of these regions is carried out. For this purpose, the Poincaré sections
were investigated for W = 5.9, 6.0, 6.34 and 6.48 Hz. Beyond the amplitude level that changed as function of
the rotor speed, one observe that for W = 6.34 Hz the points on the Poincaré section are distributed along likely
two circumferences.

(a) (b)

Figure 11 – Bifurcation Diagram for wx = 6p and wy = 8p: a) x(t) and b) y(t)
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Figure 12 – Comparison of Poincaré Sections of a Helicopter with wx = 6p and wy = 8p

5 Conclusions

The present paper aims at analyzing the effects of the nonlinear efforts on the dynamic response of the
helicopter on the ground. The nonlinearities might change the behavior of the dynamical system, in which
other than periodic motion is attained. Through the analysis, this paper investigated if non-periodic or chaotic
motions are observed for the helicopter.

For this purpose, Poincaré sections and bifurcations diagrams were done for different helicopter configu-
rations. Three different sets of fuselage’s natural frequencies were evaluated, accordingly to the value of wy

adopted.
The bifurcation diagrams highlight that for some rotor speed values, an abruptly rise in amplitude was

observed for asymmetric fuselage configuration. For some exception cases where periodic motion was attained,
non-periodic motion occurs for several rotor speeds values.
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Abstract 
In the framework of the seismic verification of plant equipments, the determination of the seismic 

loads applied to motor-driven pump anchorages is optimised. A rough justification is usually first 

performed using the 1 degree-of-freedom pseudo-static analysis, including a 1.5 multi-mode factor. 

The question is asked about the opportunity to decrease the multi-mode factor value, by comparison 

to response spectrum analysis, here considered as the reference method. Comparative seismic 

analyses are performed on more and more complex dynamical systems and excitations; seismic 

responses of a thin square plate, motor, pump, motor-driven pump unit connected or not to suction 

and delivery pipes are thus successively determined, under 1D and 3D excitations. Two different 

motor-driven pump units are studied: flexible with vertical axis and stiff with horizontal axis. The 

quantities of interest are the shearing and tearing loads, deduced from seismic loads at anchorage 

points. 

 
1 Introduction 

The motor-driven pump units are designed so that they can resist without damage to seismic excitations: 

stability, integrity and functionality must thus be saved during and after the earthquake. In the case of the 

seismic verification of an installed motor-driven pump unit, since the soil excitation levels considered during 

decennial visits in nuclear industry are higher and higher, the objective is to perform more realistic 

simulations of resulting loads applied to anchorages, compared with those carried out for design purpose. 

Two ways are so followed: optimise the excitation loads and optimize the determination of the equipment 

response. 

The purpose of the paper concerns the influence of the methods used to determine the resulting inertial 

seismic loads at equipment anchorages, typically the equivalent static method by comparison with the 

response spectrum analysis, here considered as the reference method. Two different motor-driven pump units 

are studied: flexible with vertical axis and stiff with horizontal axis. The quantities of interest are the 

shearing and tearing loads, deduced from seismic resulting loads at anchorage points. 

Principles of the two seismic equivalent static and response spectrum analyses are presented, with their 

application on motor-driven pump units. The one-degree-of-freedom pseudo-static method is usually applied 

to quickly design the motor-driven pump units with no needs to elaborate a finite element model; a multi-

mode factor is then associated to ensure conservatism. Using a finite element model, linear response 

spectrum analysis is widely used to design and justify buildings and equipments regarding seismic risk. It 

allows the probable maximum response of scalar quantities of interest (acceleration, displacement, stress, 

force, moment) due to seismic excitation, which is represented by directional floor response spectra.  
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Comparative seismic analyses are performed on more and more complex dynamical systems and excitations; 

seismic responses of a thin square plate, motor, pump, motor-driven pump unit connected or not to suction 

and delivery pipes are thus successively determined, under 1D and 3D excitations. Recommendations are 

then given about the relevancy of the 1.5 multi-mode factor value for motor-driven pump units. 

 

2 Theoretical backgrounds 

2.1 Types of seismic analyses 

Seismic analyses used in the design of nuclear safety-related structures are normally conducted using linear, 

elastic methods. In some cases, nonlinear or inelastic seismic analyses may be conducted to obtain more 

realistic results. Two types of linear elastic methods are commonly used: equivalent static and dynamical 

methods. Among dynamical methods are response spectrum and linear time history analyses, with the 

seismic input motion respectively represented by floor response spectrum, and floor acceleration, velocity 

and displacement, functions of time. 

 

2.2 The pseudo-static method 

2.2.1 Literature review 

Principle 

The pseudo-static method (or Static Coefficient Method SCM, or Equivalent Static Method ESM, or  

Equivalent Static Lateral Force Method), is a simplified seismic analysis, that represents the effect on a 

system, structure, component SSC or equipment, of a seismic input motion by an equivalent static force F , 

determined by applying a uniform acceleration maxA to the mass m of the SSC [1]: 

 

                                                                 maxmAF                                                                               (1)     

 

The acceleration can be applied either at the SSC gravity center, as a punctual force, or on a finite SSC 

element model, represented by its mass matrix. 

The dynamic amplification factor   (or multi-mode factor or Equivalent-Static Load Factor (ESLF) [2] is 

applied to take into account the multi-frequency input motion and the multi-modal SSC characteristic, to 

prevent from possible unfavourable dynamic combinations. 

 

Multi-mode factor 

A 1.5 multi-mode factor have been currently used for practical application of the pseudo-static 

method since 1976. NRC has been recommended the 1.5 value since 1981 [3]. Number of studies 

have been performed in order to justify [4][5] or reduce this value. 

 

Application domain 

Geometry: in IEEE, USNRC and ASCE codes, the pseudo-static method is only recommended for structures 

that can be simply modelled (regular horizontal and vertical geometry, equal distribution of mass and 

stiffness, symmetry so that torsional movement are avoided). 

Dynamical behavior: the system is assumed to respond on its fundamental eigenmode [1]. The method is 

applicable if its vibrational behavior is not affected by modes, in every principal directions, with 

eigenfrequency greater than the fundamental one [1]. The method is recommended for systems whose 

vibrational behavior is not far from a cantilever or clamped-free beam behavior [6]. 
 

Conservatism 

The conservatism of the pseudo-static method, with 1.5 multi-mode factor, is evaluated by comparison with 

dynamical seismic analysis methods, generally the response spectrum method. 

Non conservatism can be observe in case of: 
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- dynamical systems with more than 2 resonancies in the amplification domain of the seismic excitation 

spectrum [6]; 

- dynamical systems with local eigenmodes not far from global modes, whose eigenfrequencies are near the 

peak excitation frequency; typically, not use the method if the ratio between local and global 

eigenfrequencies is between 0.5 and 3 [7]. 

 

2.2.2 Practical application to nuclear safety-related pump units 

Comprehensive methodology for nuclear safety-related equipements 

For each direction, the spectral accelerations are determined from floor response spectra, at support 

elevations. The same input seismic motion is applied to all the supports. The reduced damping value is 

generally 5%. 

The spectral accelerations to be used are peak spectral acceleration if the modal SSC characteristics are 

unknown, or ZPA in case of seismic rigid equipment, or spectral acceleration at fundamental SSC frequency 

in case of seismic flexible equipment. 

Equivalent static force is applied the SSC gravity center (the equivalent static method is named 1 degree-of-

freedom pseudo-static method in this case). The  multi-mode factor value is generally taken as 1.5. Total 

response is obtained using quadratic or 100-40-40 Newmark directional combinations. 

 

Determination of quantities of interest of nuclear safety-related pump units 

The quantities of interest are the shearing and tearing loads, deduced from seismic loads at anchorage points. 

The three directional components of seismic inertial loads induced at the SSC gravity center are first 

determined using Eq. (1). The seismic effort torsor ))(),(),(,,,( OMOMOMFFF ZYXZYX  at the 

geometrical center O of the anchorages can then be deduced. After distribution of torsor components on 

bolts, under the assumption of equi-distribution of loads at anchorages, total seismic shearing and tearing 

loads can thus be calculated, depending on the number and location of bolts. 

 

2.3 The linear elastic response spectrum analysis 

2.3.1 Principle 

Based on a finite element SSC model, linear response spectrum analysis allows the probable maximum 

response of scalar quantities of interest (acceleration, displacement, stress, force, moment) due to seismic 

excitation, which is represented by directional floor response spectra. It is based on the combination of 

individual modal responses. To ensure an adequate representation of the equipment dynamical response, all 

the eigenmodes with frequencies less than the zero-period acceleration (ZPA) frequency (and no more) 

should be included. The residual rigid response should be systematically addressed and combined 

quadratically with the modal response combination. Acceptable procedures for combining modal responses 

include the complete quadratic combination (CQC) method and others that account for the correlation 

between closely spaced modes. In case of seismically stiff dynamical system, the response spectrum result is 

but composed of the residual rigid response. When using 3D individual earthquake components (two 

horizontal and one vertical directions), the directional responses should be combined at the last step either by 

the SRSS or the Newmark’s method. 

 

2.3.2 Application to pump shearing and tearing load determination 

The resulting of the nodal reactions is calculated for each anchorage and each direction: 
XF ,

YF  and 
ZF . 

Total shearing load HtotalF can be deduced using: 

 

                                                               
22

YXHtotal FFF                                                                   (2) 

Total tearing load simply is: 

                                                                     ZZtotal FF                                                                             (3) 
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2.4 Comparison methodology 

To validate the methodology of equivalent static and response spectrum comparison, more and more 

complex dynamical systems and excitations are considered. Comparative seismic resulting anchorage 

reactions are presented within 2 steps: nodal reaction torsor, then shearing and tearing loads. Only force 

components are compared: moments relatively to the center of anchorages issued from response spectrum  

simulations are not used for comparison because these moments are not provided by the equivalent static 

method.  

 

3 Application to the dynamical pump component and unit models 

3.1 Seismic excitation 

The spectral accelerations in the three directions are issued from building responses to seismic ground 

motion, at the floor where the pump units are located. The zero-period acceleration is 35.5 Hz; reduced 

damping value is 5%. 

 

  
Horizontal floor spectral acceleration Vertical floor spectral acceleration 

Figure 1: Horizontal and vertical floor spectral accelerations 

 

3.2 The finite element pump unit models 

Two different motor-driven pump units are considered: 

- a seismically stiff pump unit, with horizontal axis; 

- a seismically flexible pump unit, with vertical axis. 

Components are simply represented, including suction and delivery pipes after their first supports, so that the 

first eigenmodes can be represented with satisfactory accuracy, in comparison with experimental modal 

characteristics. The connections between components are represented either thanks sticked surfaces or 

stiffness elements; their values are updated so that they fit the pump eigenmodes in the bandwidth of interest. 

The corresponding finite element meshes are illustrated on Figure 2 and Figure 3. 

 

3.2.1 The horizontal stiff pump unit 

Components of the horizontal-axis pump unit are the pump, bearing, coupling, motor, mounted on a metallic 

frame, solidary with a concrete slab: the whole system length is about 1 meter.  

Boundary conditions are clamping at 6-screw pump locations and 4-screw motor locations for models 

without frame, or clamping at 4-screw locations under the frame. The seismic loads at anchorages are 

determined as the resultant force on the application 0.07 m-diameter discs for screws on motor and pump 

(Figure 2). 
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Fig.2.a: Model without frame Fig.2.b: Motor-pump unit with frame 

 
 

Fig. 2.c: Application discs for screws under 

pump 

Fig. 2.d: Application discs for screws under motor 

Figure 2: The horizontal pump unit: model with its pipes (without frame); model with frame (without pipes) ; 

pump model; motor model 

 

3.2.2 The vertical flexible pump unit 

The vertical-axis pump unit is composed of the pump, bearing support, motor at high part, mounted on three 

concrete studs on low part. The base of the three studs is clamped. The seismic loads at anchorages are 

determined as the resultant force on the higher stud faces. 

 

 

 

Fig.3.a: The vertical pump unit model and its pipe Fig.3.b : The three brackets (top view) 
Figure 3: The vertical pump unit 

 

 

3.2.3 Modal characteristics 

The modal characteristics of the two pump units are presented in Table 1. The first eigenmodes of the 

horizontal pump unit only concern the pipe, conformely to its stiff behavior; the first eigenfrequency 

concerned with the pump unit itself is 65.9 Hz, largely beyond the zero-period acceleration. Concerning the 

vertical flexible pump unit, two pump eigenmodes are present in the amplification area of the floor seismic 
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excitation. Model parameters could be updated so that these two numerical flexion eigenmodes well 

represent the measured corresponding modes (0.9 MAC criterion about and 2.5% frequency gap); cumulative 

modal mass is less than 40% of the total mass in each direction, because the studs do not participate to the 

movement. 

 

 Horizontal stiff pump unit Vertical flexible pump unit 

Mode 

number 

Num. 

eigenfrequency 

(Hz) 

Characte-

risation 

Num. 

eigenfrequency 

(Hz) 

Exp. 

eigenfrequency 

(Hz) 

MAC Characterisation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

4.2 

15.9 

16.3 

19.4 

23.7 

24.4 

25.8 

27.9 

31.7 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

14.5 

18.4 

21.5 

23.7 

29.1 

14.3 

18.3 

21.6 

23.5 

29.1 

 

0.91 

0.86 

Pipe 

1st pump flexion 

2nd pump flexion 

Pipe 

Pipe 

Table 1: Modal characteristics of the pump units in [0 Hz; 35.5 Hz] frequency bandwidth 

 

4 Comparative resulting seismic loads at anchorages 

4.1 Horizontal stiff pump unit 

4.1.1 Motor 

In Table 2 are reported reaction force components and shearing and tearing loads of right back, right front, 

left back and left front anchorages, issued from response spectrum and pseudo-static analyses, respectively 

for 1D X-horizontal and 3D seismic excitation. In the right column is summarized the ratio between pseudo-

static and response spectrum results, concerning the most loaded anchorage (from pseudo-static results). In 

case of the 3D-excitation, SRSS quadratic directional combination is applied. 

 Response spectrum Pseudo-static Ratio 

Right 

back 

Right 

front 

Left 

back 

Left 

front 

Resul-

tant 

 Resul-

tant 

 

1D excitation 

along Y 
XF  (N) -85.7 98.0 88.2 -98.5 0 0 0 0 

YF  (N) -97.8 -91.0 -97.2 -91.7 -377.7 141 565.5 1.4 

ZF  (N) -170.0 -167.1 170.0 167.1 0 0 0 0 

3D excitation 

SRSS 

combination 

HF  (N) 181.9 182.1 182.8 182.3   199.9 1.1 

ZF  (N) 233.7 225.2 233.6 224.9  605  2.6 

Table 2: Horizontal stiff pump unit motor 

1D horizontal Y-axis: reaction force components 

3D excitation: shearing and tearing loads 

Due to the motor stiff behavior, it is checked that, for a 1D-excitation, the resulting load issued from the 4 

nodal reactions at anchorages, as the response spectrum result in the excitation direction, is equal to the 

product of the pseudo-acceleration applied (0.21 g) by the motor mass (183 kg), that is 377 N. As it can be 

theoretically proved, the application of the 1.5 multi-mode factor is not required for the evaluation of this 

quantity of interest. 

The reaction component values are quasi-uniform across the anchorages, that illustrate a relative geometrical 

motor symmetry. 

Orders of magnitude of reaction component values, in the directions orthogonal to the seismic excitation 

direction and relative to the seismic excitation direction, are the same; for a horizontal along X or Y 
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excitation, vertical reaction component values at anchorages are even greater than the horizontal ones. It can 

be checked that the resulting 4-anchorage-reaction components is zero, in the directions orthogonal to the 

excitation direction. 

Comparison of resulting shearing and tearing loads shows that taking into account reaction force 

components, generated in directions orthogonal to the seismic excitation direction, which are calculated by 

response spectrum method and cannot be considered in pseudo-static method, induces a decrease of the 

margin observed in 1D excitation results (ratio 1.1 for shearing loads, less than 1.5 multi-mode factor). 

 

 Right back Right front Left back Left front 

Spec. 

(ESM) 

ESM/Spec Spec. 

(ESM) 

ESM/Spec Spec. 

(ESM) 

ESM/Spec Spec. 

(ESM) 

ESM/Spec 

3D 

excitation 

SRSS 

combination 

ZF  

(N) 

233.7 

(383.3) 

1.6 225.2 

(140.9) 

0.6 233.6 

(604.6) 

2.6 224.9 

(362.2) 

1.6 

Table 3: Horizontal stiff pump unit motor 

3D excitation: tearing loads 

Comparative pseudo-static ESM results at each anchorage 

 

Furthermore, it can be observed that pseudo-static method does not systematically lead to conservative 

values, if we consider the comparative tearing loads at each anchorage, and not only the most loaded 

anchorage. Table 3 shows thus that, under 3-D excitation, variability of tearing load values issued from 

pseudo-static method, relatively to the four anchorages, is high and not coherent with the quasi-symmetry of 

the motor system; at right front motor anchorage, the pseudo-static tearing load value (140.9 N) is even 

lower than the reference one (225.2 N). 

 
4.1.2 Motor-pump unit with frame and pipes 

Similar comparative analyses are performed on the full motor-pump unit model, including frame and suction 

and delivery pipes. In Table 4 are reported reaction force components, and shearing and tearing loads of the 

four application discs for screws, located at the inferior frame face, on right and left sides, under the motor 

and the pump. These quantities of interest are issued from response spectrum and pseudo-static analyses, 

respectively for 1D X-horizontal and 3D seismic excitation. Loads resulting from response spectrum analysis 

are not signed, due to combination of modal responses. 

 Response spectrum Pseudo-static Ratio 

Motor 

right 

Pump 

Right 

Motor 

Left 

Pump 

Left 
  

1D excitation 

along X 
XF  (N) 265.0 333.4 265.4 301.1 596 1,8 

YF  (N) 120.2 71.8 121.5 61.7 0 0 

ZF  (N) 606.5 339.2 581.1 307.8 0 0 

3D excitation 

SRSS combination 
HF  (N) 468.4 457.4 473.9 470.1 1489 3.1 

ZF  (N) 837.0 502.5 809.5 563.1 3086 3.8 

Table 4: Horizontal stiff motor-pump unit with frame and pipes 

1D horizontal X-axis: reaction force components 

3D excitation: shearing and tearing loads 

It can be shown that shearing and tearing loads determined via pseudo-static analysis overestimate the 

response spectrum results (3.1 and 3.8 factors respectively) relative to the most loaded anchorage. 
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4.2 Vertical flexible pump unit 

In Table 5 are reported reaction force components, and shearing and tearing loads, determined as the 

resultant force on the higher stud faces issued for response spectrum evaluation; they are compared with the 

pseudo-static corresponding results, assuming an equal distribution of the loads on the 3 studs. 

 

F components (kN) 

Response spectrum Pseudo-

static 

Ratio 

Bracket 

A 

Bracket 

B 

Bracket 

C 
 Bracket 

A 

Bracket 

B 

Bracket 

C 

1D excitation 

along X 
XF  2.72 1.56 1.84 3.98 1.5 2.5 2.2 

YF  1.82 1.93 1.44 0 0 0 0 

HF  3.27 2.48 2.34 3.98 1.2 1.6 1.7 

ZF  7.51 4.60 5.31 0 0 0 0 

1D excitation 

along Z 
XF  0.38 0.45 0.47 0 0 0 0 

YF  24 69 28 0 0 0 0 

HF  0.45 0.82 0.47 0 0 0 0 

ZF  1.01 1.99 1.12 4.63 4.6 2.3 4.1 

3D excitation 

SRSS 

combination 

HF  4.11 4.28 3.51 5.63 1.4 1.3 1.6 

ZF  8.87 9.05 8.24 33.8 3.5 3.0 4.1 

Table 5: Vertical flexible pump unit 

1D horizontal X-axis: reaction force components 

3D excitation: shearing and tearing loads 

 

Concerning 1D seismic excitation, the 1-dof pseudo-static method overestimates the shearing loads 
HF with a 

1.2 to 1.7 margin, and the shearing loads ZF  with a 2.3 to 4.6 margin, compared with the response spectrum 

method, depending on the stud considered. Concerning the 3D seismic excitation, the margin varies from 1.3 

to 2.1 for the shearing loads and from 2.7 to 4.1 for the tearing loads, depending on the stub considered and 

the directional combination (quadratic or Newmark). 

 

5 Comments – Conclusion 

A series of comparative seismic analyses, based on 1-dof pseudo-static and response spectrum methods, have 

been performed in order to determine resulting loads at anchorages, on: 

- a stiff squared thin plate (not reported here) ; 

- a horizontal stiff motor-pump unit and components; 

- a vertical flexible motor-pump unit. 

Considering the response spectrum method as the reference method, these quantitative results have permitted 

to determine the domain of pertinent applicability of 1-dof pseudo-static method, including 1.5 multi-mode 

factor, for more and more complex excitations and dynamical systems. 
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5.1 Multi-mode factor nature of 1 dof pseudo-static method 

The multi-mode factor has been historically introduced to take into account effects due to multi-frequential 

excitation and multi-modal dynamical system studied (dynamical cumulative effects possibly defavourable): 

its 1.5 value is justified on an academic multi-dof example [4]. In case of seismically stiff system, the use of 

the Equivalent-Static Load Factor is to be evaluated regarding the multi-directional excitation, due to the fact 

that loads generated in a direction orthogonal to the excitation one cannot be reached by the 1-dof pseudo-

static method: the factor is thus proposed to compensate this lack of information. 

 

5.2 Conservatism of the 1 dof pseudo-static method 

It has been checked that, for a 1D mono-supported excitation, the resulting load component in that direction, 

issued from the nodal reactions at anchorages of a flexible multi-modal system, as the response spectrum 

result in the excitation direction, is less than the product of the pseudo-acceleration applied by the system 

mass (equal in case of stiff system). As it can be theoretically proved, the application of the 1.5 multi-mode 

factor is not required for the evaluation of this – and only for this - quantity of interest; in particular, 

displacement, stress, strain, acceleration quantities are not concerned. 

For pump units designed relatively to the most loaded anchorages, the pseudo-static analysis overestimates 

resulting total shearing and tearing loads. On the studied examples, margin relative to tearing loads is greater 

than 1.5, but margin relative to shearing loads can be lower than 1.5 (see Table 2, 1D-excitation along 

horizontal Y axis). 

Several effects can be pointed out as an explanation of discrepancies between the two seismic analysis 

methods: 

- assumptions on geometry and dynamical behaviour (§2.2.1) of the motor-driven pump units are not 

satisfied, for a justified application of the pseudo-static method; representation of this type of equipment by a 

1 dof system is not reliable; 

- reaction load components induced in directions orthogonal to the seismic excitation direction cannot be 

obtained using the pseudo-static method. 

 

5.3 Recommendations 

Based on comparisons with the reference response spectrum method, if a finite element model of the pump 

unit cannot be elaborated, it is recommended not to reduce the 1.5 multi-mode factor for the application of 

the 1 dof pseudo-static method for the early determination of the loads at anchorages.  

Nevertheless, if a finite element model can be available, it is highly recommended to apply the response 

spectrum method instead of the pseudo-static method. More reliable results and consistency can then be 

obtained with the response spectrum response of piping. 

 

5.4 Perspectives 

Considering the time-history method is more representative than the response spectrum method, further 

comparisons will be performed between the 1 dof pseudo-static and the reference time-history analyses, in 

order to possibly reduce the 1.5 multi-mode factor, in case of unavailability of motor-pump unit finite 

element model. 
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Abstract
The industrial solution used today to improve the acoustic performance of a structure is often ensured by the
addition of damping treatments such as elastomer, PVC or bituminous. In the transportation, these materials
increase the costs and mass of the vehicle and have a negative environmental impact. Unlike theses heavy
materials, it is commonly known in the professional standards of automotive designers that foams in vehicle
trim provide damping to the structure. It has been shown that some impregnated PU foam coatings provide
significant and equivalent damping to conventional bituminous materials used in the automotive industry. This
observation makes it possible to extend the function of the trim to vibration damping, in order to mutualize the
both problem (acoustic and vibration) in one treatment. To understand and quantify this dissipation mechanism
involved by adding a porous material to a supporting structure [1], it is proposed to treat the problem from the
angle of an experimental quantification obtained by an inverse problem. The proposed approach is based on the
use of the Force Analysis Technique (FAT) method [2] [3], where the first objective is to locate and quantify
the forces applied to a vibrating structure. In this case, the FAT is designed to define the damping provided by
the foam to the vehicle trim [4] [5].
Keywords : foam, damping, FAT method

1 Introduction

The transport industry is constrained by vehicle weight reduction and the resulting impact on performance.
One of the solutions available is the additional damping treatments such as elastomer, PVC or bituminous. But,
they increase the weight of the vehicle and reduce the benefits of lightening solutions (use of thermoplastic
shell instead of steel panel, reduction in steel thicknesses used for the structure). In previous studies, some
impregnated PU foam coatings provide significant damping to the structure. The viscoelastic damping of these
materials in tension-compression is low and does not explain these performances. The origin of this damping
can be generated by the dry friction at the interface between the foam and the structure. The objective of the
study is also to dissociate the part of the damping generated by the viscoelasticity of the foam and generated by
the relative displacement of the material with respect to the supporting structure.

To measure the dry friction damping at the interface, the Force Analysis Technique (FAT) method [6] [4]
is used to solve the equation of plate motion. With this local method, it is possible to find the damping of the
foam-plate structure in the medium and high frequencies. The Corrected Force Analysis Technique (CFAT)
method [7] [5] is used in high frequencies to improve measurements. A combination of these two methods
increases the frequency range studied. The system studied is a viscoelastic material (PU foam) placed on a
steel plate. Using a LASER vibrometer, the foam-plate contact area is swept to measure the vibration field. The
results obtained for the loss factor and the stiffness term are given for with and without foam on the plate.
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2 Theory

2.1 Equation of motion of a plate

The equation of motion for a thin isotropic plate in harmonic regime for bending stress is

D

(
∂ 4w
∂x4 +

∂ 4w
∂y4 +2

∂ 4w
∂x2∂y2

)
−ρhω2w = F(x,y,ω), (1)

where D is the bending stiffness, ρ the density, h the thickness, ω the angular frequency, w(x,y) the transverse
displacement field and F(x,y,ω) the distribution of the external forces exerted on the plate. Flexural rigidity

D =
E(1+ jη)h3

12(1−ν2)
, (2)

introduces the Poisson coefficient nu and the Young’s modulus complex E(1+ jη) where η is the loss factor,
which is the damping factor of the system. The equation of motion (1) is called local, because it is valid at any
point in the structure and independent of boundary conditions. Considering an area where no force is applied
(F(x,y,ω) = 0), the equation (1) becomes

D
ρhω2

(
∂ 4w
∂x4 +

∂ 4w
∂y4 +2

∂ 4w
∂x2∂y2

)
= w. (3)

Knowing the displacement field w(x,y) of the structure and its spatial derivatives ∂ 4w
∂x4 ,

∂ 4w
∂y4 and ∂y4w

∂x2∂y2 , it is
possible to identify the term D

ρhω2 , which may vary with the frequency. The real and imaginary parts of this
term give the stiffness and damping of the structure. The characteristics of the structure can be determined by
a measurement of the displacement field and the estimation of spatial derivatives, however the measurements
made are noisy. The FAT and CFAT methods are used to reduce measurement noise and retrieve essential
information.

2.2 CFAT and FAT methods

The CFAT method regularizes the inverse resolution using the natural filter of discretization by finite dif-
ferences in the equation of motion. The CFAT method initially allows to find the force distribution on a known
structure using the measured displacement field, in the case it is not the force distribution, but the characteristics
of the structure which are studied. This method consists in introducing correction coefficients into the equation
of motion, in order to benefit from the filtering effect of the finite difference scheme while correcting the bias it
introduces into the resolution. The equation of discretized motion corrected

D
ρhω2

(
µ̃4δ 4x

i j +2ν̃4δ 2x2y
i j + µ̃4δ 4y

i j

)
= wi j (4)

presents schemas with finite differences

δ 4x
i j =

1
∆x4 (wi+2, j−4wi+1, j +6wi, j−4wi−1, j +wi−2, j),

δ 4y
i j =

1
∆y4 (wi+2, j−4wi+1, j +6wi, j−4wi−1, j +wi−2, j),

δ 2x2y
i j =

1
∆x2∆y2 (wi+1, j+1−2wi+1, j +wi+1, j−2wi, j+1 +4wi, j−2wi, j−1 +wi−1, j +2wi−1, j +wi−1, j−1),

and corrective coefficients

µ̃4 =
∆4k4

f

4[1− cos(k f ∆)]2
,

ν̃4 =
∆4k4

f

8[1− cos
(

k f ∆√
2

)
]2
− µ̃4.
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The corrective terms require knowing the number of natural bending waves of the plate

k4
f =

ρh
D

ω2. (5)

This wave number k f is unknown because it depends on the characteristics of the plate. Characteristics
are identified iteratively, with a first iteration without correction (i.e. by imposing µ̃4 = ν̃4 = 1), to provide a
first initial value of k f . At each iteration the value of D

ρh is identified, which provides a new estimate of k f .
According to the system, the number of iterations is not the same, in our case 10 iterations are necessary to
ensure the convergence of the inverse problem. The advantage of the CFAT method is that the regularization is
done automatically during the inverse resolution. It is not necessary to calibrate a regulation parameter, unlike
the RIFF method. However, it has a certain validity range given by

f min(∆) = π
8∆2

√
Eh2

12ρ(1−ν2)
f min(0.0133) = 3.985 ·103 Hz,

f max(∆) = π
2∆2

√
Eh2

12ρ(1−ν2)
f max(0.0133) = 1.594 ·104 Hz,

where ∆ represents the spatial discretization between two points. To identify the characteristics of the plate
over the entire frequency range, it is necessary to use in combination with the RIFF method for low frequencies.

The FAT method is used to regularize errors due to measurement noise using a low-pass filter in wave
number. First of all, it is necessary to window the signal to soften the discontinuities at the limits and avoid the
negative effects of the filter (Gibbs phenomenon). This is done using a Tukey window

Ψ2D
i, j = Ψ1D(xi, j− x1,1−2∆x) ·Ψ1D(yi, j− y1,1−2∆y), (6)

where

Ψ1D(x) =





0.5
(

1− cos
(

πx
α

))
si 0≤ x < α,

1 si α ≤ x < L−α,

0.5
(

1− cos
(

π(x−L+2α)
α

))
si L−α < x≤ L,

0 sinon .

(7)

with L = Lx−4∆x and

α =

{
λc si L≥ 2λc,
L
2 sinon.

The filter, which removes high wave numbers, is weighted by a Hanning window to keep the local aspect of
the method. This filter eliminates the amplification of errors associated with the inverse problem. The spatial
response of the filter

h(x,y) =





k2
c

4π2xyN f

(
1+ cos

(
kcx
2

))(
1+ cos

(
kcy
2

))
sin(kcx)sin(kcy) si x et yε

[
−2π

kc
, 2π

kc

]
,

0 sinon ,
(8)

introduces a normalization parameter N f , chosen so that
∫∫

h(x,y)dxdy = 1 and a cut-off wave number kc. The
latter is generally chosen in proportion to the natural waves number

kc = a · k f , (9)

where the regulation parameter a is generally set at 4 for very good measurements and 1 for very noisy mea-
surements. In our case, the combination of the FAT method with the CFAT method avoids using a regulation
parameter. Here, the cut-off wave number kc is chosen equal to the bending wave number of the plate k f

determined with the CFAT method.
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3 Experimental validation

3.1 Set-up

To characterize the dry friction damping between the foam and the plate, the temperature (19˚ C) chosen is
lower than the glass transition (55˚ C) of the foam to have the least viscoelastic damping effect. The measure-
ment is made on a structure composed of a steel plate (700x700x2 mm) suspended at the four ends by elastics,
to approach conditions at the free limits and a foam plate (40x40 cm) simply placed on the plate. A scanning
laser vibrometer is used to measure the displacement field in the study area (56xx56 cm). The vibrometer is
located below the steel plate, at a distance of 132 cm . The excitation, of impulse type, is applied using an
automatic impactor with an amplitude of 5 N and repeated 3 times for each measurement point. Figure 1 shows
a schema of the experimental set-up.

Figure 1: Experimental set-up

The measurement mesh has 33x33 = 1089 points, with a spatial pitch of about 0.13 cm. The studied
frequency range is up to 10 kHz and the frequency step is 0.78 Hz. A wide frequency range is observed to
measure the effects of foam at low and high frequencies.

The foams used are of the thermoplastic elastomer type, they are normally used for the sound insulation of
vehicles. In this case the study extends to the use of these foams for the vibration damping of a steel structure.
Different foam thicknesses are tested, but only one is compared with the blade plate. Friction at the interface
between the foam and the plate is a dry friction, which may result in a non-linear response of the structure.
In this study, it is not the damping at the interface that is identified, but the global damping of the foam-plate
structure.

3.2 Results

Two measurements are made to obtain the displacement of the plate without foam, then with 11 mm thick
foams. The characteristics obtained for the structure are the stiffness ℜ

(
D
ρh

)
(Figure 2) and shock absorption
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η =
ℑ
(

D
ρh

)

ℜ
(

D
ρh

) (Figure 3) for a frequency range from 400 Hz to 10 kHz.

Figure 2: Stiffness D
ρh of the structure with only the plate and different foam thicknesses

The stiffness for the two configurations varies. The average value of the stiffness is 3,528 m4 · s−2 for the
configuration with the 11 mm foam and 3,454 m4 · s−2 for the bare plate. The difference in stiffness between
the configuration with the foam (98 g) of 11 mm and the bare plate is 7%.

Figure 3: Loss factor η of the structure with only the plate and different foam thicknesses

The damping increases with the foam, mostly at low frequencies. Around 7000 Hz, there is an increase
in the damping for the bare plate. This increase may be related to the vibration mode of the hooks used for
suspension. Further study would reveal the cause of this increase in absorption.
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4 Conclusion

The loss factor obtained after laser vibrometer measurement validates the method (FAT-CFAT) used to
determine the damping of foam placed on a steel plate. In addition, the combination of the FAT and CFAT
method allows the frequency validity range to be extended compared to only used the CFAT method. So,
it isn’t necessary to use an adjustment parameter for the FAT-CFAT method. The results obtained make it
possible to validate both the experimental procedure and the FAT-CFAT method. In order to determine the
origin of the resultant damping, a numerical study is in progress to characterize the damping of the vibration
by the viscoelastic effect of the foam. To decide on the origin of the damping, whether viscoelastic or by dry
friction, the test is compared to the numerical calculation. In order to increase the measurement dynamics,
several modifications of the test method are planned. To limit the damping effect of the free suspension, the use
of a system with supported boundary conditions is considered. In order to increase the damping of the system,
a decrease in the rigidity of the support plate will be studied.
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2016.
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versité du Maine, 2016.
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Abstract
With the increasing number of rotors working at very high angular velocity, it becomes crucial to understand
the dynamic behavior of rotating machineries when going through critical speeds. Models assuming constant
velocity speed are not valid in this case of study since crossing the critical speeds implies necessarily non-
stationary working conditions. The present work offers a new finite element model for rotors working at non-
stationary regime. The rotational speed is introduced to the unknowns of the dynamic problem and six degrees
of freedom are considered on each node. A main focus is given to the study of the coupling between the torsional
and flexural degrees of freedom. This coupling is introduced by the intrinsic gyroscopic effect as well as the
mass unbalance terms. It results in torsional vibrations containing frequency components of twice the excitation
frequency of the mass unbalance as well as frequency components reflecting a modulation with the first bending
natural frequency. We show that when crossing the critical speed, an additional frequency component of four
times the lateral excitaion frequency appears. The coupling is observed through the analytical equations of
motion and confirmed by the numerical simulation.

1 Introduction:

The majority of studies carried on rotordynamics focus either in the lateral behavior of rotating machineries
or in the torsional behavior in seperate ways [1, 2, 3]. Fewer studies has been performed for the exploration
of coupled bending-torsional behavior. However, those studies for coupled behavior are usually made under
some simplifying assupmtions. The mutual influence between transverse and torsional behavior may occur due
to several reasons. The gyroscopic effect is the intrinsic source of coupling for rotating machineries as well
as the mass unbalance. The coupling between lateral and torsional vibrations in rotors may also arise due to
rotor cracks. Another important source of flexural-lateral coupling in rotors is the presence of a gears. One
of the early studies on this topic was made by Bernasconi. If the coupling means a mutual influence between
the lateral and torsional behavior, Bernasconi, in his paper [4], explored only the torsional vibretions induced
by transverse ones. Rao et al [5] explored the effect of the presence of gears on the bending vibrations on the
case of permanent regime. XYShen et al. [6] studied the coupled behavior of flexible rotor with six degrees
of freedom on each node but also limited the study to the stationnary regime for a given speed of rotation Ω.
Al-Bedour [7] Studied the particular case of Jeffcot rotor with no gyroscopic effects and explored the coupling
induced by the mass unbalance. R.Sukkar [8] studied an unbalanced Jeffcott rotor but this time in the presence
of axial load at stationnary and non-stationnary operating conditions. The aim of this paper is to present a
innovative fully coupled model for the study of non-ideal energy source rotors at non-stationnary regime. The
speed of rotation of the rotor is considered as an unknown of the dynamic problem and is included in such
way that it combines at the same time the nominal rigid body rotation Ω and the torsional deformation θt as
following:

θz = Ω+θt (1)
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This way of introducing the degree of freedom θz gives more freedom for the simulation of the rotor
behavior under non-stationnary regime and offers a more realistic way for observing the phenomena related to
the non-ideal energy source rotors, mainly, the sommerfeld effect [9]. The latter is a phenomena that reflects
energy exchanges between the rotational direction and the lateral one and can be observed only if the speed of
rotation is included to the unknowns of the dynamic problem.
In this paper, the lateral-torsional coupling is observed through the analitycal equations as well as the numerical
results.

2 New model for rotordynamics

In this section, we consider a basic rotor made of a shaft, a disk and linear bearings. The excitation of the
rotor is due to the mass unbalance.

disk

Mass unbalance

bearings
shaft

 𝑧
 𝑦

 𝑥

Figure 1: Illustration of the rotor

The finite element method is used to write the equation of motion over a shaft element under the considerd
assumptions. Six degrees of freedom are considered on each node. The displacement vector includes the three
translations and the three rotation leading to an elementary displacement vector of the following form:

{δ e}= (u1; v1; w1; θx1 ; θy1 ; θz1 ;u1; v2; w2; θx2 ; θy2 ; θz2){1,12} (2)

The energitic approach is adopted to calculate the kinetic and strain energy of the different rotor components.
The overall equations of motion are obtained using the Lagrange dynamics and are put in the following form:

(
∑
e
[Me

s ]+ [MD]+ [Mu]

){
δ̈
}
+

(
∑
e
[Ce

s ]+ [GD]

){
δ̇
}
+

(
∑
e
[Ke

s ]+ [KD]

)
{δ}=

{Fext}+∑
e
[Se

s ]+∑
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{Fcoup

se }+
{

Fcoup
D

}
+{FNlu}

(3)
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{
δ̇ e
}
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}
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u(z, t) = {N1(z)}t {δ e
u (t)} ; w(z, t) = {N3(z)}t {δ e

w(t)}

v(z, t) = {N2(z)}t {δ e
v (t)} ; θz(z, t) = {N3(z)}t {δ e

θz
(t)}

(8)

Where [Me
s ], [C

e
s ], [K

e
s ] and [Gyr] are the classical mass, stiffness, damping and Gyroscopic effect matrix.

Matrix [A1] is the ’stiffness matrix’ resulting from the assumption of the non-stationnary regime.{Fext} is the
vector of external efforts and {pe} is the effort applied by the neighbouring elements on the considered one.
Matrices [A2] and [Gyr∗] are related to the gyroscopic effect under non-stationnary regime and would vanish
if the torsional deformation is neglected in the study. Finally, the vector

{
Fcoup

se
}

derives also from the gyro-
scopic effect. More details about the vectors and matrices used in the previous equations is presented in [10]
where it was explained that the gyroscpic effect terms are taking this form due to the considered assumptions
of non-ideal energy source, non-stationnary regime as well as the introduction of torsion in the study. The an-
alytical formulation shows coupling between the lateral and torsional displacements induced by both the mass
unbalance and gyroscopic effect. This coupling will be later explored through numerical simulations.

2.1 Numerical results

We consider the following rotor made of a shaft, a disk, linear bearings and elastic coupling (see fig.2).
The rotor is excited with a mass unbalance situated on the disk.

Elastic coupling

0.3 m

0.02 m

0.16 m

0.03 m

Figure 2: studied rotor

The campbell diagram of the rotor shows two crtical speeds in the speed range between 0rpm and 45000rpm.
The first critical speed Ωcr1 = 2038rpm and the second one is at Ωcr2 = 20388rpm (see fig.3 ).

A linear torque is induced to the rotor. As we can see on the results for the evolution of the instantanious
angular speed as a function of time (see fig.4), the sommerfeld effect takes place when the rotor crosses the
second critical speed. In this case, the energy induced to the rotor is no longer used to increase its speed but
is communicated to the transverse vibrations[11, 12, 13]. The sommerfeld phenomena is usually indesirable
because it causes high lateral vibrations magnitude if not enough damping is present in the structure. It is a
manifestation of the ineraction between the lateral and rotational direction resulting from the lateral-torsional
coupling.The sommerfeld effect couldn’t be observed if the assumption of non-ideal energy source wouldn’t
have been made for the modeling. If not taken into consideration, simulations may lead to an under-estimation
of the lateral vibration.

To see more clearly the coupling between the flexural and torsional displacements, we perfom time-frequency
anylsis to the torsional deformation on the soft element as shown in figure 5. The torsional vibration signal
contains frequencies corresponding to the frequency of excitation relative to the mass unbalance fu as well as
the bisynchronous frequency 2 fu. Also frequencies of fu− fb1 and fu + fb1 are contained in the torsional dis-
placement signal, such as fb1 is the transverse natural frequency at Ωcr2 wich is given by fb1 = 154Hz. Finally,
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only when crossing the second critical speed, a frequency of 4 fu is observed in the time-frequency analysis.
This highlights the possibility of the transverse vibrations to induce torsional ones. The behavior of the tor-
sional vibrations induced by the lateral ones is slightly different when crossing a critical speed in the presence
of the sommerfeld effect as an extra frequency component of 4 fu contibutes to the composition of the torsional
signal.
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Figure 3: Campbell diagram
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𝒇𝒖
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𝟐𝒇𝒖

Figure 5: Time-frequency analysis of torsional vibrations on the second element

3 Conclusion

A new finite element model with six degrees of freedom per node is developed for the dynamic response
analysis of a rotor systems operating at non-stationnary regime. The proposed new dynamic model is build
under the assumption of non-ideal energy source and is a fully coupled lateral-torsional model. The coupling is
introduced by both the intrinsic gyroscopic effect as well as the mass unbalance. The time-frequency analysis
show that the torsional behaviour is slightly different when crossing a critical speed in the presence of the
sommerfeld effect.
The model is build under the less constraining assumptios which extends its use to large case studies. It can be
easily extended to the study of multiple rotors connected between each others by elastic coupling.
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Abstract
In this paper, we propose a technique to enhance and facilitate the output only modal analysis of systems and
structures by using the vector autoregressive (VAR) model. As we have witnessed, the VAR model with its
robustness, accuracy, and noise - excitation resistance is beneficial for output only modal analysis. However,
the VAR model and other parameters models have to deal with the variation of the model orders such as
the frequency stabilization diagram. A grid technique is introduced to classify the natural frequencies and
damping ratios in order to automatically evaluate its stabilization. The combination of the grid technique and
the stabilization diagram will allow to users to have a better perspective of the modal parameters and a more
accurate modes. The method is implemented and built in Matlab as the NAFID-tool which is users friendly
and interactive. Examples on simulations of a MDOF system and on a real structure the applicability of the
technique are illustrated to prove the efficiency of this technique.

1 Introduction

Natural frequencies, damping ratios and mode shapes, called modal parameters, are three important prop-
erties of mechanical systems and structures. Together with mathematical model, they allows us to analyze and
predict dynamic behavior of systems under external excitations. For a mechanical system with several degrees
of freedom, analytical model derived based on dynamic principles can be used to compute these parameters.
However, for complex systems, modal parameters can be obtained using experiments. Although the Finite
Element method (FEM) can be used for this purpose, however, as pointed out in [4], modal parameters for
real-systems estimated by FEM is not accurate enough.

In practice, the well-known technique, called experimental modal analysis (EMA), is often used for this
purpose [5]. By using the EMA technique, both excitation forces (input) and response (output) are used to
identify modal parameters. In many situations, the excitation forces are unknown or cannot be measured. This
leads to another technique for modal parameter identification, called operational modal analysis (OMA) [2]. In
the OMA method, the modal parameters are extracted from the measured response and the excitation forces are
modeled as white noise with zero mean.

The time domain has been found to be more suitable for the OMA method [7]. The AR model for single
output and the VAR model for multi output can be used to estimate modal parameters from the measured
response. The VAR model is proved very robust to identify natural frequencies even it can detect closed modes.
This is because response of the system is measured simultaneously by many sensors.

When using VAR model, the selection of model order is the crucial because the size of the state matrix used
to compute frequencies increases when the model order increases. The criteria proposed in [3] may be used for
this purpose. In [9], a new method based on the concept of optimal model order was proposed for automatically
classifying the modes and identifying the modal parameters.

In this study, the grid techniques is proposed to identify natural frequencies and damping ratios using
measured response only without excitation forces. Basically, the method is developed based on the vector
autoregressive (VAR) model in which the parameter model is obtained using multivariate least-square method.
From the stabilization diagram, stable modal parameters are detected using the grid technique. Based on the
proposed method, a new program, called NAFID-tool, has been implemented in Matlab. This tool can be used
to identify modal parameters

1



This paper is organized as follows. In Section 2, the VAR model is presented in order to establish the state
matrix and to compute modal parameters. In Section 3, the grid technique is addressed for identifying stable
frequencies and damping ratios. Modal parameter identification of some mechanical systems is presented in
Section 4. Finally, conclusions are given in Section 5.

2 Theoretical background

2.1 Vector autoregressive model

In the case of operational modal analysis (OMA), we assume that the excitation is unknown and may be
modeled by Gaussian white noise. Using m sensors, output response of a mechanical system is measured at m
predefined locations with constant sampling time ∆t. The measured output data including n data points can be
expressed by the following matrix

Y =




y1,1 y1,2 y1,3 · · · y1,n
y2,1 y2,2 y2,3 · · · y2,n

...
...

... · · · ...
ym,1 ym,2 ym,3 · · · ym,n


=

[
y[1],y[2],y[3], . . . ,y[n]

]
where y[i] =




y1,i
y2,i

...
ym,i


 (1)

where Y ∈ Rm×n is called as data matrix with n� m and y[i] ∈ Rm×1 is the column i of Y , for i = 1, . . . ,n.
Based on the vector autoregressive model of order p, denoted by VAR(p), as presented in [7, 1, 10], dy-

namical model of the considered mechanical system may be expressed as

y[t+k] = A1y[t+k−1]+A2y[t+k−2]+ · · ·+Apy[t+k−p]+ ek (2)

or equivalence to

y[t+k] =
[
A1,A2, . . . ,Ap

]




y[t+k−1]
y[t+k−2]

...
y[t+k−p]


+ ek (3)

where A j ∈ Rm×m for j = 1, . . . , p are the autoregressive matrices, y[t+k],y[t+k− j] ∈ Rm×1 are vectors of the
current and past response, respectively, and ek ∈ Rm×1 is a residual vector.

2.2 Evaluating parameter matrix

If we consider N consecutive values of the responses, Eq. (3) may be expanded for k = 0, . . . ,N. Therefore,
the relationship between the current response and the previous (past) response is written in compact form as

B = ΦAR+E (4)

where B ∈ Rm×N is the matrix of N responses, ΦA ∈ Rm×pm is the parameter matrix of the system, R ∈ Rpm×N

is the regression matrix of the output, and E ∈ Rm×N is the model error matrix of the system. These matrices
are defined as

B =
[
y[t], y[t+1], . . . , y[t+N]

]
(5)

ΦA =
[
A1, A2, . . . , Ap

]
(6)

E =
[
e0, e1, . . . , eN

]
(7)

R =




y[t−1] y[t] · · · y[t+N−1]
y[t−2] y[t−1] · · · y[t+N−2]

...
...

...
...

y[t−p] y[t+1−p] · · · y[t+N−p]


 (8)



From Eq. (4), the parameter matrix ΦA may be obtained using the multivariate least-square method. This task
is equivalent to compute the right pseudo-inverse of R as [5]

ΦA = BRT
(

RRT
)−1

(9)

In order to avoid computing the inverse matrix, solution of the linear least-square problem can be obtained using
the robust techniques such as QR factorization, singular value decomposition (SVD), and LU factorization. For
example in [8], the authors proposed the use of QR factorization to derive the parameter matrix.

2.3 Modal parameters

Once the parameter matrix ΦA is determined, the state matrix of the discrete system, denoted by Φ ∈ Rpm×pm,
is established as [7]

Φ =




A1 A2 . . . Ap−1 Ap

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




(10)

where I ∈ Rm×m is the identity matrix. Because the state matrix represents the dynamics of the real system, it
can be used to find natural frequencies and damping ratios. Assume that Φ can be decomposed as: Φ =VUV−1

where U ∈ Rpm×pm is the diagonal matrix of eigenvalues and V ∈ Rpm×pm is the matrix of eigenvectors. In
Matlab, the matrix V and U can be found using the following function: [V ,U ] = eig(Φ). Consequently, each
complex eigenvalue Ur,r of the discrete system corresponds to one eigenvalue λr of the mechanical system

λr =
ln(Ur,r)

∆t
(11)

Therefore, natural frequency ωr (rad/s) or fr (Hz) and damping ratio ζr are computed from complex conjugate
pairs of λr as follows

ωr =
√
(real(λr))2 +(imag(λr))2 (rad/s) ⇒ fr =

ωr

2π
(Hz) (12)

ζr =−
real(λr)

ωr
(13)

When the model order p increases, there are more computational frequencies and damping ratios to be found
from Eq. (10) to Eq. (13). That leads to more difficulty in classifying and identifying natural frequencies. The
relationship between model orders and frequencies/damping ratios is described by the stabilization diagram.
Stable frequencies/damping ratios corresponding to ’real’ natural frequencies/damping ratios of the mechanical
systems can be identified from this diagram. Other frequencies and damping ratios are unstable. They are due
to the error of the identification model or measured data.

3 Modal parameter identifications using grid techniques

In this section, the grid technique is proposed to identify natural frequencies and damping ratios using
the VAR model presented in the previous section. In addition, based on this technique, a new tool, called
NAFID-tool (natural frequency identification), was successfully implemented in Matlab in order to identify
stable frequencies and damping ratios from stabilization diagrams.

3.1 Grid technique

Assume that for each model order p, there are np natural frequencies (Hz), denoted by a vector f (p) ∈ R1×np

and np damping ratios (%), denoted by a vector ζ (p) ∈ R1×np , to be found using Eq. (10) to Eq. (13) as.

f (p) =
[

f (p)
1 , f (p)

2 , . . . , f (p)
np

]
(14)

ζ (p) =
[
ζ (p)

1 , ζ (p)
2 , . . . , ζ (p)

np

]
(15)
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Figure 1 – Illustration of the grid technique.

When the model order varies in the interval [p1, p2, . . . , pm] the number of frequencies/damping ratios is
[np1 ,np2 , . . . ,npm ] in which np1 < np2 < .. . < npm . In the proposed grid technique, whole frequencies and
damping ratios of the system for the model order from p1 to pm are stored in two special matrices (called cell
arrays in Matlab) as follows

F =




f (p1)

f (p2)

...
f (pm)


 , Z =




ζ (p1)

ζ (p2)

...
ζ (pm)




(16)

where F and Z are the frequency matrix and damping-ratio matrix of the system, respectively. Based on these
matrices, stabilization diagrams can plot easily. The grid algorithm proposed here allows us to identify stable
frequencies and damping ratios from the stabilization diagrams. Basically, the proposed method includes seven
steps as follows:

Step 1 Define the model order range [p1, pm], the frequency range [ fmin, fmax] and the damping ratio range
[ζmin,ζmax].

Step 2 Compute all frequencies and damping ratios for p = [p1, pm] in the ranges [ fmin, fmax] and [ζmin,ζmax]

fmin ≤ F ≤ fmax and ζmin ≤ Z ≤ ζmax (17)

Step 3 Define the frequency resolution ∆ f and make a virtual grid around the frequency range where the
number of grid points is defined by

Nf =
fmax− fmin

∆ f
(18)

Step 4 Define the number of repeating frequency in the interval [∆ f ,2∆ f ], denoted by Nrf, where:

1≤ Nrf ≤ pm (19)

Set k = 1

Step 5 Classify frequencies and damping ratios in the interval as follows

[I,F ] = FIND STABLE FREQUENCIES( fmin +(k−1)∆ f < F ≤ fmin + k∆ f ) (20)

Z = GET DAMPING RATIOS(Z, I) (21)

N = COUNT STABLE FREQUENCIES(F) (22)

Step 6 If N ≥ Nrf then F , Z and the index matrix I (index of F in F) is saved to a file.



Step 7 If k ≤ Nf then k = k+1 and return Step 4. Otherwise, algorithm stops.

In the Step 1 of the grid technique, the frequency and damping-ratio ranges of interest need to be determined
from the user in order to eliminate frequencies and damping ratios out of ranges in the Step 2. However, if
these ranges are unknown the following values can be used

fmin = 0, fmax =
1

2∆t
,ζmin = 0,ζmax = 100. (23)

where 1
2∆t is the Nyquist frequency.

It can point out that main parameters of the grid technique are the frequency resolution ∆ f and the number
of repeating frequency Nrf. By changing these parameter appropriately, the stable frequencies and damping
ratios are identified quickly from the stabilization diagrams.

Figure 1 presents a simple example of the proposed technique to detect stable frequencies of the 2-DOF
system under the harmonic excitation. Once all frequencies of the system are determined (the model order is
increased from 2 to 100), a grid with red color is established over the frequency range from 0 to 100 (Hz).
The frequency resolution used to make the grid is 2.5 (Hz) for better illustration. It can see clearly that stable
frequencies with blue color lie between two straight red lines. They are detected using Step 4 of the grid
technique. We can conclude that the system may have two natural frequencies and one harmonic excitation
associated with near zero damping ratio (see Figure 2).

Figure 2 – Interface of the NAFID-tool implemented in Matlab.



3.2 About the NAFID-tool

The NAFID-tool was implemented in Matlab as shown in Figure 2 using the the proposed grid technique.
This tool can be used to identify natural frequencies and damping ratios of mechanical systems or structures
using the VAR model and the grid technique. On the left is the stabilization diagrams and on the right is the
input parameters which are set by the user. The input of the NAFID-tool is the a file (*.mat) including: the
sampling time and the measured responds. For example, three stable frequencies as well as three damping
ratios of the system presented in Section 3.1 are identified and displayed by orange color. To obtain this result,
the parameters of the program are set as follows: the frequency range is [0,50] (Hz) and the resolution is 0.01
(Hz) while the damping-ratio rang is [0,30](%) and the number of repeating frequency is 5.

In the next section, modal parameter identification of several mechanical systems is presented to illustrate
the efficiency of the grid technique. All results are obtained using the NAFID-tool.

4 Examples

4.1 Modal parameter identification of the 3-DOF system

In the first example, the measured data for the 3DOF system is taken from the Signal Processing Toolbox
(Matlab, 2018b) [6] using the command ’load modaldata’. The measured data is shown in 3 in which the
sampling rate is 4 (kHz).
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Figure 3 – Time response of 3 channels.

In order to estimate natural frequencies and damping ratios of this system, the following parameters are
used in the NAFID-tool: fmax = 0 and fmax = 2000 (Hz); ζmin = 0.0 and ζmax = 2(%); Nrf = 6. Consequently,
stable frequencies are identified as shown in Figure 4 by orange lines. The natural frequencies of the system
are f1 = 373, f2 = 852.3 and f3 = 1369 (Hz). The obtained results are almost identical to those obtained using
the function ’modalsd’ implemented in Matlab. In addition, damping ratios are also identified but very small,
less than 0.6(%).

4.2 Modal parameter identification of the 6-DOF system

The mechanical system with 6 degrees of freedom [4] is shown in Figure 5. Using the Lagrange formulation
with the generalized coordinates q = [q1,q2,q3,q4,q5,q6]

T, equations of motion of the system is given by

Mq̈+Cq̇+Kq = f (24)
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Figure 4 – Modal parameters of the 3DOF system using the NAFID-tool

Figure 5 – The mechanical system with 6 DOFs.

where

M =




m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 m3 0 0 0
0 0 0 m4 0 0
0 0 0 0 m5 0
0 0 0 0 0 m6



, C =




c1 0 0 0 0 0
0 c3 0 0 0 −c3
0 0 c2 0 −c2 0
0 0 0 0 0 0
0 0 −c2 0 c2 0
0 −c3 0 0 0 c3




(25)

K =




k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 + k8 + k9 −k3 −k9 0 0

0 −k3 k3 + k4 −k4 0 0
0 −k9 −k4 k4 + k5 + k9 −k5 0
0 0 0 −k5 k5 + k6 −k6
0 0 0 0 −k6 k6 + k7



, (26)

For numerical simulation, physical parameters of the system are given by: m1 = m2 = m5 = 2(kg), m3 =
m4 = m6 = 1(kg), k5 = k8 = k9 = 2.0106 (N/m), k1 = k2 = k3 = k4 = k6 = k7 = 106 (N/m) and c1 = c2 =
c3 = 103 (Ns/m). The system is excited by initial condition with q = 0 and q̇ = [0,10,0,0,0,0]T and vector
of external forces is set to zero ( f = 0). Using function ODE45 in Matlab, displacement vector is plotted in
Figure 6 in which the time step is 0.0001 (s).

Identified frequencies and damping ratios of the system are shown in 7. The parameters used to identify
stable frequencies and damping ratios of the system are: fmin = 0 and fmax = 500 (Hz); ζmin = 0.0 and ζmax =
70(%); Nrf = 5 and ∆ f = 0.1 (Hz).

In addition, the theoretical and identified frequencies/damping ratios are shown in Table 1. It can see very
good agreement between theoretical and identified modal parameters.
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0 50 100 150 200 250 300 350 400 450

Natural frequency (Hz)

10

20

30

40

50

60

70

80

90

100

M
od

el
 o

rd
er

X: 94.44
Y: 30

X: 156.9
Y: 90

X: 178.2
Y: 57

X: 256.5
Y: 23

X: 277.9
Y: 70

X: 392.3
Y: 40

0 10 20 30 40 50 60 70

Damping ratio (%)

10

20

30

40

50

60

70

80

90

100

M
od

el
 o

rd
er

X: 25.56
Y: 90

X: 3.168
Y: 30

X: 1.012
Y: 40

X: 1.461
Y: 70

X: 43.96
Y: 23

X: 64.34
Y: 57

Figure 7 – Modal parameters of the 6DOF-mechanical system using the NAFID-tool

5 Conclusion

The grid technique was proposed in this work to identify modal parameters of mechanical systems using
the vector autoregressive model for operational modal analysis. Based on the measured output response and the
model order the state matrix was first established and then frequencies and damping ratios were computed using
Matlab. Natural frequencies and damping ratios were classified quickly from the stabilization diagram using
the grid technique. The NAFID-tool was successfully implemented in Matlab based on this technique. Results
obtained based on numerical simulations show that the efficiency of the proposed method. The presented
technique can further develop in the future for identifying modal parameters in real applications.
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Mode 1 1 3 4 5 6
Theoretical frequency (Hz) 94.4415 156.8693 178.1672 256.5395 277.9077 392.2243
Identified frequency (Hz) 94.44 156.9 178.2 256.5 277.9 392.3
Theoretical damping ratio (%) 3.1679 25.5645 64.3426 43.9668 1.4607 1.0039
Identified damping ratio (%) 3.168 25.56 64.34 43.96 1.461 1.012

Table 1 – Natural frequencies and damping ratios of the system using analytical method and the NAFID-tool
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Abstract
This study concerns the vibrational comfort of automotive seats. It is commonly characterized by the seat
transmissibility, obtained by computing the ratio of the acceleration at the seat surface to the one at the seat base.
This curve, observed in the frequency domain, depicts the seat performance in terms of vibrations filtration. The
transmissibility is computed on a loaded structure, which means that an initial compression is present. Since
the complete seat is a complex system, the first part of the paper presents static and dynamic experiments and
simulations on a foam sample. The experiments are then reproduced using a finite element model. In the
case of the static compression tests, the stress-strain curve is chosen as validation criterion. The simulation
shows that for strains lower than 75%, the model is accurate. In the case of the dynamic experiment, the
measured and simulated transmissibilities are compared. While the resonance and cut-off frequencies are close
to the experimental results, the gain at the resonance is overestimated. The second section presents static and
dynamic measurements performed on a seat cushion loaded by a rigid mass. The results show that the trim has
an impact on the measured displacements and pressure distributions. In dynamics, it also has an impact on the
resonance peak of the transmissibility. Finally, the simulation process proposed to validate the complete seat
model is presented.

1 Introduction

The automotive sector faces new evolutions caused by the arrival of new features such as partial or full
automated driving. These evolutions allow to have new reflections on the various postures that could be adopted
by the occupants. This leads car manufacturers and suppliers to consider different seating positions. The driving
position, where the occupant sits while holding the steering wheel, remains the most common. However, other
positions are studied, such as the working position, where the occupant does not touch the steering wheel while
the backrest is slightly reclined, or the relax position, where it is almost lying on the seat, are some examples.

Given these new reflections, the seat design remains constrained, either externally (by regulations or norms)
or internally (depending on the features that need to be implemented). The present study focuses on the vibra-
tional comfort, which is an internal constraint. The seat vibrational comfort is observed by measuring its
transmissibility. It is obtained by computing the ratio of the transmissibility at the seat surface to the one at the
seat base. The measurement has to be performed when an occupant sits on the seat. Three different classes of
occupants can be considered : rigid masses, manikins and human subjects.

It is important to see this measurement as two separate steps: first, the occupant is placed on the seat. At the
end of this step, the seat is deformed and a steady state is reached, corresponding to the equilibrium between the
weight of the occupant and the reaction forces in the seat. The second step is the dynamic measurement itself,
which consists in measuring the acceleration at the surface and at the base of the seat to derive the corresponding
transmissibility.

The goal of this study is to perform such a process using a finite element model, which raises questions about
the foam modeling. Indeed, transmissibility measurements using a rigid mass performed by Barbeau [6] show
that the foam has a strong influence on the transmissibility. The polyurethane foam belongs to the viscoelastic
materials, and its static and dynamic behaviors are non-linear. The validation must therefore be conducted at
each step. To validate the results from the static step, it is possible to use different kind of measurements. For

1



instance, Zhang [4] uses force-displacement curves, Siefert et al. [3] compare the final displacement on the
cushion and backrest, and Verver [9] works with pressure maps measurements. Regarding the dynamic step,
the transmissibility is the criteria chosen in the articles from Zhang and Siefert et al.

Several authors have chosen to conduct deeper investigation of the foam behavior, and have therefore
worked on foam samples. Krishan [7] and Verver [9] use tabulated stress-strain curves to model foam sam-
ples and use the data to conduct parametric studies. Siefert et al. [3] and Grujicic [10] have used analytical
models and implemented them in complete seat models. Martinez-Agirre [2] or Lee and Kim [5] also pro-
pose dynamic models which take the initial deformation as an additional parameter, but this concerns other
viscoelastic materials (rubber and thin films).

The goal of this study is to investigate the possible bridges between the material characterization at the
sample scale and the experimental measurements at the seat scale. The first section regards the study of foam
samples. It will be split into two steps: static and dynamic characterization. For each step, experimental
validation is presented. The second section regards the experimental measurements conducted on the seat and
introduces the simulation process to be used.

2 Analyses on a foam sample

The complete seat is considered as a complex system due to the high number of subcomponents involved.
To properly simulate its global behavior, it is important to have accurate models for each of its subcomponents.
This first section aims at studying the static and dynamic behaviors of the polyurethane foam used for the seat
cushion and backrest. To do so, the analyses are carried on academic foam samples. The goal is to extract
values that can be used as input data for static and dynamic simulations using a finite element model.

2.1 Static analysis

2.1.1 Measurements

The static characterization of the foam sample is done by measuring its stress-strain curves using an Instron
33R4204 machine following the protocol described in the ISO 3386-1 norm [11].

Three samples were used, each of them measuring 95mm×95mm×40mm and weighting 14g. The choice
of their size was dictated by the fact that they were cut out of the seat cushion and by the length/height ratio
specified in the norm (equal or greater than 2). Five compression-decompression cycles are performed at
100mm/min up to 80% of deformation. The results are presented in figure 1.

Figure 1: Left: Raw stress-strain curves measured on three foam samples. Right: Post-processed curve used as
input for the finite element simulation (blue) and simulation result (red).
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Although the curves associated to the first cycle are different depending on the sample, it is possible to
observe the typical behavior of the foam in the three cases. First, a linear-elastic behavior for strains less than
5%, then a plateau region from 5% to 60%, and finally a densification region above 60%. It is also possible to
see that, although the loading curves are different with regards to the cycle, the unloading curve always follows
the same path. Finally, after the first cycle, the stress-strain curves are shifted, which is called the Mullins effect
[1]. Each curve represents the static behavior of the foam sample and can be used as input data for the finite
element model which is presented below.

2.1.2 Finite Element simulation

The use of the tabulated stress-strain curve for the foam static behavior is validated by conducting a sim-
ulation that reproduces the test presented above. The model consists in a foam sample made of 3D elements
(ca. 4000 nodes and 3000 elements). The associated material model uses a stress-strain curve as input [8]. The
last cycle of the experimental curve is extracted and only the compression part is used. An offset is applied to
remove the Mullins effect from the curve and to make it start at the origin, see figure 1.

The compression is performed by prescribing a displacement at the top surface of the foam sample. The
top surface is compressed at the same speed than the experiment up to 75%. The goal is to ensure that the
stress-stain curve is accurately interpreted by the solver. The results are presented in figure 1. The comparison
of the experimental and simulated stress-strain curves shows that the simulated curve follows the same path as
the experimental curve.

2.2 Dynamic analysis

The static characterization of the foam is followed by its dynamic characterization. In this study, the
transmissibility curve of a foam sample is presented.

2.2.1 Measurements

The dynamic characterization of the foam sample, performed by Barbeau [6], is made using its transmis-
sibility curve. The sample is placed on a flat surface and is compressed by adding additionnal masses until
reaching 30% of compression. This value is chosen based on Faurecia’s know-how and corresponds to a com-
monly measured value when using an automotive seat. Then, a swept sine from 3 to 19Hz with a displacement
amplitude of±0.5mm is applied at the base of the sample using a vibration shaker. The acceleration at the base
abase(ω) and at the surface atop(ω) are measured. The ratio T (ω) = atop(ω)/abase(ω) is then computed and
represented in figure 2.

Three parameters can be extracted from the transmissibility curve:

• The resonance frequency fr: the frequency at which the transmissibility reaches its highest value,

• The gain at the resonance Gr: the value of the transmissibility at the resonance frequency,

• The cut-off frequency fc: the frequency after which the transmissibility is lower than 1, thus characteriz-
ing the beginning of the filtration zone.

For the considered foam sample, the resonance frequency is fr = 5.81Hz, the gain at the resonance is
Gr = 5.05 and the cut-off frequency is fc = 8.95Hz (see table 1). The goal is then to compare these experimental
results with the simulated transmissibility.

2.2.2 Finite Element simulation

Similarly to the static analysis, a finite element model of this experiment is built. The model consists in
two parts, representing the foam sample and the rigid mass respectively. The mass density of the rigid part is
chosen so that the part has the same mass as the experimental masses used to compress the foam at 30%.

The simulation process is divided into two steps. The first step is a simulation of the sinking of the mass. In
that case, the material model used for the foam part takes the stress-strain curve as input. The gravity is applied
to the model and the vertical displacement of the rigid mass is monitored. At the end of the simulation, the
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Figure 2: Experimental transmissibility curve (blue) and simulated curve with an equivalent elasticity modulus
(red).

sample is compressed at 30%. The final state of the model (i.e. the nodal coordinates and the material stresses
tensors) is exported and used as input for the dynamic simulation.

The second step is the dynamic simulation. In that case, the material model used for the foam needs to
be changed. Indeed, when considering initial stresses with a material defined by its stress-strain curve, the
solver computes an equivalent linear elasticity modulus taken as the tangent of the curve. Since the sample is
compressed at 30%, this corresponds to the plateau zone. In that case, using the tangent modulus would result
in a non-physical behavior.

To counter this problem, the transmissibility curve is approximated using the transmissibility of a 1-DOF
mass-spring-damper system. Indeed, it is assumed that the excitation amplitude applied for the transmissibility
measurement is low enough to excite the linear behavior of the material. For such a system, the transmissibility
is defined as:

T (ω) =
k+ jcω

−mω2 + jcω + k
, (1)

where m, k and c are the mass, stiffness and damping coefficients of the equivalent model. Since m is known,
the stiffness can be found using k ≈ m(2π fr)

2. The damping coefficient c is found using the graphical method
of the −3dB bandwidth. Here, m = 8.3kg and the identified values are k = 11000Nm−1 and c = 47.1Nm−1s.
The elasticity modulus is then found using the fact that k = ES

l , with S the sample top surface area and l the
sample height. The associated modulus is then E = 44000Pa. This value is used as input for the linear-elastic
material model used for the foam.

The transmissibility is computed using the modal superposition method. A modal damping of ζ defined
as ζ = c

2
√

km
= 0.08 is used. The results are presented in figure 2. The comparison of both curves shows that

the resonance frequency fr and the cut-off frequency fc are well caught. However, the gain at the resonance is
overestimated. Table 1 summarizes the parameters derived from both transmissibility curves. This comparison
shows the limitations of the asumption of linear behavior. Another way to see this is to notice that the resonance
peak is inclined towards the left, indicating a softening behavior which is not captured with a linear 1-DOF
hypothesis.

This concludes the analyses on the foam sample. The goal is then to apply this methodology to the automo-
tive seat. The following section presents the different measurements performed on the automotive seat as well
as the simulation process which is considered.
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Experimental Simulated Relative difference (ref. experimental)
fr (Hz) 5.81 6.22 7%
Gr (.) 5.05 6.35 25.7%
fc (Hz) 8.95 8.88 −0.8%

Table 1: Comparison of the parameters derived from the experimental and simulated transmissibilities.

3 Analyses on the automotive seat

As in the previous section, the analysis on the complete seat is divided into two steps: the static analysis,
where the deformation of the seat under the load due to an occupant is studied, and then the dynamic analysis
where the vibrational behavior of the seat is studied.

The seat chosen for the present study is a serial production seat used from a C-segment production car. It
can be divided into 4 main subcomponents: a frame made of metal parts that corresponds to the main structure
of the seat; two suspension mats, that are an assembly of metal wires and plastic parts, which are used for static
comfort; the foam pads and the seat cover. The complete seat is represented in figure 3.

Figure 3: Exploded view of the complete seat finite element model.

3.1 Static analysis

As said above, before studying the seat vibrational behavior, a static analysis has to be performed. Its
goal is to obtain the deformation of the seat under the load due to a given occupant. Three occupants can be
distinguished: rigid masses, dummies or human subjects. Here, a rigid mass has been chosen to ensure the
repeatability of the experimental results. The one used for the present stydy is called a lead buttock. It is made
of a part that has the shape of the human thighs and buttocks connected to an arm. The whole structure is rigid
and connected to the jig with a revolute joint.

To compare experimental and simulated data, a common point is needed. This point is called the Hip point
(H-point) and corresponds to the pivot between the torso and the upper legs for a 50th percentile male occupant.
During the design process, the H-point position is defined and the seat is defined using it as a reference. This
point will be used to ensure that the rigid mass is accurately placed on the seat.

5



3.1.1 Measurements

The first measurement is the sinking of the lead buttock into the seat. To do so, the H-point of the lead
buttock has to be placed at the H-point of the seat. Due to the geometry of the arm, this is not possible when the
backrest is mounted. To ensure that both H-points are coincident, the backrest is therefore removed. Finally,
the measurements are made according to two setups: first, when the seat is untrimmed (i.e. with no fabric cover
on the foam cushion) and with the fabric cover.

The lead buttock is first placed so that its H-point matches seat one. The angle of the arm has to be nil to
ensure that the angle of the lead buttock is 18◦. This value corresponds to the femur angle of a seated human
subject (15◦) and a 3◦ tilt applied to compensate for thigh flexibility since the lead buttock is rigid. The sinking
of the lead buttock is computed by measuring the distance between a point on the suspension mat with and
without the occupant. This point is chosen in order to have the same X-coordinate than the H-point.

Values of the H-point as well as the sinking for each setup (untrimmed and trimmed seat) are presented in
table 2, along with the nominal values taken as reference. The results show that the sinking of the lead buttock
is lower when the seat is untrimmed. This shows that when the seat is untrimmed, the lead buttock sinks mainly
in the foam (hence the lower value of the Z-coordinate), whereas when the seat is trimmed, the deformation is
transferred to the suspension mat (hence the higher mat deformation).

Nominal values (CAD) Trimmed seat Untrimmed seat
H-point X-coordinate (mm) 1256.6 1259.8 1259.4
H-point Z-coordinate (mm) 315 297.4 293

Mat deformation NA 11.3 10.9

Table 2: Comparison between theoretical and measured values for the H-point and the mat deformation accord-
ing to the seat setup.

The second static measurement available is the pressure map. Using a pressure sensor mat, it is possible
to obtain the pressure distribution over the contact surface. The measurements have been performed on the
trimmed and untrimmed seat following an internal Faurecia standard [13] with the lead buttock. The results are
presented in figure 4. Both measurements present the same pattern, with a main contact surface reprensenting
the bottom of the thighs, and three additional surfaces associated to the contact between the lead buttock and
the seat bolsters.

Figure 4: Pressure maps obtained depending on the seat setup.

Four parameters can be extracted from these measurements: the contact surface area, and the minimum,
average and peak pressure. The values obtained for the two measurements are presented in table 3. Regarding
the contact surface, the area measured for the untrimmed seat is 3.5% lower than the one obtained for the
trimmed seat. Regarding the pressure, while the minimum value remains the same (i.e. the lowest value that
can be measured by the sensors), the average and peak pressures are 13.2% and 2.5% higher respectively. This
shows the impact of the trim, which helps to distribute the applied pressure over a larger area, thus resulting in

6



a lower average pressure.

Trimmed seat Untrimmed seat Relative difference
Contact surface area (cm2) 1033.87 956.45 −7.5%

Minimum pressure (g.cm−2) 6.82 6.80 −0.3%
Average pressure (g.cm−2) 42.94 48.62 13.2%

Maximum pressure (g.cm−2) 111.93 114.7 2.5%

Table 3: Comparison between theoretical and measured values for the H-point and the mat deformation accord-
ing to the seat setup.

It is interesing to see that the maximum pressure is 114.7g.cm−2. When this value is multiplied by the
gravity acceleration (g = 9.81ms−2), it is possible to obtain the maximum applied stress. Here, σmax,exp =
11.25kPa. This value is lower than the maximum stress obtained in the simulation (σmax,sim = 43kPa, see figure
1) and shows therefore that the tabulted curve can be used for simulations on the seat.

After the static characterization of the seat, the dynamic characterization is performed. Like the study on
the foam sample, the transmissibility will be used.

3.2 Dynamic analysis on the seat cushion

3.2.1 Measurements

Following the static measurements on the seat cushion using the lead buttock, the dynamic analysis is
performed. The seat and the lead buttock are kept in the same position as the static measurements and the
transmissibility of the system is measured.

The experimental protocol is defined by an internal standard [12]. The excitation signal is a white noise
with a bandwidth from 2 to 30Hz and with an RMS value of 0.5ms−2. The seat is first excited during 2min
until the steady state is considered as reached, and then the measurement is performed during 6min. Two ac-
celerometers are placed on the test bench to measure the acceleration at the base abase(ω) and at the lead buttock
H-point aH−point(ω). The transmissibility is then computed as T (ω) = aH−point(ω)/abase(ω). Once again, the
measurements have been performed on the trimmed and untrimmed seat. In each case, the measurements have
been done twice. The resulting curves are presented in figure 5 and the derived parameters are listed in table 4.

Figure 5: Transmissibilites obtained for the trimmed and untrimmed seat cushion with a lead buttock.

These measurements show the influence of the trim on the transmissibility curve. Indeed, when the seat
cushion is trimmed, the gain at the resonance Gr decreases while the cut-off frequency fc increases. The impact
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fr (Hz) Gr (.) fc (Hz)
Trimmed cushion 6.80 5.19 9.51

Trimmed cushion (bis) 6.10 5.69 9.15
Untrimmed cushion 6.10 8.50 8.90

Untrimmed cushion (bis) 6.10 8.28 9.08

Table 4: Values of the derived parameters depending on the seat setup.

of the trim on the resonance frequency fr is harder to evaluate because of the strong difference between the two
measurements for the trimmed cushion. When the seat is trimmed, damping is added and results in a lower but
wider resonance peak.

3.3 Simulations

These experimental results have to be compared with numerical simulations to ensure that the modelling
choices retained for the seat are valid. The simulation process is similar to the one applied to the foam sample.

The static analysis is performed by computing the sinking of the lead buttock on the seat cushion. The lead
buttock is placed above the seat and the gravity is applied to the model. The material law used for the foam
is the one from figure 1. The first goal of this simulation is to validate the model using experimental data: the
location of the H-point, the arm angle, the mat deformation and the pressure maps are the four criteria that can
be used. The comparison can be done with the results presented in tables 2 and 3 and in figure 4. The second
goal of this simulation is to extract the final state of the model (deformed geometry and internal stresses).

This final state is then used as input for the dynamic simulation. Like the dynamic simulations done with the
foam sample, a different material law than the one used for the static simulations needs to be used. The choice
of the material model for the foam will be critical since the results of the dynamic simulations on the foam
sample show that the use of an equivalent linear elasticity modulus overestimates the gain at the resonance. The
results from this simulation have to be compared with values from figure 5 and 1.

4 Conclusions

In the first part of this study, the static and dynamic behaviors of foam samples are studied. The goal
is to develop finite element models that match the physical behavior of the foam. The foam static behavior
is obtained by performing compression-decompression tests. This allows to obtain the stress-strain curve of
the material, which is then used for the finite element simulation. The results show that the model fits the
experimental data up to 75% of deformation. The foam sample is then dynamically characterized by measuring
its transmissibility. By assuming that the system behaves like a 1-DOF system, it is possible to extract linear-
elastic equivalent parameters that will be used for the finite element simulation. The comparison shows that the
resonance frequency and the cut-off frequency are well found, but the gain at the resonance is overestimated.

In the second part of this study, static and dynamic measurements performed on an automotive seat are
performed. In statics, sinking and pressure distribution are performed when it is loaded with a rigid mass. When
the seat is untrimmed, the rigid mat causes less suspension mat deformation and results in a higher average
pressure on a smaller contact surface area, thus showing the role of the trim. In dynamics, transmissbilites of
both setups are measured. The impact of the trim is confirmed since the resonance peak is lower and wider
when the seat is trimmed.

While the use of a tabulated stress-strain curve allows to properly simulate the static behavior of the foam,
it is shown that the modelling choices for its dynamic behavior could be improved. The asumption of a linear
behavior of the elasticity modulus over the studied frequency range should then be rethought. A possible
solution would be to use an enhanced model. The choice of such a model should be guided by additional
measurements on the foam samples to characterize its material properties. This could also allow to study the
influence of external factors such as the excitation frequency.
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Abstract
Today, Industry 4.0 is being introduced. Machines are equipped with internet connection and increasingly
sensorized using Industrial Internet of Things (IIoT) sensors. Especially the emergence of 5G is a game changer
in this regard. It becomes possible to send data at high speeds to cloud computing data-centers. However,
streaming all data is deemed to be unnecessary. It is more advantageous to use the additionally available
bandwidth to drastically increase the number of connected sensors. Thus, on-board processing of the data
directly at the edge is necessary. This paper illustrates this edge computing concept using data of wind turbines.
Different fault indicators are calculated directly on an embedded system. In addition to statistical features also
more complex signal processing pipelines combined with machine learning approaches are used. An example
of a more advanced technique is the spectral coherence approach. This is one of the most promising approaches
for bearing fault diagnostics to extract the optimal envelopes. This approach requires a significant amount of
computational power. Today, different Advanced Risc Machine (ARM) processors are available in embedded
architectures. Moreover, CPU based single board computers are available. Embedded GPUs allow dedicated
machine learning algorithm processing. In this paper an NVIDIA Jetson device combining multiple ARM cores
with a GPU is used. The edge computing concept is validated by processing pipelines on vibration and SCADA
data originating from operational wind turbines using such architectures. Both healthy and faulty data sets are
processed.

1 Introduction

In the context of Industry 4.0 efforts there is a continuously decreasing cost for sensors. As such the range
of machines and other systems that are equipped with on-board instrumentation has increased substantially and
will increase even more in the years to come. For those industries where the cost of downtime is high there
is a strong interest and economic opportunity to move towards predictive maintenance. Therefore, more and
more companies show interest to acquiring more data from their product for condition monitoring and design
validation purposes. Continuous data collection allows to gain insights in product usage and thus forms the
basis for design improvements from better understanding asset behavior in the field. Adequate processing al-
gorithms are needed to perform usage evaluation and failure prediction to extract useful information from these
sensors. Typically these algorithms use acceleration or current signals sampled at high frequency. The wide
adoption of the Internet has brought broad coverage and continuous data connections at many locations all over
the world. However, for many industrial applications the local connectivity can still be problematic due the
limited bandwidth of wired or mobile connections. As such, streaming high frequency data is still unfeasible.
Local processing is thus necessary and will become more important with increasing data volumes.

*These authors contributed equally.

1



Figure 1 – Streaming data in the context of an edge-cloud balanced architecture for condition monitoring.

To overcome the streaming limitations, today, high frequency samples are typically taken for a short pe-
riod of time in burst mode. Such bursts are done at intermittent periods in time. However, this means that
for machines operating at non-constant speed and load chances are high that data-points are taken at different
loading conditions. Due to the continuously changing nature of the system excitation, its response will also
permanently change. These changes can have an influence on the resulting monitoring feature values. If the
data samples—acquired at the intermittent moments—are spread too much over different loading conditions,
then trending becomes challenging. Particularly since today’s innovative industrial machines typically target
a wider operational range, their speed and loads are varying continuously. To allow extraction of high quality
condition indicators it becomes therefore interesting to explore, not only continuous data collection, but also
continuous processing. This paper targets the latter.

Ideally we can instrument all machines in the fleet. The collected data should then allow the extraction
of directly actionable insights for machine designers on the one hand machine and for owner-operators on the
other hand. The one will use the insights to improve the design, whereas the other uses alarms to perform
predictive maintenance. To allow the instrumentation of many machines it is necessary to have integrated
processing algorithms capable of automatically processing the monitoring data. Edge computing can play an
important rule to allow the extraction of health and design information from a large number of machines in a
fleet where it might be unfeasible to transfer all data to a central location. Extensive research about the detec-
tion of failure in rotating machinery is available in literature today. More recently, machine learning is used
more and more for condition monitoring. This offers opportunities towards automation. Leaning algorithms
can enhance vibration signal processing methods to make them autonomous and more repetitive. This paper
targets such methods by combining advanced signal processing techniques with anomaly detection and feature
fusion based on data-driven techniques.

In this paper we target the assessment of the feasibility to use advanced edge devices for overcoming the
limitations linked to intermittent data gap. We develop an integrated approach combining advanced signal
processing methods with anomaly detection and a Bayesian regression approach to deal with vibration data
in the new digital context. We target maximal computation close to where the sensor data is measured. Thus
maximally leveraging processing power of the embedded ARM cores and GPUs. Devices of this architecture
are plenty. In this paper, we use the NVIDIA Jetson TX2 embedded computing board, which features an ARM
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for general-purpose computations, and a GPU for specialized fast matrix-vector computations that are apparent
in many machine learning techniques. This device combines low cost with high computational density. To
assess the feasibility of using this device in a condition monitoring context, we use data of healthy and failed
wind turbines from the multi-megawatt range.

2 Methodology

Our goal is to maximally automate the condition monitoring process such that calculations can be done
maximally at the edge. Those approaches that cannot be calculated at the edge we will calculate centrally a
the cloud level. As such we generate a balance between edge and cloud, as illustrated in Figure 1. For those
approaches that cannot be calculated at the edge level, we target to only use high quality data.

We focus on the wind turbine drivetrain system. Different monitoring pipelines are calculated in parallel on
the edge device. In this paper we assess the possibility to calculate processing pipelines of different complexity
on the embedded processors. A multitude of features is generated. These range from statistical indicators on
raw sensor data, that are less computationally intensive, to complex sequences of filters. Anomalies in these
features are afterwards annotated using machine learning. To optimize the usage of the calculation power of the
edge device, analysis methods of different types are coupled to their most optimal processor type. All signal
processing calculations are done on the ARM processors. Multiple ARM processors in parallel allow to calcu-
late features on multiple channels at the same time. The anomaly detection using Bayesian approaches is then
done using the GPU processor. This allows to exploit the fast matrix-vector computations.

Since the focus of this paper is on the assessment of the edge computation aspect, we only discuss the
pipelines used in this paper in a high-level overview. For details on the different methods the reader is for
each sub-block referred to our prior publications or relevant literature. The following paragraphs discuss these
processing pipeline blocks.

Statistical indicators
Statistical values of different nature can be calculated on acceleration data to detect changes in vibration be-
haviour of the system over time. We use the following indicators:

1. RMS: This gives an indication of the overall energy level present, xRMS =
√

1
N ∑n x2(n), with x(n) the

sampled signal.

2. Crest factor: Max peak value over RMS, CF =
|xpeak|
xRMS

.

3. Kurtosis: A measure for the dispersion of the signal’s distribution, κ =
1
n ∑n

i=1(xi−x)4

( 1
n ∑n

i=1(xi−x)2)2 −3.

4. Moors kurtosis: An alternative implementation of kurtosis based on quantiles [6], κMoors =
(E7−E5)+(E3−E1)

E6−E2
.

5. Peak-to-Peak: A straightforward indicator that quantifies the distance between the maximum and mini-
mum acceleration, xP2P = xmax− xmin.

6. Peak Energy Index: PEI =
√

1
Np

∑N
n=1 x2

p(n), where Np is the number of peaks exceeding a threshold
equal to µx +2σx, with µx the mean and σx the standard deviation.

Speed compensation
Complex processing pipelines contain different processing steps that are chained together. For wind turbines a
first step is always correction for speed fluctuations due to the stochastic nature of the wind. Typically this is
achieved by converting the acceleration signals acquired in the time domain to the angular domain by means of
angular re-sampling methods. Accurate speed measurements are necessary to achieve this step. Different meth-
ods are available in literature. We opt to use the Multi-Order Probabilistic Approach (MOPA). This method is
based on interpreting the short time Fourier transform (STFT) of the vibration signal as a probability density
function of the instantaneous angular speed. Consequently if the STFT has a high amplitude at frequency f ,
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then the probability that the shaft frequency is equal to f/Hi with Hi being the excitation order. For details on
the specifics of the method the reader is referred to [4, 7].

Cepstrum liftering
In case bearing damage signature extraction is targeted, a second step consists in the removal of the dominating
effect of the harmonics originating from the gears. Typically cepstrum liftering is used to achieve this goal. In
this paper we opt to use the automated cepstrum editing procedure (ACEP). The cepstrum allows to concentrate
the energy of periodically spaced spectral components into a smaller number of impulses. These are referred
to as rahmonics. Removing these peaks decreases the amplitude of the periodic signal content. Similar to
filtering in the frequency domain the term liftering is used in the cepstral domain. Randall & Sawalhi showed
that the real cepstrum can be used to edit the log amplitude spectrum which contains the discrete harmonics [8].
Recombining this modified amplitude spectrum with the original phase creates an edited version of the time
signal with significantly less pronounced harmonic content. In our case we use an automated cepstrum editing
procedure. In this procedure first a long-pass lifter is applied to the cepstrum. The corresponding content will
be read to the signal after the editing procedure. This in order to prevent liftering of this content which is
dominated by the structural behaviour of the system. First noise reduction is achieved by a wavelet de-noising
approach. Then a comb lifter allows the removal of selected distinct peaks in the cepstrum. Finally the signal
is transferred back to the time domain. In the resulting signal the stochastic content is dominant.

Filtering
Once the data is cleaned and disturbances are removed, filtering is done prior to calculation of the statistical
indicators. A variety of frequency ranges and filter types can be chosen. For the purpose of this paper the
frequency range up to the Nyquist frequency is divided in 4 different bands. For each of these bands the same
statistical indicators as for the raw data are calculated.

Cyclic spectral coherence
In parallel to the pipelines calculating statistical features, enveloping is done to detect bearing faults. Even after
reducing the influence of harmonic disturbances using cepstrum liftering techniques the detection of bearing
faults remains a challenge. The bearing fault impulsive excitation signatures are small compared to potential
other disturbing energy sources. In complex gearboxes with many stages this can complicate detection. En-
veloping techniques linked to band pass filtering allow to highlight the fault. However, accurate knowledge
about the most optimal frequency band for envelope extraction is needed. The use of cyclic spectral coherence
to identify this frequency band improves detection potential by identifying the frequency ranges in which reso-
nances can amplify the signatures [2]. Calculation of the spectral coherence maps and envelopes are done both
directly at the edge.

Anomaly detection
The features that result from the processing pipelines discussed above are treated as time series data. This al-
lows them to be trended in order to accurately capture failure-driven anomalies. To automate and objectify this
process, we use linear Bayesian Ridge regression [5] to model the features under healthy conditions using the
machine operational parameters as inputs. Bayesian Ridge Regression is a probabilistic approach to regression
with regularization. Essentially, it fits the linear parameters (i.e., slopes and intercept) and inherent noise to the
observed data, while maintaining the uncertainty over the parameters. This type of regression fully captures all
stochastic components in the modeling process, and allows the identification of anomalies that are not due to
this stochasticity. The models are trained during a healthy period and thus predict expected feature response for
healthy conditions. Outliers exceeding a three standard deviations range around the expected feature behaviour
are classified as anomalies and thus unhealthy behavior.

4



3 Experimental case

To be able to keep up with the continuous data streams we opt to not transmit all data to a central cloud
processing platform but balance processing between cloud and edge. Figure 1 gives a schematic overview of
our architecture. In this paper we will make use of embedded ARM and GPU technology and use the commer-
cially available NVIDIA Jetson TX2 product as edge device. This features a quad-core ARM Cortex-57 MP
Core CPU. In addition also a 256-Core NVIDIA Pascal GPU is available.

Signal processing pipelines exploit a Python architecture. These are deployed on the quad-core ARM pro-
cessor. The anomaly detection models are implemented in TensorFlow [1], which allows for execution at the
edge on the GPU. TensorFlow is a library that automatically organizes operations in a computational graph,
such that many repetitive simple operations can be executed in parallel on the arithmetic units of the GPU.
Such a framework is suitable, as Bayesian Ridge regression requires matrix multiplications during prediction,
and thus can be efficiently executed on a GPU. Training of the models is performed in the cloud, as it is too
computationally intensive.

To asses the processing ability of the Jetson and identify its limitations we opt to use vibration monitoring
data collected from offshore wind turbines and process the analysis pipelines discussed above. Based on the
insights gained in the speed and processing capabilities of the ARM processor and GPU, the balance between
edge and cloud computing is identified. Computations that are feasible to be performed at the edge are done
there, whereas the other processing is done in the cloud. To limit bandwidth usage of the data connections only
high quality data is sent to the central cloud. The indicators calculated at the edge allow to determine whether
it is useful to transfer the data to the central cloud.

Industrial CMS data is taken as starting point. In this way the analysis is done on a representative dataset.
Data-sampling rates are above 25kHz. Each data block is approximately 10 seconds. Data is collected at in-
termittent moments in time. One accelerometer channel at the planetary and one at the high speed stage are
processed. First, the processing pipelines using signal processing techniques, discussed in the previous section,
are calculated. The six statistical indicators are calculated on the raw sensor data as a baseline. 240 process-
ing pipelines provide an extensive feature set. The final step in each pipeline is the calculation of a statistical
indicator to generate a summary value. To allow data-trending, intermittent data samples over a multi-year
period are processed. After the trending step anomaly detection is executed on the GPU of the Jetson for fast
prediction. Model training, comparison, and visualization of the resulting features is done on the VUB AVRG
cloud platform.

Accelerometers are mounted on the gearbox at the planetary and high speed stage. We target the detection
of deterioration on the planetary gear stage, which can lead to more severe damage. Constructed health indica-
tors of both the planetary stage and high-speed stage are compared to illustrate deviations in nominal behavior.
Figure 2 shows an example, comparing a peak-to-peak feature for the planetary stage and the corresponding
feature for the high speed stage over multiple years of data. Based on these indicators it is clear that the fault
is in the planetary stage. The indicators clearly show a strong anomaly score towards the end, whereas before
some outliers already start to pop up. The indicators for the high speed stage show no anomalous behaviour.
This shows the ability to locate the fault in the gearbox system.

Based on this analysis it is possible to perform calculations for failure detection, taking into account a large
quantity of indicators calculated in parallel at the edge. For the moment calculations are far from real-time so
only intermittent measurements are possible. As such more computationally intensive calculations using more
detailed processing methods, such as for example the Kurtogram [3], need to be performed at the cloud level
anyhow. However, there is definitely potential to use this technology for continuous condition monitoring if
enough calculation cores are made available on the device.
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Figure 2 – Comparison of peak to peak based health indicator between two affected and unaffected channels.

4 Conclusion

This paper investigated the potential to use combined embedded ARM and GPU processing architectures
for edge computing in the context of condition monitoring. Both signal processing and machine learning ap-
proaches were calculate locally on the device. The NVIDIA Jetson TX2 was used as testing device. Using
real-life data it was shown that failure detection can be achieved by edge computing. Complex signal process-
ing pipelines, comprising of amongst others speed compensation, cepstrum liftering and enhanced enveloping
were calculated on the device. These was complemented with Bayersian feature fusion using Tensor Flow on
the embedded GPU after model training in the cloud.

As such it is shown that the edge device can be used to monitor a gearbox using typical measurements from
CMS devices used in industry today. In addition to these local calculations the computationally more intensive
calculations able to detect this failure type earlier will be performed in the cloud. In future research this balance
will be further optimized.
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Abstract
Based on a modernization project of its information system, EDF’s hydropower sector is now able to merge
several heterogeneous databases to produce new applications. EDF Research and Development produced a
new software to assess the impact of maintenance actions on performance of equipments. In practice, the tool
allows, on the one hand, to display several time series of sensors between two dates, and on the other hand, to
superimpose on the same graph the relevant maintenance acts, linked to the displayed sensors. We use the new
efficient structuring of sensor nomenclatures and maintenance data to sort by relevance the maintenance events
to be displayed first, based on expert knowledge.

Figure 1: Schematic diagram of a hydraulic installation and name of the main elements (in French)

1 Technical context and need

1.1 Separation of process, maintenance and alert data

Historically, in the Production and Hydraulic Engineering Division of Electricité de France (EDF), process,
maintenance and operation alert data were recorded and consulted in totally separate IT tools.

The data capitalized in these databases were therefore exploited separately, and no advantage was taken
of any cross-checks and cross-references of information between databases, which could have led to a better
understanding of events, a better anticipation of operational fortuitous events, and a better monitoring of the
effect of the maintenance applied. One of the objectives of a data cross-referencing tool is to remove these
information silos to allow enriched analyses by consulting heterogeneous databases.
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1.2 Separation of operations, monitoring and maintenance units

As EDF’s hydraulic division is large, it is segmented into different specialist units: some units specialize in
the operation of hydraulic installations, others in the programming, implementation and operational monitoring
of maintenance operations, and others in the e-monitoring of hydraulic production facilities.

While these different units cooperate effectively on a daily basis on many issues, each one carries a lot
of information that is specific to its business lines, and the sharing of information between units cannot be
perfect and complete on an ongoing basis. In particular, some scheduled maintenance events may not be
known to the e-monitoring units, while these operations then generate monitored signals which, if not placed
in the context of ongoing maintenance, may lead to a misinterpretation of abnormal situation and lead to
a monitoring alert. These situations of imperfect interpretation then require additional communication time
between operations, maintenance and monitoring engineers, whereas a centralizing digital tool could have
made relevant information immediately accessible to everyone and avoided any incorrect interpretation of the
signals read and operations in progress.

1.3 Standardization of equipment names (ECSH codes)

In recent years, EDF’s hydraulic division has carried out a major project to standardize and homog-
enize the various tools of its information system, which has made it possible to standardize the model for
forming the names of hydraulic power plant components (at least for high-power hydraulic sites). The template
of names obtained is called ECSH codification (for EDF Coding System Hydraulic).

This standardization was an essential prerequisite for the project to create a heterogeneous data cross-
referencing tool, because it was essential that an object present in the operating databases (as part of the time
series that are measured and recorded via the various sensors with which it is equipped) as well as in the
maintenance databases (as part of the various maintenance operations that have been carried out to ensure its
reliability over time) bears the same name within these different tools: this makes it possible to identify which
data are relevant to be processed together. This coincidence of names was therefore the first prism used to group
heterogeneous data together.

Figure 1 shows the ECSH names used to designate the main structures of a hydropower plant : these
names then serve as roots for the names of all the sub-components of each major structure. Figure 2 shows the
decomposition of a tag in our hydraulic data historian. This tag is the name of a sensor time series, and it is
directly derived from the ECSH code name of the component on which said sensor is placed. Figure 3 shows
the decomposition of a component name associated to a maintenance event (dated text data) in our hydraulic
Computerized Maintenance Management System (CMMS) named Gem’Hydro. As this is actually the same
component in both cases (the component on which the sensor is placed and whose data are recorded, and the
component on which a maintenance operation has been performed and then recorded), one can see that the
parsing of the 2 names reveals the same construction by tree structure, which will later allow to group and
compare these data.

Figure 2: Parsing of the name of a PI tag linked to the equipment tree in which the monitored equipment is
located
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Figure 3: Parsing of the name of a maintenance event in Gem’Hydro related to the equipment tree in which the
maintained equipment is located

1.4 Target audience and expected benefits

The first audience targeted by this tool is Engineers performing e-monitoring of installations in CReEX
(regional e-Operating Centres) and Engineers of the operator support teams.

The expected benefits of the tool include:

• The centralization of heterogeneous information (here: time series and structured textual data) in a single
tool, thus facilitating their cross-analysis. The searchable data will be enriched as decisions are made to
release other databases into the tool.

• The possibility of making visual comparisons before / after maintenance, in terms of sensor signals evo-
lutions, and thus to assess qualitatively and quantitatively the effects produced by maintenance operations

• The possibility of directly seeing the quantitative effects of operating recommendations

• Allowing a better circulation and exploitation of relevant information for the monitoring of instal-
lations, which also limits the risk of false alarms, limiting unnecessary solicitations and exchanges
between monitoring, operation and maintenance units by sharing the same context.

2 A new cross-referencing module

This tool is currently being developed as a Proof of Concept, in order to demonstrate the interest for the
operational divisions in developing a data cross-referencing tool that allows them to make full use of their
very large data assets (time series, highly structured document base, etc.). As such, it is still subject to several
restrictions: only data from a few hydraulic sites are dumped there during the current test phase, the current
IT architecture is not yet optimized to support a large number of concurrent requests. Depending on feedback
and economic evaluation (effectively saved engineer time and avoided costs), additional developments may be
considered for a truly robust industrial deployment.

In order to reduce EDF workload, we merged our development into an existing visualisation tool from
another EDF entity, SuperViz’Orte, named after the first site testing it. Our data cross-referencing software then
took the form of an additional module added to this more general tool for consulting and analyzing hydraulic
time series. This module is shown in Figure 6.

2.1 Time series of our sensors: PI

The database used to capitalize the time series of hydraulic production facilities is the PI OSIsoft data
historian, a robust and widely proven industrial solution. The PI OSIsoft Application Programming Interface
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(API) allows to extract the PI tags corresponding to a set of parameters, which then allows the user to precisely
choose the time series to be displayed over the period of his choice. The native services of the PI suite then
allow you to directly request either the raw time series (extracted at the real time step of measurement and
recording), or the average values calculated on the fly (limiting the total volume of data transmitted, when the
exploitation of the data at a time step as narrow as that of the raw data is of no interest).

2.2 Act of maintenance database : Gem’Hydro

The CMMS tool used by the hydraulic division is an Oracle database called Gem’Hydro. This database
imposes a strong structure in the recording of the various work orders: this structure has therefore made it
possible to develop fairly fine weights for the selection of relevant maintenance tasks to be proposed for display,
in addition to the process time series graphs.

Figure 4: View of the different fields that apply to maintenance tasks registered in Gem’Hydro

Figure 4 shows a view of the different fields that must be filled in when recording a maintenance order or
task. These different fields allow you to specify:

• The preventive or corrective nature of the maintenance action carried out

• The general purpose of the intervention (hydraulic safety, maintenance of the assets, increase in perfor-
mance, etc.)

• The impact on production (impossible production, reduced river navigation, etc.)

• The general field of competence concerned (civil engineering, electrical engineering, control command,
etc.)

In addition, the tool allows the recording of a comment in free entry. Operators sometimes comment
extensively on the intervention performed and the salient information to be retained like shown on Figure 5.
This input is to take into account with precaution as mistakes or abbreviations can be used.

The feedback from this database after several years of existence is double-edged: its robust design and the
fairly exhaustive mandatory entry lead to a very good level of reliability of the information contained in most
fields (only a few of the available fields had to be discarded due to a lack of satisfactory reliability). On the other
hand, the relative "heaviness" of the associated interface and its not very ergonomic nature lead to a minimal
input by the maintenance units: only strictly mandatory information (major work) is included, whereas ideally
one would like to see the slightest small maintenance intervention entered completely.

Finally, since the system name tree structure through which maintenance tasks are recorded is the same as
the one around which process PI tag names are constructed (both following the templates imposed by ECSH
coding), it is relatively easy to associate the right maintenance acts with the right process time series curves.
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Figure 5: Comment fields associated with the maintenance tasks performed

2.3 Prioritization of maintenance operation reports

The tool is designed so that the user first chooses the production site and the sensor data (time series) he
wants to display, as well as the start and end dates of the display. This forces him to specify which local group
of hydraulic production units, site, production group and components he wants to display the sensor data of.
The first step is to display the time series graphs, as shown in the top of Figure 6.

Once these first choices have been made, all the maintenance reports corresponding to this local grouping
of units are displayed below the time series (see array in 6). However, the order in which they are proposed
and displayed to the user is calculated according to a weighting that takes many criteria into account. This
weighting is intended to promote the immediate display of the most relevant reports, related to the theme
explored by the user and the selected options.

• Very high priority is given to reports on the same equipment as those whose sensor times series graphs
are displayed, as well as those that are time-stamped between the start and end dates required for the
display of sensor data

• The presence of filters (editable on the right of Figure 6) also makes it possible to modify the weighting
of the reports: these filters include the attributes of the maintenance tasks in the Gem’Hydro database
(presented in Figure 4), i.e. their selection will reinforce the priority of the reports presenting these same
selected attributes. Several attributes have been checked by default (as per instructions from the opera-
tional units). It is also possible to add keyword search which would still prioritize acts of maintenance
without rejecting any.

Then, the user is led to make a selection of reports relating the maintenance events that seem most relevant
to the theme he is trying to explore (as long as the priority weighing of the reports is effective, and the selection
criteria expressed are relevant, these are the reports that have been proposed to him first). The selected reports
are then displayed as vertical bars in the time series graph window, as shown in Figure 6.

This cross-display therefore makes it possible to directly visualize whether the selected maintenance events
correlate with the displayed time series. In the case studied in Figure 6, we displayed concomitantly:

• Time series of cold air temperatures of the generator in group 1

• Maintenance reports on the refrigeration system of the same alternator
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Figure 6: SuperViz’Orte cross-reference module screenshot (in French). The context restricts time series to
alternator cold air temperatures and maintenance operations related to the alternator refrigeration system.
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It can be seen directly on the Figure 7 that the maintenance operations carried out have the expected effect on
the evolution of the component: at each maintenance operation on the refrigeration system, the alternator’s cold
air temperatures drop afterwards. Looking at the global Figure 6 might give the impression that the intervention
causes an increase in cold air temperatures. In reality, the graphs display is partially misleading: since no
operating data are recorded during the shutdown during which maintenance operations are carried out, straight
lines are drawn between the actual data points, before and after maintenance, which may lead to the impression
that there is a gradual decrease that stops as soon as the intervention on the refrigeration system is carried out,
whereas in reality it is these operations that cause a drop in generator cold air temperatures, observed at the end
of the intervention by measuring temperatures during the resumption of production (temperatures which then
actually rise again and will lead to other acts of maintenance).

Figure 7: Focus on the first maintenance intervention: the plant outage and the maintenance performed are
indeed at the origin of the temperature drops

3 Conclusion and perspectives

The tool has already been tested among the maintenance and monitoring units of EDF’s hydraulic fleet.
Feedback is considered positive: several relevant use cases (as shown in this article) have already been identi-
fied, showing that this application will be of real interest to these units in the future.

It is considered to add other different databases to the tool, so that it can probe a wider range of "events" to
be displayed together with operational data: in particular, it is thought to add data on hazard and alert detections
issued and capitalized by the operating and monitoring units. The expected benefits would be numerous: to
note if the alerts are followed by actions (and to improve their consideration), to note if they have sufficiently
anticipated the occurrence of possible operational hazards, ...

The weighing of relevance by which maintenance reports are prioritized is currently of relatively modest
complexity. We could try to probe the documentary collection (in particular thanks to the free entry comment
field) with more elaborate text mining tools, making it possible, for example, via the entry of a query expressed
in French sentences and summarizing the general theme explored by the user, to propose a more robust order
of relevance of the maintenance reports.

For the moment the interface only works in one direction: the user chooses which sensor data to display,
then which maintenance reports to display among those proposed. One could consider an inverse operation,
which would fully automate the selection of reports: according to the complete request expressed by the user,
as well as the detection of salient events among the graphs which would then be exploited as ground truth
(growth inversion, sudden changes in growth rate, etc.), propose to display the maintenance reports relevant for
the context studied and time-stamped in the vicinity of these salient events of the operating data.
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Abstract 
Industrial automation is a promising move to fulfill today’s competitive manufacturing industry 

demands by lowering operation costs, increasing productivity and quality. Monitoring the 

production process is one of the important steps toward total autonomy of manufacturing plants, 

which reduces routine checks, enables proactive maintenance and reduces repair costs. This 

research investigates tool wear as one of the most common faults in milling process during cutting 

of the D2 high speed steel as a hard to cut material using Carbide Walter End Mill Protostar tool. 

Vibration signal is chosen to represent the system status due to its applicability in industry. Signals 

are transformed into time-frequency domain using Wavelet Transform method to reveal both time 

domain and frequency domain features of the signal simultaneously. In order to model the 

complex and non-linear relations between tool wear and vibration signals under varying cutting 

parameters, a deep learning based algorithm, Long Short-Term Memory (LSTM) Artificial neural 

networks (ANNs) is employed. Deep learning algorithms are getting lots of attention recently 

within the diagnosis and prognosis community because of their exceptional performance in 

exploiting information in big data to solve complex problems. LSTM network is a type of 

recurrent ANNs that have some internal cells that act as long-term or short-term memory units, 

which is most suitable for sequential data and time series like vibration signals in our analysis. 

After designing the system, performance of the monitoring method is validated using 

experimentally acquired data with K2X10 Huron high speed CNC machine in LIPPS and Dynamo 

labs of ETS.  

Keywords 
Deep Learning, Tool Wear, Wavelet Transform, Condition Monitoring, Time-Frequency 

Transformation, Machining Process   

1. Introduction 

Machining processes are key components of industrial manufacturing, which requires higher 

productivity, parts quality, workers safety and lower operational costs. Therefore, there is growing 

demand to make the machining operation autonomous. Along with other initiatives in automation, 

online monitoring of machining process is beneficial to assure the production safety and quality. 

Tool wear is one of the most common and costly defects of the machining process, which is 

caused by excessive, contact forces and friction between cutting tool and workpiece material, high 



temperatures in the cutting surfaces and pressure of the chips on the tool. It may deteriorates the 

surface finish or causes damage or breakage to the tool, workpiece or machining center if is not 

detected and fixed on time [1]. Therefore, designing a reliable and robust online automatic tool 

condition monitoring (TCM) system is in high demand to actively monitor the cutting process 

and provides actionable reports of tool condition status. 

TCM systems can be divided into two main sub-categories: direct and indirect methods. Direct 

methods involve a procedure to directly measure actual value of faults with a laser, optical or 

ultra-sonic sensor. This could be costly and causes interruption in the manufacturing process for 

the measurements. Indirect methods in contrast employs physical parameters of the system such 

as force, vibration, etc. to indirectly reflect the status of the system [2]. Indirect methods can be 

used to fulfill TCM requirements as an alternative to indirect methods with accurate results and 

acceptable cost[3]. Another advantage of this approach is that the same sensor can be used for 

multiple monitoring purposes.  

Force, vibration, acoustic emission, current and power signals are among the applicable and most 

common signals for TCM application in the literature. Li et al. studied TCM using force signals 

to reveal tool faults in turning[4]. Fourteen time-domain features of the signal are extracted and 

fed into a v-support vector regression model to developed flank wear prediction model. Force 

signal shows high accuracy to represent tool wear variations, however, it is also dependent on 

other operating conditions and relatively costly for industrial application [3]. Vibration sensors 

are practical in industrial environments and can represents the tool wear with appropriate 

performance. Harun et al. studied tool condition during deep twist drilling process using time and 

frequency domain fault features and compared vibration and force signals in this application. 

They concluded that both sensors are acceptable for this application, however they recommended 

vibration signal [5]. Acoustic emission is another efficient signal for TCM which is highly used 

in the literature [6] . Power and current sensors are also cost effective and applicable for industrial 

environment. In and study, current signals of the spindle of the milling machine is used to 

investigate tool wear. S-transform is used to transform the signals to time-frequency domain [7]. 

Sensor fusion is another approach to increase the accuracy and reliability of the monitoring. In an 

study, Segreto et al. combined information of the force, acoustic emission and vibration signals 

for tool condition monitoring of the turning process [8]. 

In the next step, signals are processed to magnify the effect of monitoring variables and reducing 

the effect of the noise in the signals. Time, frequency and time-frequency domain analysis are 

most common methods for signal processing in TCM [9]. Time-frequency analysis is appropriate 

for this application as it investigates both time variant and frequency dependent characteristics of 

the signal simultaneously, although it has higher computational costs [10]. In a study s-transform 

as a powerful time-frequency transformation method is used by Rehorn et al.  to generate a feature 

called selective regional correlation, for machining condition monitoring [11]. In another study, 

a comparative analysis is conducted among common time-frequency transformation methods for 

the purposes of TCM in milling operation [12]. 

The relations between extracted features of the signals and tool wear is non-linear and complex, 

especially under varying cutting parameters such as depth of cut and feed rate which makes the 

monitoring task difficult. Therefore, a solid algorithm is necessary to accomplish the decision-

making requirements. Machine learning algorithms such as artificial neural networks (ANNs), 

support vector machine (SVM) and Bayesian networks are common in the literature to fulfil this 

need. ANNs method is employed by Patra et al. to investigate tool wear of the micro drilling 

process [13]. In another study, a sound based system is developed using discrete wavelet 

transform (DWT) and SVM algorithms in face milling operation for TCM [14]. Tobon-Mejia 

employed Baysian network for the prediction of remaining useful life (RUL) of the tool in 

machining process [15]. 



Recently, deep learning algorithms draw attention of researchers in different fields due to their 

promising capabilities to solve complex challenges [16]. Deep learning refers to machine learning 

algorithms with deep multiple layers which enable them to learn highly complex patterns from 

even low-processed to raw signals [17]. In the era in which sensors are continuously producing 

enormous amounts of data, such techniques are in need to make the most information out of this 

data. These algorithms are less dependent on applications and frameworks and they are most 

efficient to outperform other methods when the relationship between the input data and desired 

outputs are complex [18]. Despite this potential, they are relatively new in the field of machinery 

fault monitoring. In an study, Jing et al. developed a Convolutional neural network based 

algorithm for gearbox condition monitoring [19]. Zhao et al. conducted a study to investigate the 

researches using deep learning methods in machine health monitoring [20]. Further research is 

crucial to examine deep learning algorithms applicability with different signals and levels of 

signal processing in TCM applications. 

In this study, a TCM system is proposed using LSTM ANNs as a powerful and state of the art 

deep learning algorithm. Vibration signals from ETS experimental dataset are used to develop the 

monitoring system. Signals are processed using Wavelet method to transform them to time-

frequency domain. Afterwards, the frequency bands energies calculated in the previous step is fed 

to the LSTM network as the features to construct the monitoring system. The algorithm accuracy 

is compared with a baseline Multi-Layer Perceptron (MLP) ANNs. This paper is organized as 

follows: Section 2 represents the formulation and backgrounds of the techniques of the paper. The 

proposed methodology is elaborated in Section 3. Results and discussion are presented in Section 

4 and Section 5 is devoted to conclusion. 

 

Figure 1.The monitoring system framework 

 

 



 

2. Background of methods 

2.1. Wavelet Transform  

Wavelet transform is one of the widely used algorithms for fault diagnosis and health condition 

monitoring. In wavelet transform, wavelets are used as the basis instead of sinusoidal functions 

that are used in fast Fourier transforms which is the main difference between wavelet transform 

(WT) and Fast Fourier Transform (FFT). It is famous for transient signal analysis as well as time-

frequency localization because it introduces a scale variable in addition to the time variable in the 

inner product transform. It has a better time localization but a lower frequency resolution for 

higher frequency components. In contrast, for lower frequency components, the frequency 

resolution is higher while the time localization is worse. Following equation describes the 

formulation of the continuous wavelet transform [10]. 
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a normalization factor to maintain energy conservation and a > 0. 

2.2. LSTM Neural Networks 

LSTM ANNS have recently demonstrated a great success in many machine-learning tasks, such 

as regression, prediction, etc. While conventional machine learning models can only map from 

input data to outputs, LSTM is capable of building multi-directional connections and it is 

effective at capturing long-term temporal dependences and keeps a memory of previous inputs 

to in the network’s internal state, which makes it ideal for sequential data. The following 

equations is the hidden layer function that give the update for a layer of memory cells [20][21]: 
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where 𝜎 is an  element-wise application of the sigmoid function, θ is the tanh function, and ⊙ 

is the element-wise product. 𝑔 is the input node with a tanh activation function and 𝑖 , 𝑜 and 𝑓 

are the input, output and forget gates, respectively.  

3. Proposed Methodology  

The proposed methodology of this paper is elaborated in this section. In the signal acquisition 

step, an accelerometer is used to capture vibration data of the machine spindle for further 

processing. The framework of the monitoring system of this research is presented in Figure1. 



Signals are processed after the acquisition step to extract informative fault indicators and remove 

noise. Time-frequency analysis is used for this step because of its superior potential in revealing 

the time variant characteristics of the signals in frequency domain using Morlet wavelet transform 

method.  

In the next step, a set of features are extracted from the wavelet transform to describe the fault 

properly. The signal energy in different frequency bands are used as the monitoring features. 

Therefore, minimum pre-processing is implemented to explore the capability of LSTMs in 

eliminating unnecessary information and magnifying relevant features. In contrast to other hand-

crafted feature learning models, deep learning methods are capable to provide an effective 

prediction tool for fault detections by learning robust feature representations directly from input 

signals. 

A deep LSTMs model is proposed in this paper to accurately predict the faults in machining 

process. A simple yet effective architecture as shown in Figure 1 is considered due to the 

constraints of tool condition monitoring system. The keras deep learning library is employed 

[22] with tensorflow as the back-end [23] to implement the proposed model. The proposed 

architecture of the paper involves an LSTM with four neurons in the first hidden layer. then the 

output is fed into two fully-connected layers. The fully-connected layers are responsible to 

compute the softmax activation with a matrix multiplication followed by a bias in order to 

produce the prediction value. Mean Absolute Error (MAE) is chosen as the loss function. The 

model is fit during 2000 training epochs. 

4. Results and discussion  

4.1. ETS Experimental Dataset 

A set of experiments are performed to measure tool flank wear during machining of hard to cut 

materials. K2X10 Huron high speed CNC machine of the LIPPS laboratory at ETS is used to 

perform the experimental tests. A tri-axial accelerometer was mounted on the spindle of the 

machine with a sensitivity of 100mV/g for measuring acceleration.  

D2 high speed tool steel is selected as the workpiece material with hardness of 60-62 HRC due 

to its high wear resistance in order to investigate tool wear in machining hard material with 

dimension of 200 × 54 × 4.  Carbide Walter End Mill Protostar H50 Ultra tool with 6 teeth is 

selected as the cutting tool with 50 degrees of helix angle. Different cutting speeds of 2500 rpm 

and 6000 rpm and feed rates of 0.12 mm/tooth and 0.05 mm/tooth with 4 mm depth of cut and 

tool wear were measured at different intervals which results in 63 cases with different tool wears 

and cutting conditions. Figure 2 demonstrates this experimental setup. 

4.2. Tool wear estimation using vibration signals from ETS dataset 

The monitoring system is developed as per the methodology described in the previous section. 

Also another system without the LSTM layer with just fully connected layers of ANN is 

developed as the baseline. Fully connected layers can be considered as multi-layer perceptron 

ANNs which are widely used in this application as a common ANN technique. Data is divided 

into two categories, training and testing with 70% and 30% of the data respectively. For evaluating 

the performance of monitoring systems, average accuracy in percentage (the differences between 

predicted and actual tool wear value divided by average of tool wears) and RMSE are calculated 

as representative of the performance from the Scikit-learn machine learning performance analysis 

toolboxes.  



 

Figure 2. Experimental set up 

 

 

 

Figure 3. Loss function during training process 

Figure 3 reports the loss values of the LSTM training method, which shows it is converging close 

to zero during the epochs of the training step. Table 1 presents the results of tool wear estimation 

using test dataset for two different algorithms.  



Table 1.  Comparison Between regression results 

Regression Algorithms Average Accuracy % RMSE Test RMSE Train 

LSTM ANNs 92.37 0.00015 0.0001 

MLP ANNs 82.21 0.00264 0.00139 
 

Based on the results, LSTM has higher accuracy (92.4%) and lower root mean square error 

(RMSE) which are acceptable for most industrial applications. Figure 4 illustrates the predicted 

versus actual tool wears using the LSTM based algorithm for two tools from the no wear (VB=0) 

state up to the high tool wears. It is observed based on the diagrams and table that LSTM has a 

promising performance in this application. 

 

Figure 4. Estimated and real tool wear values using vibration signals 

  

5. Conclusions 

A robust tool condition monitoring method is proposed and validated in this research with ability 

to tolerate changing cutting parameters. Spindle vibration signals from the ETS dataset are used 

as the fault indicator. Wavelet transform time-frequency transformation method is employed for 

the signal processing step due to its great applicability to process signals and reveal rich 

information in both time and frequency domain simultaneously and its proven performance in this 

application. A deep LSTM based ANNs method is also implemented as the last step to model the 

complex relationships between extracted features and tool wear. 

Time frequency step of the research revealed information on both time domain and frequency 

domain characteristics of the signals and the study confirms its performance and effectiveness in 

tool wear monitoring. Table 1 report the comparative results of the LSTM ANNS based proposed 

methodology of the paper versus MLP ANNs which is one of the most common and widely used 

ANNs in the Literature. Based on the results, LSTM outperforms MLP with above 10% in 

accuracy and it has a significantly lower RMSE for both training and test results. So it proves the 

applicability of LSTM for tool wear estimation. 



As the next steps of this study, the results will be validated with other common sensors in this 

application, especially more economic and applicable sensors such as power and current sensors. 

In addition, sensor fusion techniques will be investigated at different levels of analysis to increase 

accuracy and robustness of the system. 
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Abstract 
 

Efficient maintenance and monitoring are key points for rolling stock or railway network operators. A 

good knowledge of the structural health and a capability to predict evolution are main assets to ensure a high 

level of performance. Vibrations and dynamic forces borne by the wheel-rail contact contain the main 

information to reach this objective. Therefore, mechanical health features can be deduced from the signal 

measured on the bogie or on the rail using appropriate data processing algorithms. Moreover, the 

improvements in electronics and communication technologies make it possible to integrate measurement and 

data processing functions in a compact embedded system. 

 

VibraTec’s wheel-rail contact experience leads to consider an indirect measurement: a sensor mounted 

on the bogie to monitor the rail and/or a sensor mounted on the rail to monitor the rolling stock. Upon this 

assumption, VibraTec developed a new tool able to detect defaults and assess their evolution. To reach the 

objectives, the device had to be able to measure vibrations, acoustics, train speed and location, then to 

process and send the data. A key point is to apply dedicated algorithms developed to identify and quantify 

defaults from different origins operating in time domain or in frequency domain. 

 
1 Introduction 

In order to increase maintenance efficiency in the rail industry, several condition monitoring solutions 

have been developed over the past few years. Rolling stock or railway network operators need real-time 

accurate information about the structural health of their equipment. Early damage detection is a powerful 

tool for maintenance management: avoid customer complaints, save equipment from hard cracks, limit repair 

and operation times, and consequently, reduce global maintenance cost. 

This paper focuses on the rail corrugation monitoring system developed in the scope of the MAVICO 

project. This prototype solution dedicated to railway maintenance management teams was developed in order 

to prevent rail corrugation effects on the track and on rolling stock equipment. 

 

The development of communication tools and electronics components, the increase in computation 

capabilities, the enhancement of MEMS sensors make it possible to design an efficient Proof Of Concept 

(POC) for corrugation analysis. This embedded system provides timely information about the state of the rail 

infrastructure. 

This paper begins by introducing the theoretical background of the methodology: from rail roughness to 

bogie (or axle box) acceleration. Then, the embedded monitoring system and its calibration process are 

presented. Finally, results deduced from measurements carried out on a tramway bogie running on an urban 

network are given. The measurement campaign was performed in partnership with Keolis Lyon, involved in 

the MAVICO project. The analysis focused on rail corrugation, quantified by its roughness and wavelength. 
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2 Theoretical background 

 

2.1 From corrugation to bogie acceleration 

During the rolling of a railway vehicle, the vertical acceleration on the bogie or the axle box may be 

considered, in first order, as proportional to the amplitude level of the surface defects on the rail. This 

consideration is true if the wheels do not have any high-amplitude default (new or recently reprofiled 

wheels). 

 

The physical phenomena involving the bogie acceleration are shown on the following equations: 

 

Step 1: Dynamic force at rail/wheel contact, 

 

 F(f) = Z(f).[Aw(f)+ Ar (f) + Ac(f)]-1 (1) 

 

With: 

F(f), the dynamic force at contact point, 

Z(f) the rail vertical defect, 

Aw, Ar, Ac respectively the admittance of the wheel, the rail, and the contact, 

f, the frequency dependence. 

 

Step 2: Bogie (axle box) acceleration 

 

 ϒ2(f)= F(f).Acb(f) (2) 

 

With: 

ϒ(f) the acceleration on the axle box, 

Acb(f) the transfer function between the rail and the bogie (or axle box) 

 

 

2.2 Step 1 : from Rail vertical defect to Dynamic force 

The vertical dynamic force spectrum at the contact generated by the defect is deduced from the product 

of the vertical defect spectrum of the rail F(f) with the transfer function [Aw(f) + Ar (f) + Ac(f)]
-1 with:  

the vertical receptance of the path seen from the contact Ar (f), 

the vertical receptance of the vehicle seen from the contact Aw(f), 

the receptance of the contact Ac(f), defined as the inverse of the Hertz stiffness. 

 

N.B. The receptance corresponds to the dynamic flexibility; it is defined as the ratio between the 

vibration amplitude Z(f) at the excitation point and the applied dynamic force F(f). 

 

These three receptances are available by calculation or/and by measurement; VibraTec has developed 

GroundVib software which calculates them, using the track and material properties. This calculation 

approach makes it possible to take into account the impact of track design in the transfer function between 

the default and the acceleration on the vehicle. 

 

This step is presented in section 3 of this paper. 
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2.3 Step 2: from dynamic force to bogie acceleration 

The level of acceleration on the bogie is deduced from the contact force spectrum using the transfer 

function Acb(f). This transfer function can be calculated from the ratio between: 

 - the roughness Z (1/ λ) measured by the corrugation measurement trolley (e.g. Figure 1) on a portion of 

the track, and 

 - the vertical acceleration recorded on the bogie ϒ(f), in running conditions at the speed V of the train on 

the same portion of track. 

 

 
Figure 1: rail corrugation analysis trolley 

 

  
 

Figure 2: Left side: roughness in µm measured on 4 track lines.  

Right side: Associated roughness spectra (1/m) of a portion of track 
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Figure 3: Accelerations measured on a bogie and roughness on the same portion of track at 25 km/h 

 

A post-processing of these two measurements makes it possible to compute the transfer function ϒ2(f)/ 

Z2(f), by a conversion of the roughness abscissa '1 / λ' to a frequency abscissa 'f' using the train speed ‘v’. 

 

3 Practice: From bogie acceleration spectrum to rail corrugation  

The methodology for determining the track roughness from the acceleration measured on the bogie is 

shown in the equation (3). 

 

Part of the input is the transfer function [ϒ2(f)/ Z2(f)] established in paragraph 2 of the preceding process. 

The reference transfer function, estimated on one or more reference sections, is inverted to obtain the 

transition function between the bogie acceleration and the track roughness: [ϒ02(f)/ Z02(f)]-1.The roughness 

PSD is then directly computed using the product of the acceleration with the transition function. 

 

 Z2(f) = [ϒ0
2(f)/ Z0

2(f)]-1. ϒ2(f) (3) 

With:  

ϒ2(f) the bogie acceleration PSD 

Z2(f) the rail roughness PSD  

 

Results can be evaluated by comparing the calculated roughness with the direct roughness measured by 

the trolley on a section of track which was not used in the transfer function definition. Figure 4 presents this 

kind of comparison for a 50m section. 

 

Acceleration on bogie above left track 

Acceleration on bogie above right track 

Roughness [20-500mm] measured on left track 

Roughness [20-500mm] measured on right track 
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Figure 4 : 1 Third octave spectra (in 1/m) measured (with trolley in dashed lines) and computed (with inverse 

method in solid lines). In green, the ISO 3095 standard 

 

 

4 Developed tools 

 

A dedicated tool has been developed to monitor the bogie acceleration, the acoustic pressure in the bogie 

area, the speed and localisation of the train on the network. 

 

The device contains:  

-A data logger that records analogic channels and stores high-speed (acoustic pressure, vibration, and 

speed tachometer), and low-speed sampling rate signals such as GPS data, 

-A 4G router that transmits the data from the train to VibraTec servers, 

-A battery to ensure the transfer of data during train electrical power outages. 

 

The sensors used are a mix between common sensors used for vibration investigations and new MEM’s 

technology. The global approach for the complete processing, from the sensors’ raw data to the corrugation 

defect alert is shown in the Figure 5. 

 

 
Figure 5: Global approach – from raw data to corrugation analysis 

 

Figure 6 presents the VibRail Proof Of Concept. The tool is installed and fixed directly, wireless, on the 

tramway bogie, without impacting passengers, e.g. Figure 8. 
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Figure 6: VibRail Proof Of Concept n°2 

 

  
Figure 7: localisation of VibRail Concept n°1 on a tramway bogie 

 

 

Examples of raw data are presented in Figure 8 and Figure 9. 

 

 

 
Figure 8: raw data measured by the device on the Lyon tramway network T1 Line 

 

Acoustic pressure in bogie cavity 
 

Tram speed km/h 

Bogie Vertical acceleration 
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Figure 9: Lyon tramway network T1 Line. GSP track, with a color scale corresponding to RMS acoustic 

pressure under the bogie in dB 

 

NB: The acoustic pressure under the bogie was monitored to detect screeching noise and send an alarm 

to the tramway operator to avoid disturbing the neighborhood. The principle of detection based on wheel 

mode resonance is not developed in this paper. 

 

5 Measurement results 

In the scope of the MAVICO research project, 3 online measurement campaigns were carried out, spaced 

about 6 months apart, on the full tramway network in Lyon. 

Each measurement campaign was used to determine the roughness of the network tracks. Having 3 

campaigns spaced in time made it possible to assess the evolution of the roughness from both operation and 

grinding campaigns. 

 

5.1 Identification and quantification of Rail roughness 

The wavelengths taken into account on tramway tracks are in the [30-300]mm range. The relation 

between excited frequencies and train speeds is presented in Table 1. 

 

Speed 20 km/h 40 km/h 50 km/h 

 

Frequency 

band 

 

 

18.5 Hz – 185 Hz 

 

37 Hz – 370 Hz 

 

46.3 Hz – 463 Hz 

Table 1: relation between excited frequencies and train speed for wavelengths from 30mm to 300mm 

 

The people who are in charge of track surveys select the areas to be ground by riding the network aboard 

the tram and listening to the emergence of noise related to corrugation. A first part of the data processing was 

to analyse and compare the online measurement data to human perception, in order to establish a correlation 

between human detection and accelerations measured on the bogie. Figure 10 presents an example of this 

correlation. 

 

4 dB/div 
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Figure 10: correlation between bandpass filtered acceleration and human detection on an interstation 

 

In this example, a trigger was activated when the bandpass filtered RMS acceleration reached 8m/s². The 

correlation with human detection is satisfying and the defect localisation is more accurate than the human 

detection thanks to the GPS signal acquisition. One of the conclusions of this correlation with human 

perception is that the wavelengths involved are in the [30-100]mm range. 

 

The second phase was to compute the absolute value of the roughness thanks to the measured 

accelerations and the transfer functions (equation (3)). For this purpose, algorithms have been developed to: 

 locate the train on the network: line number, train direction, 

 split the signals according to the interstations, 

 calculate the roughness RMS level for each interstation. This level is computed versus the 

distance, with a sampling of 20m, 

 plot this criterion on GPS maps and generate reports that allow the customer to communicate with 

the team in charge of grinding and/or to evaluate the actual roughness of the network. 

 

An example of a GPS map is presented in Figure 11. 

 

 
Figure 11: Example of a GPS map of the roughness level (Lyon tramway network T1 Line).  

 

Human detection 

(button press linked to acquisition) 

Speed 

Detection with acceleration trigger 

Bandpass filter acceleration: 

Left side, right side 
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The criteria used to determine the zones to grind can be defined from the literature. In the [30-150]mm 

wavelength range, a criterion of 10 µm RMS can be implemented [1]. This limit can be tuned according to 

the corrugation expert’s sensitivity, and also on the grinding budget.  

 

Figure 12 presents the RMS roughness levels in the [30-150]mm wavelength range calculated related to 

the distance (for example, the starting point 0 km is the beginning of the line). The RMS level was only 

computed when the speed of tram was sufficient to have a good acceleration signal/noise ratio. Below this 

speed, the RMS was set at zero.  

The red line represents the limit/criterion tuned in accordance with Keolis’ corrugation expert, to fit with 

their detection zone (presented below). 

 

 

 
Figure 12: Top: Rail roughness - RMS level in the [30-150]mm wavelength. Bottom: Correlation with 

subjective detection 

 

5.2 Interest of regular monitoring of rail roughness 

Usually, grinding campaigns are performed each year. However, there is a great interest in monitoring 

the rail roughness more often: impact of grinding, impact of exploitation. 

 

Figure 13 presents the rail roughness measured on the same interstation at different times. The initial 

roughness is presented in blue (time t0). The roughness just after a grinding campaign (time t1 = 8 months 

after t0) is presented in red. The third roughness, 4 months after the grinding campaign, is presented in green 

(t2 = 4 months after t1). 

 

 

 
Figure 13: rail roughness - RMS level in the [30-150]mm wavelength. Status July 2017, Status March 2018, 

Status July 2018 

 

In this example, the grinding campaign reduced the roughness from 22µm to 4µm RMS [30-150]mm, in 

the first 100m of the interstation. 

Roughness level in µm: RMS [30-100]mm 

Limit 

adjustment 

0.5 km 



10 

The comparison of the red and green curves shows that the roughness has increased by a factor 2 in 4 

months. 

 

6 Summary/Conclusions 

In the scope of the MAVICO project, a POC of an embedded monitoring system has been designed in 

order to detect corrugation defect on tracks. The developed algorithms are based on an inverse approach, 

using bogie acceleration measurements to determine the state of corrugation. This system has been assessed 

on the complete Keolis Lyon tramway network. This tests have confirmed the interest in the roughness level 

as a first indicator of corrugation defects. Moreover, steady corrugation controls are interesting for track 

monitoring and for early damage detection. 

On dedicated track areas used for validation, the estimation of the roughness RMS level based on the 

indirect method is satisfying, in comparison to the classical direct measurement method using a trolley. The 

system described in this paper can estimate the roughness level of a complete tramway network of more than 

100km in one day. In comparison, such measurements using the direct method would take several weeks. 

The corrugation threshold alert has been tuned using the correlation with subjective human detection of 

corrugation defects. This corrugation alert described in this paper is a powerful indicator for track 

maintenance management. 

Through a new collaborative project (MEEQUAI), an improvement of the rail-to-bogie transfer function, 

based on a calculation/measurement hybrid approach, is currently being studied. 
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Abstract
The central idea behind this paper is to propose a means to filter out vibration signals of interest from a fault
detection perspective without actually having knowledge about the kinematics of the machine. In other words,
this paper investigates blind filters that do not require a-priori knowledge about the fault frequencies, e.g. of a
bearing or gear. This kind of approach opens the door for the condition monitoring of complex machines where
insufficient information is available about the inner components or where replacements have been carried out
that changed characteristic frequencies and that were not logged. This feat is achieved by employing the squared
envelope as a metric for the blind filter. The main assumption of the proposed method is that when a fault occurs,
it introduces a second-order cyclostationary (CS2) component in the vibration signal which manifests itself in
the squared envelope (SE) as a harmonic sine modulation at its corresponding fault frequency. This modulation
correspondingly also increases the sparsity of the envelope spectrum. To avoid interfering influences of CS1
components, the signal is typically pre-whitened, e.g. through linear prediction filtering, cepstrum editing, etc.
The paper investigates the minimization of the relative prediction error of the linear prediction of the squared
envelope for use in the iterative updating procedure of the blind filter.

Keywords

Blind filtering, vibrations, linear prediction, sparsity, envelope, fault detection

1 Introduction

Complex machines nowadays can consist of dozens of bearings and gears, with modern examples being
the gearboxes of wind turbines and helicopters. These gearboxes typically have one or multiple planetary gear
stages in combination with parallel gear stages. Not all kinematic information about the system might be avail-
able to the machine operator, or the information might be inaccurate due to reparations with new components.
This issue constitutes the need for a method capable of tracking the condition of these components without the
need for a-priori knowledge about the kinematics.

One of the most popular approaches for fault detection is to look at the cyclostationary behavior of the
vibration signal [1, 2, 3, 4, 5, 6, 7, 8, 9]. Inspired by this fact, this paper investigates the possibility to utilize
the cyclostationary content of a signal in a blind manner. Therefore, instead of just looking at the statistics of
the time waveform, the squared envelope of the signal is employed as a means to gain more information about
potential defects. From experience it is known that most mechanical faults of bearings or gears induce some
form of cyclostationary behavior in the observed vibration signals [4, 10, 11]. This cyclostationary behavior
alters the modulation signature of the signal. For example a repetitive impulse train (similar to a bearing fault)
introduces harmonics at the repetition frequency of the impulses into the envelope. This means that the enve-
lope signal becomes more predictable and can thus be fitted with an autoregressive model. This property is thus
exploited to find a filter that minimizes the relative prediction error of the squared envelope since it is assumed
that a good fit corresponds to a mechanical fault and not to normal behavior.
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An important remark about the proposed approach is that the blind filtering methodology described in
this paper cannot be categorized as blind deconvolution, blind signal separation, or denoising. The proposed
approach namely does not attempt to deconvolve the signal in order to recover the source signal (e.g. impulses),
nor does it attempt to separate signals from a mixture or remove noise from the signal without distorting it. In
fact, it actually does distort the signal such that the squared envelope is as predictable as possible. This is a fairly
new concept since from this perspective the algorithm does not care about restoring the signal or recovering the
source signals. Instead the algorithm just tries to maximize the figure of merit and thus enhance the envelope
spectrum. It is important to take into account this distinction when inspecting filtering results since the results
might not correspond to what is expected.

This paper attempts to highlight the utility of blind filtering based on the signal envelope and the versa-
tility of the Rayleigh quotient regarding the indicator choice for the blind filtering step. First, the theoretical
background is explained in Section 2. The indicator choice and the derivation of the Rayleigh quotients are
described. Next, the method is validated on simulated signals in Section 3 and experimental data of a gearbox
data set in Section 4. The results show that the proposed approach is capable of extracting a cyclostationary
fault signature and that the prediction error measure of the envelope in itself can be used as a tracking parameter.

2 Methodology

The idea of the proposed methodology is to exploit the predictability of a fault modulation signature by
trying to fit it with a linear prediction (LP) filter or auto-regressive (AR) filter. The prediction error of an
auto-regressive all-poles model of the squared envelope serves then as the metric of interest. The better the
AR model can fit the actual envelope, the more predictable and thus the less noisy it is. This means that if
there is a signal component present with e.g. a clean sinusoidal amplitude modulation, the AR model is then
capable of predicting future samples accurately which in turn corresponds to a low prediction error. This does
indicate again the need for prewhitening the signal to make sure the AR model does not try to fit the envelope
of deterministic components in the signal.

2.1 Blind filtering

The concept of blind filtering is to find a filter that maximizes a certain criterion of the signal starting from
a noisy measured signal x:

s = x∗h (1)

where s is the estimated input, h is the inverse filter, and ∗ refers to the convolution operation. It should be
noted that vectors and matrices are set in bold font to illustrate the difference with scalars. The convolution is
expressed as:

s = Xh (2)



sN−1
...

xL−1


=




xN−1 . . . x0
...

. . .
...

xL−1 . . . xL−N−2







h0
...

hN−1




with L and N the number of samples of s and h respectively.
Now the squared envelope εx can be defined as follows:

εx = |s|2 = |Xh|2 (3)

It can also be written as:

εx =




s0 . . . 0
...

. . .
...

0 . . . sL−N+1




H

Xh = diag(sH)Xh (4)

with sH being the Hermitian transpose of s, and diag(sH) being a diagonal matrix with the values of the vector
sH on its diagonal.
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Signal x(n) Linear Prediction Coding Prediction error ε(n)

Figure 1: Linear prediction coding.

2.2 Derivation of LP-envelope filter

The relative prediction error of the AR model is closely related to the spectral flatness as the AR model
also maximizes the spectral flatness of the squared envelope prediction error [12]. The relative prediction error
(RPE) of the AR model of the squared envelope is given by:

RPE =
σ2

e

σ2
SE

(5)

with σe being the prediction error of the squared envelope, and σSE being the standard deviation of the squared
envelope. The autoregressive coefficients can be obtained by fitting a linear prediction model on the squared
envelope. The standard LPC representation of a signal x(n) for a model of order N is:

x(n) =
N

∑
i=1

aix(n− i)+ e(n) (6)

with ai the autoregressive coefficients, and where the error e(n) can be obtained by:

e(n) =
N

∑
i=0

aix(n− i) with a0 = 1. (7)

Figure 1 illustrates the straightforward process. The autoregressive filtering necessary to obtain the prediction
error e of the squared envelope εx can be written in matrix notation as follows:

e = Adiag(sH)s (8)

with A a band matrix containing the autoregressive coefficients as follows:

A =




a0 a1 . . . aN 0 . . . 0

0 a0 a1 . . . aN
. . .

...
. . . . . . . . . . . . 0

...
. . . a0 a1 . . . aN

. . . . . .
...

a0 a1
0 . . . 0 a0




(9)

Since the intent is actually to minimize the relative prediction error in Eq. 5 and not maximize it, the ratio
to be maximized is actually the inverted RPE. Equation 5 can thus be written in the following manner:

σ2
SE

σ2
e

=
εx

Hεx

eHe
=

hHXHdiag(s)diag(sH)Xh
hHXHdiag(s)AHAdiag(sH)Xh

=
hHRXW1X h
hHRXW2X h

(10)

The generalized Rayleigh quotient [13] can be recognized in Eq. 10 and can be maximized using an iterative
maximization of the eigenvalues:

λ =
hHRXW1X h
hHRXW2X h

(11)

The Rayleigh quotient has the interesting property that its maximal value with respect to h is equivalent to
its largest eigenvalue λ and corresponding eigenvector. Thus, maximizing the Rayleigh quotient allows finding
the maximal values of the corresponding indicator and filter. In order to obtain real eigenvalues however, the
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correlation matrices RXW1X and RXW2X need to be Hermitian, and RXW2X needs to be positive semidefinite.
If these conditions are met, the Rayleigh quotient offers an efficient means to calculate iteratively the filter
coefficients. Only the largest eigenvalue and corresponding eigenvector need to be computed in each iteration,
which can be achieved efficiently by using algorithms such as the power method [14].

The generalized eigenvalue problem to be solved can be formulated as such:

RXW1X h = RXW2X hλ (12)

The iterative algorithm used to minimize the prediction error consists out of four basic steps:

1. Assume an initial guess for h

2. Estimate RXW1X and RXW2X based on h and X using Eq. 10

3. Solve Eq. 12 to find λmax and a new filter h that corresponds to a higher value of the used criterion

4. Return to step 2 using the new h until convergence is reached or the maximum number of iterations

The name of the proposed method is abbreviated to LPE (Linear Prediction of Envelope) to keep the text
concise.

3 Simulation

To validate the proposed approach, a straightforward simulated case is first considered. To add some point
of reference, the performance of the proposed LPE method is compared to Minimum Entropy Deconvolution
(MED), which is a commonly used blind deconvolution filtering technique to maximize the kurtosis. An outer
race bearing fault signal is simulated with a normalized sample rate of 1 Hz and duration of 20000 samples.
White Gaussian noise is added at varying degrees of signal-to-noise ratio. The parameters used for the simula-
tion of the bearing fault signal:

• the outer race bearing fault frequency, fBPFO = 0.31Hz

• the resonance frequency excited by the fault, fIRF = 0.25Hz

• the damping ratio, ζ = 0.1

• the jitter, J = 1%

The signal-to-noise ratio of the fault signal is varied linearly from -30 dB to + 15 dB. The overall variance
of the signal is kept constant however. The filter length is chosen to be 15 and 150 samples respectively for the
proposed LPE method and MED filtering. The max number of iterations is set at 100.

Figure 2 shows the evolution of the indicators after blind filtering using the proposed method and MED. It
can be observed that the relative prediction error starts to decrease gradually around -17 dB SNR. In this case
the proposed method outperforms MED mainly because the generated bearing fault signal does not immediately
give rise to a large increase in the kurtosis of the signal. This is due to the fault frequency being relatively high
and therefore causing the exponentially decaying impulse responses to smear over. This is not an ideal scenario
for kurtosis maximization. However, when inspecting the envelope, the fault frequency modulation shows up
faster because it does not suffer as much from this smearing. Instead it detects still the envelope fluctuation at
exactly the fault frequency, albeit less pronounced than it would be without smearing.

Figure 3 shows a color map in grayscale of the evolution of the normalized squared envelope spectra.
The fault frequency of 0.31 Hz can be clearly distinguished after approximately -17 dB and 2 dB SNR for
respectively the proposed and MED method. An alternative 3D view of this color map is provided in Figs. 4
and 5.
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Figure 2: Trending of Relative Prediction Error (RPE) versus kurtosis after blind filtering using the proposed
LPE approach and MED respectively.

Figure 3: Color maps (in grayscale) of the squared envelope spectra after blind filtering using the MED (left)
and proposed approach (right) respectively. The black lines appearing at approximately -17 dB and 2 dB SNR
for respectively the proposed and MED method correspond to the 0.31 Hz fault frequency.

4 Experimental application

To verify whether the proposed method also works for more complex signals, the approach is tested on
an experimental vibration signal. The real-world case chosen for this purpose is the IMS bearing prognostic
dataset [15]. This dataset contains an outer race bearing fault in measurement campaign 2. The BPFO is
approximately 236 Hz. The record chosen for filtering is n 690 since it is known that there is already damage
distinguishable using other signal processing methods but the damage is not distinguishable directly from the
raw vibration signal. The result after filtering using the LPE method is displayed in Fig. 6. While the original
input signal does not show any clear signs of damage, the filtered signal evidently exhibits a strong modulation
at exactly the BPFO of 236.1 Hz and its second harmonic at 472 Hz. This is a favorable result since no a-priori
knowledge of the fault frequency was provided to method. It should also be noted that in testing the MED
filtering method failed to extract any clear indication of the fault for the same signal.
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Figure 4: Squared envelope spectrum waterfall plot af-
ter filtering with the proposed method based on the rel-
ative prediction error.

Figure 5: Squared envelope spectrum waterfall plot af-
ter filtering with the MED method based on kurtosis.

Figure 6: Experimental case: (Left) The envelope spectrum of the raw input signal. (Right) The envelope
spectrum after filtering with the proposed LPE method.

5 Conclusions

This paper describes a novel fault detection approach to blind filtering of vibration signals. Instead of
looking to maximize a statistic of the time waveform, it proposes to utilize the squared envelope and more
in particular the predictability of it. Most fault signatures of bearing or gear faults induce structured and
thus predictable second-order cyclostationary behavior. The main assumption is thus that an increase in the
envelope predictability is linked to the emergence of a fault. This knowledge is then used to derive a blind
filtering approach employing a generalized Rayleigh quotient iteratively to optimize the filter coefficients. The
proposed method is validated on both simulation data as experimental data. Both scenarios prove that the
proposed approach can work in an efficient and accurate manner. Employing the envelope instead of the time
waveform, as done by MED filtering, also alleviates some of the limitations the latter can have. An example
of such a limitation is the fact that MED filtering assumes that the fault signal has a high kurtosis value due
to its impulsiveness. In reality this is not always the case. Additionally, MED filtering has the tendency to
deconvolve a single high amplitude peak due to the fact that kurtosis is maximized in such a scenario. This
is unlikely for a rotating component where impulses are generated at every rotation. Therefore the use of the
envelope signal is a logical way to assess the presence of faults in rotating machinery.

While there is no need to input the fault frequency in the method, there is still one parameter that can
influence the outcome, namely the filter length. A general recommendation for the filter length is to try to keep
it as short as possible. Not only does this reduce the computation time, but it also means that there are less filter
coefficients that need to be optimized and thus less coefficients that vary. The updating procedure also becomes
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more stable and fluctuates less due to numerical inaccuracies (e.g. high condition numbers of the matrices).
The results presented in this paper are promising as they prove that detailed information about the system

of interest is not always necessary to still perform health tracking. It also opens the door for more and different
approaches using blind filtering based on the envelope and its properties instead of using the raw time waveform.
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Abstract 
While in operation, aircraft engines may be subjected to various severe mechanical events such as bird 

ingestion, blade separation, ice accretion, shaft unbalance, compressor stall or rotor-stator interaction. During 

the development of a new engine application, such phenomena are simulated in test cells in order to make 

sure that the engine will still operate safely. During such tests, accelerometers and strain gages are mounted 

on the engine cases and near the shaft bearings in order to measure loads and vibrations and in order to 

understand the engine behaviour. The engine dynamic behaviour during those phenomena may be fleeting or 

sustained, cyclic or asynchronous, transient or stationary. Usual analysis are performed in various domains 

such as time, frequencies and orders of a rotating shaft speed, depending on the nature of the vibration 

behaviour. 

This paper describes a new kind of vibrations representation that considerably facilitate the interpretation of 

fleeting or sustained events when both time and phase location of a shaft are meaningful. In a first section of 

the paper, the representation is described with a simple simulation of a rotating shaft operating with variable 

angular speed. In a second section, the representation is applied on a real aircraft engine during tests with 

various engine behaviours. The last section presents a simulation of those different behaviours with a simple 

lumped-mass model. 

 
1 Introduction 

Aircraft engines may be subjected to various severe mechanical events such as bird ingestions, blade 

separation, ice accretion, shaft unbalance, compressor stall or rotor-stator interaction [1]. 

During the development of a new engine application, such phenomena are simulated in test cells in order 

to make sure that the engine will still operate safely. 

Those phenomena may be transient or stationary, synchronous, almost synchronous, or not correlated 

with the rotating speed of a shaft. They may be caused by internal activity of the engine or by external 

aggression. In order to better understand the behaviour of the engine during those tests, the engine is 

equipped with acceleration or displacement sensors, strain gauges, tachometers, temperature and pressure 

sensors and high speed cameras. Those measurements are recorded with a sampling frequency in the range 

from 10 Hz to 100 kHz, depending on the sensors capabilities and on the frequency content that is expected 

to happen during the test. 

The measurements are then analysed with different kinds of data processing tools in order to extract from 

the noise the relevant information that will facilitate the understanding of the phenomena. According to the 

type of events, several kinds of data analysis are appropriate. Frequency analysis, order analysis [2], wavelet 

analysis and image processing are standard tools that may be very helpful. Another very popular tool is 

simply the analysis of the time history of different measurements when they are synchronized. Such analyses 

may be performed after some data processing such as non-causal filtering in order to enhance the 

information hidden in the signal. Time history analysis can reveal correlation or causality between 

phenomena. 

In this paper we present a new representation of time history where we add the dimension of angular 

position of a shaft in the display of the signals. 
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In a first section, the representation is described with a simple simulation of a rotating shaft operating 

with variable angular speed. 

In a second section, the representation is applied on a real aircraft engine during tests with various engine 

behaviours. The relevance of the new representation compared to more usual representation is discussed. 

The last section presents a simulation of those different behaviours with a simple model. 

For sake of confidentiality, plots units are normalized. Also, experimental and model parameters are not 

shared throughout the paper. 

 

2 Description of the time/phase representation with a simple simulation 

In order to explain the transformation of a standard time history representation to a time/phase domain 

representation, we will use a simple simulation of a vibration synchronous with a shaft rotating speed. A 

vibration signal was simulated with the following hypotheses: 

• A rotating speed N of the shaft that decreases linearly, and with an inversion of the direction of 

rotation, 

• A vibration signal that is synchronous with the rotating speed, 

• The amplitude of the vibration that is proportional to the square of the rotating speed. 

 

A standard time history representation of this simulation is illustrated in figure 1. As can be seen on 

figure 1(b), the sign of the rotating speed is meaningful for the representation of the shaft angular position. A 

convention shall be used for the sign of the rotating speed, for instance it could be positive when the shaft 

rotates in the clockwise direction in the ‘forward looking aft position‘. 

 

 

Figure 1: Standard time history representation with a simple simulation. Time history of the rotating speed N 

of a shaft (a), time history of the shaft angular position (b), and time history of a simulated vibration signal 

(c). 

 

In a standard time history representation, the amplitude of the vibrations is plotted on the y-axis. 

 

The representation in the time/phase domain of the simulated signal is shown in figure 2(a). 
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Figure 2: Representation in the time/phase domain (a) and time history of the shaft rotating speed (b). 

 

This representation is composed of two signals: 

• A plot of the time history of the shaft angular position, 

• A plot of the vibration amplitude around the shaft angular position plot. 

 

In such representation, the vibration is plotted in the direction of the x-axis. The zeros of the vibration 

amplitude are located on the curve of the shaft angular position. 

A convention for the sign of the amplitude must be applied. As illustrated in figures 1 and 2, the 

convention used in this paper is to plot the positive values at the right of the shaft angular position, which is a 

natural convention. Another convention must be applied for the scale of the vibrations amplitude since the x-

axis is also used for the representation of time. The scale of the vibration amplitude can be arbitrarily chosen, 

but it should be selected according to the range of amplitude and to the time length between two cycles for 

visual convenience. 

Representation in the time/phase domain is therefore not a transformation of the signal, it is simply a 

different presentation of the time history of a signal. The aim of this kind of representation is to ease the 

identification and physical understanding of angular or temporal periodic phenomena present in the vibration 

signal. 

 

In the next section, this representation will be applied to a variety of phenomena experienced by civil 

aircraft engines during engineering tests. 

 

3 Application of the representation to several aircraft engine events 

A first illustration in figure 3 is the installation of an oil unbalance. This event occurred while the 

rotating speed was almost stabilized as it can be seen on figure 3(c) and 3(d). The normalized rotating speed 

is plotted between 0 and max(N) while the detail is plotted between min(N) and max(N). In this case, the 

vibration signal is the displacement of the shaft in a given radial direction. This signal has been filtered with 

Vold-Kalman filters, described in [3], around 1 N and around 0.8 N. 

The tracked signal around 1 N in figure 3(a) is representative of the displacement caused by a rigid 

unbalance of the shaft. This kind of unbalance is synchronous with the shaft. When the rotating speed is at 

steady state, the displacement caused by such unbalance also rotates synchronously with the shaft. 

The tracked signal around 0.8 N in figure 3(b) is representative of an oil unbalance. Oil unbalance can 

occur when oil is present inside the shaft when a wave of oil is formed within. This wave causes an 

unbalance that is rotating in the direction of the shaft rotation but more slowly, hence the application of a 

filter around 0.8 N to track the displacement of the shaft caused by this type of unbalance. During this event, 

the rigid unbalance remained constant while the oil unbalance progressively increased in amplitude. 

 



  

 

4 

 

Figure 3: Application to a constant rigid unbalance and the progressive increase of an oil unbalance. 

Representation in the time/phase domain of the vibration amplitude tracked on the first order 1 N of the 

rotating speed (a) and of the vibration amplitude tracked around 0.8 N (b). Time history of the normalized 

rotating speed (c) and of the detail of the rotating speed (d). The red arrow shows that it takes 5 rotations of 

the shaft for the oil unbalance to be repetitive. 

 

 

Another kind of test is ice accretion on the main shaft of aircraft engines. During ice accretion, several 

successive ice sheddings can occur. Those ice sheddings are fleeting events that change the unbalance of the 

shaft. Figure 4(a) shows an ice shedding and the high frequency content in the vibration during this event. 

Figure 4(b) is the vibration signal filtered around 1 N representative of the unbalance. In this case, the 

amplitude of the unbalance increases during the shedding. Figure 5 shows a different behaviour of an ice 

shedding. In this case, an unbalance was present prior to the shedding. After the shedding, the unbalance is 

higher and its angular location is at the opposite direction as can be seen in figure 5(b). Figure 4(d) and 

figure 5(d) show that the torsional mode of the shaft is excited by the sheddings. 

 

 

Figure 4: Application to ice shedding, fleeting event and sustained unbalance. Representation in the 

time/phase domain of the vibration amplitude (a) and of the vibration amplitude tracked around 1 N (b). 

Time history of the normalized rotating speed (c) and of the detail of the rotating speed (d). The unbalance 

increases in amplitude during the shedding while preserving its phase location. 
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Figure 5: Application to ice shedding, fleeting event and change in unbalance amplitude and position. 

Representation in the time/phase domain of the vibration amplitude (a) and of the vibration amplitude 

tracked around 1 N (b). Time history of the normalized rotating speed (c) and of the detail of the rotating 

speed (d). The unbalance decreases and increases in amplitude during the shedding while its phase location is 

almost at the opposite direction. 

 

The ingestion of several birds and the stall of a compressor are illustrated in figures 6 and 7. During 

those events, high frequency content appears but are not sustained. Time/phase representation is not really 

relevant in this cases where no obvious correlation of the frequency content and the phase location is 

observed. 

 

 

Figure 6: Application to the ingestions of several birds. Representation in the time/phase domain of the 

vibration amplitude of an accelerometer mounted on a stator close to the shaft (a). Time history of the 

normalized rotating speed (b) and of the detail of the rotating speed (c). 
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Figure 7: Application to a compressor stall. Representation in the time/phase domain of the vibration 

amplitude of an accelerometer mounted on a stator close to the shaft (a). Time history of the normalized 

rotating speed (b) and of the detail of the rotating speed (c). 

 

Another severe event is the separation of a blade from the shaft. In this case, the unbalance can be huge 

and a solution is to change the dynamic response of the shaft in order to limit the loads in the engine and on 

the aircraft. During the deceleration of the shaft after a fan blade separation, the rotating speed crosses a rotor 

mode. Figure 8 shows the vibration representative of a load on a static bearing. During the crossing of the 

mode, the load increases and the phase delay between the load and the angular position of the shaft 

decreases. 

 

 

Figure 8: Application to the crossing of the rotating speed and a mode of the shaft. Representation in the 

time/phase domain of the vibration amplitude of a strain gauge mounted on a stator close to the shaft (a). 

Time history of the normalized rotating speed (b) and of the detail of the rotating speed (c). The red curve 

follows the maximal positive amplitude at each cycle. 

 

The representation in the time/phase domain is particularly appropriate for the analysis of this type of 

event because the representation has an immediate physical sense that cannot be easily understood with other 

kinds of phase representation. For instance it is not necessary to understand if the convention for the phase 

between vibrations and a reference on the shaft is ‘phase lag’ or ‘phase lead’. In figure 7, it is obvious that 

the phase of the vibration is slowly accelerating, compared to the rotating speed of the shaft, during the 

crossing of the mode, and this is what is expected during a deceleration. 

 

Figure 9 shows another behaviour for which the time/phase representation is particularly suitable. During 

this event, an interaction between the rotor and a static case occurred. The torsional mode of the shaft was 
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excited, and the vibrations recorded on the static case shows that this interaction is characterized by an 

excitation of a sub-harmonic of the rotating speed. The time/phase representation allows to identify at a 

glance that the interaction occurs every three rotations of the shaft, and that the interactions occur when the 

shaft is approximately at the same angular position, meaning that the interactions between the rotor and the 

stator were very likely to appear repetitively in the same angular areas. 

 

 

Figure 9: Repetitive shocks on a static case when a rotor interacts with a stator. Representation in the 

time/phase domain of the vibration amplitude of an accelerometer mounted on a case of the engine (a). Time 

history of the normalized rotating speed (b) and of the detail of the rotating speed (c). 

 

4 Representation of several events with a simple model 

Several events were simulated with a simple lumped-mass model [4]. Such simulations are typically used 

for the understanding of the dynamic behaviours of rotating shafts during the design of new aircraft engine 

types. 

The lumped parameter model simulates the low speed shaft of an aircraft engine subjected to different 

external load conditions simulating the experimental cases shown on the previous section. Figure 10 shows a 

schema of the system which considers 3 degrees of freedom. The mass of the whole shaft is lumped to one 

rigid node resting on flexible supports with viscous damping. 

 

Figure 10: Lumped mass model Schema. 

 

The general system of equations is: 

 

  (1) 

 

Matrices M, C and K represent the mass, damping and stiffness of the system and vector X contains the 

generalized displacements of the node I on the x, y and Ɵ directions. The modelling approach is completely 
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described in reference [4]. The resolution is performed in the angular domain as described in the given 

reference and the resolution is performed with Matlab’s® ode15s solver. 

 

Figure 11 shows the result of the measurements and of the simulation of the application of a rigid and 

constant unbalance and the application of a progressively increasing oil unbalance. The results from the 

simulation and from the measurements are very similar. 

 

 

Figure 11: Application to a constant rigid unbalance and the progressive increase of an oil unbalance. 

Representation in the time/phase domain of the vibration amplitude tracked on the first order 1 N of the 

rotating speed (measurement (a), simulation (e)) and of the vibration amplitude tracked around 0.8 N 

(measurement (b), simulation (f)). Time history of the normalized rotating speed (measurement (c), 

simulation (g)) and of the detail of the rotating speed for the measurement (d). 

 

Figure 12 shows the results of a simulation of the crossing of a rotating speed with a mode of the rotor. 

The model shows the changes in amplitude and phase that are similar to the changes observed during the 

tests in figure 8. 
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Figure 12: Simulation of the response to a crossing of the rotating speed and a mode of the shaft. 

Representation in the time/phase domain of the vibration amplitude of a strain gauge mounted on a stator 

close to the shaft (a). Time history of the normalized rotating speed (b) and of the detail of the rotating speed 

(c). The red curve follows the maximal positive amplitude at each cycle. 

 

For the simulation of repetitive shocks between a rotor and a stator, the contact between the rotor and the 

stator has been simulated by a sudden change of the stiffness and damping in the vertical direction when the 

clearance is consumed due to unbalance as shown in Figure 13. The stator has been given a sinusoidal 

displacement law with a frequency close to a third of the rotating speed of the shaft. 

 

 

Figure 13: Rotor-stator contact model schema. 

 

Figure 14 shows the results of the simulation of repetitive shocks between a rotor and a stator. The 

results are also similar to the records in figure 9. 
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Figure 14: Simulation of the response to repetitive shocks. Representation in the time/phase domain of the 

vibration amplitude of an accelerometer mounted on a case of the engine (a). Time history of the normalized 

rotating speed (b) and of the detail of the rotating speed (c). 

 

The results obtained with the very simple model and the comparison of those results with those obtained 

from tests are similar. The time/phase representation of both model and tests results facilitates this 

comparison. 

The model can reproduce almost all dynamic behaviours observed during the tests with the time/phase 

representation. The only limitation is related to the impossibility to reproduce the torsional mode because 

there is only a single degree of freedom on the angle direction. Most influencing factors can be identified 

while changing the parameters of the model (mass, stiffness damping, external loads and rotating speed) 

without further expensive tests on real aircraft engines. 

 

5 Conclusion 

A new representation of vibration signals in the time/phase domain has been described. This 

representation has been applied on data recorded during several tests of aircraft engines, and on results 

obtained from a very simple model. The benefits of this representation are the following: 

• The representation is a small change of the standard time history representation, it is therefore easy to 

become familiar with the new representation, 

• The representation facilitates the search for correlations between the vibrations and the angular 

location of the shaft because the angular location is on the y-axis of the graphs, 

• The time axis is preserved, correlations can be identified and causal analysis can be performed. 
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Abstract

In the last few years blind deconvolution techniques proved to be useful in order to extract impulsive patterns
related to bearing fault from noisy vibration signals. Recently, a novel blind deconvolution method based on
the generalized Rayleigh quotient has been proposed and an iterative algorithm related to the maximization
of the cyclostationarity of the source has been defined. This paper presents a new condition indicator that
exploit the Fourier-Bessel series expansion for the computation of a new cyclostationarity index that drives the
maximization problem for the extraction of the excitation source. The main target of this work is to compare
the results obtained through the exploitation of the Fourier-Bessel transform with respect to the classic Fourier
transform in term of lower number of cyclic frequencies required for the algorithm. The comparison between
the application of the two different methods involves both simulated and real signal taking into account a
bearing fault. The results prove the capability of the new indicator to extract the impulsive source without the
need of a set of cyclic frequencies but only with the first one, with a strong reduction of the computational time.

Keyword: Cyclostationarity, Fourier-Bessel transform, blind deconvolution, bearing fault detection.

1 Introduction

Nowadays, bearing fault detection and identification play a fundamental role in the diagnostics of rotating
machines being this component one of the most critical in mechanical systems. However, the detection of
bearing faults, particularly in the first stage of the damaging process, may be challenging due to the fact that
the impulsive pattern related to the fault is very weak and consequently masked by the background noise and
other interference. For this purpose, blind deconvolution (BD) techniques proved to be able to extract the
characteristic impulsive pattern of a faulty bearing direct from a noisy observation, under the hypothesis of
linear time-invariant system.

The first BD method, called Minimum Entropy Deconvolution (MED) [1], exploits an iterative algorithm
in order to extract the impulsive source through the maximization of the kurtosis directly from a noisy vibration
signal convolved with an unknown impulse response function. Over the years, the MED algorithm has been
exploited for machine diagnosis by many authors both for tooth faults [2, 3] and bearing faults [4] in combina-
tion with other signal processing techniques. However, from the machine diagnosis point of view kurtosis can
not be considered a a useful indicator. In fact, this statistics is sensitive to signal with a single peak rather than
to signal peakedness according to a given periodicity, e.g. represented by a train of impulses.

In order to overcome this problem and exploit the BD for the fault detection in rotating machines, McDonald
at al. [5] proposed a new BD method based on a criterion called correlated kurtosis that is sensitive to signal
composed by a train of periodic peaks. This algorithm, called Maximum Correlated Kurtosis Deconvolution
(MCKD), is based on an iterative process that aims to estimate the source having the maximum correlated
kurtosis.

In the same direction, McDonald and Zhao [6] proposed a new BD method called Multipoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA). This direct algorithm promotes the estimation of a
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pattern of periodic impulses by considering a target vector t, defined as a train of equispaced impulses. The
main issue of MOMEDA is related to the definition of t that allows the extraction of periodic impulses.

Over the years, cyclostationarity proved to be effective for machine diagnosis. In particular, several works
[7, 8] prove that the vibration signal related to a bearing fault is not strictly periodic due to a random ”jitter”
around the fault period, but it can be seen as a second order cyclostationary signal. The correlated kurtosis
can be seen as a cyclostationary criterion being it related to the autocorrelation function of the instantaneous
power of the signal [9]. However, it has been defined empirically, without an explicit formulation regarding it
cyclostationary nature, thus there is the need to define a pure cyclostationary criterion.

Recently, in this direction, Buzzoni et al. [10] proposed a new BD method based on the maximization of
the cyclostationarity of the researched signal through an iterative algorithm that solves an eigenvalue problem
starting from a generalized Rayleigh quotient. This algorithm aims to extract the source related to the maximum
value of the Indicator of Ciclostationarity (ICS). This indicator, proposed for the first time by Raad et al. [11],
exploits the Fourier transform in order to extract the hidden periodicity inside the acquired signal. However, the
Fourier series expansion requires an high number of terms for the description of an impulsive pattern. For this
reason, the algorithm needs to take account of a certain number of harmonics of the cyclic frequency related to
the investigated periodicity in order to reach a sufficient reconstruction quality.

The target of this work is the definition of a new BD indicator based on the maximization of the ciclosta-
tionary behavior of the analyzed signal. This indicator exploits the Fourier-Bessel series expansion instead of
the classical Fourier transform. The choice of this particular series expansion is related to the fact that, unlike
the sinusoidal function based Fourier transform, it is based on the Bessel functions that quickly decay according
to a specific law [12, 13]. For this reason, the proposed method requires a set of cyclic frequencies with a lower
number of harmonics, strongly reducing the computational time of the iterative algorithm.

The BD method modified through the exploitation of a new indicator is verified through the analysis of
both simulated signal and a real test case in order to demonstrate its effectiveness for the fault detection and the
condition monitoring of bearings. The comparison between the proposed method and the other methods based
on the ciclostationarity maximization aims to point out the improvement given by the proposed algorithm, in
particular in term of computational time reduction.

2 Overview about blind deconvolution methods through generalized Rayleigh
quotient optimization

The target of BD is the extraction of an input signal, typically related to the excitation given by a fault,
directly from a noisy observation under the hypothesis of linear time invariant system.

The vibration signal, from now called x, can be considered as composed by three different parts: an impul-
sive pattern s0 related to a local fault, a periodic component p and a Gaussian background noise n, all convolved
with their respective Impulse Response Function (IRF), viz:

x = s0 ∗gs +p∗gp +n∗gn (1)

where gs, gp and gn are the IRFs related to s0, p and n, respectively and * refers to the convolution operation.
BD aims to estimate an inverse filter h (assumed to be a FIR filter) in order to deconvolve the excitation s0

from x minimizing the other contributions, such that:

s = x∗h = (s0 ∗gs +p∗gp +n∗gn)∗h≈ s0 (2)

In the first part of eq. 2 the convolution can be expressed for discrete signals in matrix form, as follow:

s = Xh (3a)



s[0]
...

s[L−1]


=




x[N−1] . . . x[0]
...

. . .
...

x[L−1] . . . x[L−N−2]







h[0]
...

h[N−1]


 (3b)

where L and N are the number of samples of s and h, respectively. The main problem is related to the fact
that the IRFs described in eq. 2 are not available. A possible solution can be achieved considering an arbitrary
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criterion based on a priori assumption, e.g. assuming that a statistical property is maximized by the researched
source. Thus, BD aims to recover the source that maximizes a certain statistical property, e.g. kurtosis [1],
correlated kurtosis [5] or multi D-Norm [6], through iterative or direct algorithms.

Although cyclostationarity plays a fundamental role in the diagnostics of rolling element bearings the CY-
CBD method [10] can be considered as the first BD method that exploits the cyclostationary signature of faulty
bearings.

2.1 Blind deconvolution algorithms driven by cyclostationarity maximization based on
generalized Rayleigh quotient

Recently, the method proposed in Ref. [10] demonstrated that the generalized Rayleigh quotient can be
exploited in order to define a new optimization problem. Starting from this statement a new BD method based
on the cyclostationarity maximization has been defined.

A generical process can be defined as cyclostationary if its statistical properties exhibit a periodic behaviour.
It has been demonstrated by several authors [7, 8] that the vibration signature related to a faulty bearing shows a
cyclostationary behavior, thus this property became pivotal for bearing fault detection and identification. In this
scenario, the frequency related to the periodic behavior of any statistic of the process is called cyclic frequency
and, for discrete signal, can be expressed as follow:

α =
k
T

(4)

where k is the sample index and T the cyclic period, e.g. the characteristic period of a bearing fault. The BD
algorithm descried in this section, called CYCBD, is based on the maximization of the second-order ICS that
describes the presence of periodic fluctuations of the energy flow of the signal.

First of all, it is necessary to remember the definition of second-order ICS:

ICS2 =

∑
k>0
|ck

s |2

|c0
s |2

(5)

with

ck
s =

1
L−N +1

L−1

∑
n=N−1

|s[n]|2e− j2π k
T n (6a)

c0
s =

||s||2
L−N +1

(6b)

or, in matrix form:

ck
s =

EH |s|2
L−N +1

(7a)

c0
s =

sHs
L−N +1

(7b)

where

|s|2 = [|s[N−1]|2, . . . , |s[L−1]|2]T (8a)

E =




e− j2π 1
T (N−1) . . . e− j2π K

T (N−1)

...
. . .

...
e− j2π 1

T (L−1) . . . e− j2π K
T (L−1)


 (8b)

Now it is possible to rewrite eq. 5 by substituting eq. 7a and 7b as:

ICS2 =
|s|2HEEH |s|2
|sHs|2 (9)
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Finally, ICS2 can be rewritten by substituting eq. 3a into eq. 9, viz:

ICS2 =
hHXHWXh

hHXHXh
=

hHRXWX h
hHRXX h

(10)

where RXWX and RXX are the weighted correlation matrix and the correlation matrix, respectively, and W is
the weighting matrix, expressed as:

W = diag
( EEH |s|2
(L−N +1)sHs

)
(L−N +1) =




. . . 0
EEH |s|2
(L−N+1)

0
. . .



(L−N +1)

L−1
∑

n=N−1
s[n]2

(11)

It should be noticed that eq. 10 is a generalized Rayleigh quotient. It has been demonstrated [10] that the
maximization of the ICS2 in eq. 10 with respect to the filter coefficients h is equivalent to the eigenvector
related to the maximum eigenvalue λ of the following generalized eigenvalue problem:

RXWX h = RXX hλ (12)

thus, the maximum value of λ correspond to the maximum value of ICS2.
The maximization of ICS2 and the extraction of the associated filter h is reached through an iterative pro-

cess. The iteration starts with an initialization of the inverse filter h in order to compute the weighting matrix
W and solve the eigenvalue problem described in eq. 12, obtaining the filter h related to the maximum value of
λ . The iterative process restarts from the evaluation of W and goes on until convergence. A suitable solution
for the computation of a guess of h is to estimate the filter coefficient through an auto-regressive (AR) model
filter, e.g. by means of the Yule-Walker equations, according to Ref. [10]. This model permits to attenuate all
the components related to deterministic sources in the signal spectra thus it is possible to obtain a flat spectral
density, typical of a impulsive patterns.

Once the iterative process is ended, the maximum value of ICS2 is available and the source obtained by
substituting the related value of h into eq. 3a represents the final deconvolved source.

3 Fourier-Bessel series expansion based blind deconvolution method

3.1 Fourier-Bessel series expansion

Let us consider a generic discrete signal x(n); the Fourier-Bessel series expansion can be written in the
discrete form as follows:

x(n) =
L

∑
i=1

CiJ0

(βin
L

)
,n = 0,1, ...,L−1 (13)

where L is the length of x, J0 is the zero-order Bessel function and Ci are the Fourier-Bessel series coefficients,
defined as:

Ci =
2

L2[J1(βi)]2

L−1

∑
n=0

nx(n)J0

(βin
L

)
(14)

where J1 is the first order Bessel function and βi are the positive roots of J0 = 0.
According to Schroeder [14], the positive roots of the zero order Bessel function are related to the frequency

domain by the following:

βi ≈
2π fiL

fs
(15)

where fs is the sampling frequency of x(n).
It is possible to compare the Fourier-Bessel coefficients Ci with the Fourier coefficients for the description

of the signal x(n). However, the Bessel functions decay within the range defined by L according to eq. 13,
instead of the sinusoidal functions on which is based the Fourier series. For this reason, the Fourier-Bessel
transform requires a lower number of coefficients, with respect to the classic Fourier transform, in order to
obtain high quality in the reconstruction of the signal.

This work aims to exploit this characteristic of the Fourier-Bessel transform in order to define a new BD
criterion that permits the reduction of the computational time of the iterative algorithm due to the lower number
of cyclic frequency harmonics required for the analysis.
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3.2 Proposed method

The CYCBD algorithm can be reformulated as follows. First of all, let us remember the second order
indicator of ciclostationarity defined in eq. 5. Unlike the formula described in eq. 6, the numerator of the ICS2
can be rewritten exploiting the Fourier-Bessel series expansion described in eq. 14 as follows:

ck
F =

2
(L−N +1)2[J1(βk)]2

L−1

∑
n=N−1

n|s(n)|2J0

( βkn
L−N +1

)
(16)

where the roots of the zero-order Bessel function can be expressed as:

βk =
2π k

Ts
(L−N +1)

fs
(17)

where the term k/Ts represents the cyclic frequency, according to eq. 4.
Eq. 16 can be expressed in matrix form as follows:

ck
F =

2
(L−N +1)2

JH
0n
|s|2

J1JH
1

(18)

where

|s|2 = [|s[N−1]|2, . . . , |s[L−1]|2]T (19a)

J0n =




J0

(
β1(N−1)
L−N+1

)
(N−1) . . . J0

(
βK(N−1)
L−N+1

)
(N−1)

...
. . .

...

J0

(
β1(L−1)
L−N+1

)
(L−1) . . . J0

(
βK(L−1)
L−N+1

)
(L−1)


 (19b)

J1 = [J1(β1) . . .J1(βk) . . .J1(βK)] (19c)

Starting from eq. 7b and eq. 18, eq. 5 can be rewritten as:

ICS2F =
4

(L−N +1)2|J1JH
1 |2
|s|2HJ0nJH

0n
|s|2

|sHs|2 (20)

Analogously to the CYCBD method, it is possible to note that all the periodic components of |s|2 are comprising
into the following signal:

P[s] =
4

(L−N +1)2 ∑
k>0

Jk
0n
(Jk

0n
|s|2)

[J1(βk)]2
=

4
(L−N +1)2

J0nJH
0n
|s|2

|J1JH
1 |2

(21)

Substituting eq. 3a and eq. 21 into eq. 20 it is possible to write the ICS2 as a generalized Rayleigh quotient:

ICS2F =
hHXHWXh
hHXHXh

=
hHRXWX h
hHRXX h

(22)

where the weighting matrix can be expressed as:

W = diag
(P[|s|2]

sHs

)
(L−N +1) =




. . . 0
P[|s|2]

0
. . .




1
L−1
∑

n=N−1
s[n]2

(23)

Eq. 22 is the base of the proposed BD method, called Fourier-Bessel Blind Deconvolution (FBBD). The
maximum value of the proposed criterion can be found by solving the same iterative process based on the
maximization of the Rayleigh quotient described in section 2.1.
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4 Application to simulated signal

The FBBD method proposed in the previous section has been validated taking into account a simulated
signal that reproduces a characteristic cyclostationary signal. During the validation the method is compared
with the CYCBD method described in section 2 in order to demonstrate the improvement given by the Fourier-
Bessel transform, specially in term of lower computational time due to the lower number of cyclic frequencies
required by the algorithm.

4.1 Simulated signal

The simulated signal used for the validation of the proposed method has been created according to eq. 1,
neglecting the periodic pattern p as follows:

x = s0 ∗gs +n∗gn (24)

where the IRFs gs and gn have been defined according to the model of the response of a damped single degree
of freedom (SDOF) system to a unit impulse in the time domain. For continuous signal, this IRF can be defined
in term of displacement as:

xSDOF = Ae−ζ ωntsin(ωdt) (25)

where A is the response amplitude, ζ is the damping coefficient, ωn is the resonance frequency and ωd is given
by the following:

ωd = ωn
√

1−ζ 2 (26)

Starting from eq. 25 the IRFs can be defined in term of acceleration by taking the second derivative with respect
to the time.

Table 1: Parameters used for the IRFs.
gs gn

A 1.810−10 1.210−10

ζ 0.005 0.045
ωn(rad/s) 18.84 62.83

Figure 1: Simulated signal used for the validation: impulsive pattern with Gaussian distributed amplitudes (a),
impulsive pattern convolved with its IRF (b) and overall signal (c).
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The cyclostationary signal used for the validation is composed by a pattern of periodic impulses (with 250
samples period) with amplitudes distributed according to a Gaussian law and an additive Gaussian background
noise (SNR = -17dB). The IRFs gs and gn are described by the parameters collected in table 1.

Figure 1 depicts the overall simulated signal and the patterns that compose it. It is possible to note that
in the overall signal the periodic impulses are strongly masked by the background noise. For this reason the
extraction of the cyclostationary source may represent a challenging test for the proposed method thus this
validation may permit to demonstrate the effectiveness of the FBBD algorithm.

4.2 Results

The simulated signal has been analyzed through FBBD and CYCBD method in order to highlight the
improvement given by the proposed algorithm, in particular in term of lower number of cyclic frequencies
required. Due to the inability of BD methods to find the real amplitude of the researched pattern, all the sources
obtained from the analysis has been normalized by their respective maximum value.

Figure 2: Comparison between the target source (a) and the patterns estimated through the FBBD method at
increasing number of cyclic frequencies (from b to e).

Figure 2 reports the results obtained through the application of the FBBD method considering an increasing
number of cyclic frequency harmonics, i.e. 1, 10, 30, 50 (from top to bottom). It clearly shows that the FBBD
is able to extract the impulsive pattern with the same period of the target source and with the correct relative
amplitudes. It has to be underlined that the deconvolved source presents a delay with respect the reference
signal, due to the filtering operation inside the BD algorithm. However, this delay does not influence the results
thus it is not corrected in the following analysis.

The main issue pointed out by the comparison between the estimated sources and the target pattern is related
to the sign of the recovered impulses. In fact, it has to be noticed that the FBBD algorithm is not able to recover
the correct sign of the impulses but it extracts a source composed by symmetric peaks. This particular behaviour
do not depend on the number of cyclic frequencies used for the analysis. In fact, comparing the sources in figure
2(c to e) it is possible to see no changing in the reconstructed signal amplitudes with increasing number of cyclic
frequency harmonics. This result agrees with the consideration explained in section 3 about the low number of
term required by the Fourier-Bessel transform for the reconstruction of signal with sufficient quality.

Figure 3 depicts the sources estimated after the application of the CYCBD algorithm at increasing number
of considered cyclic frequency harmonics, i.e. 10, 30, 50, 100 (from b to e). There is a significant difference
between the behaviour of the CYCBD and the FBBD for different number of considered harmonics. For low
number of cyclic frequency harmonics, i.e. 10 as shown in figure 3(b), the estimated source is not able to
reproduce the real sign of the impulses as well as for the FBBD method. However, considering an higher
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Figure 3: Comparison between the target source (a) and the patterns estimated through the CYCBD method at
increasing number of cyclic frequencies (from b to e).

number of cyclic frequency harmonics, i.e. 30, 50 and 100 as shown in figure 3(c-e), the algorithm permits to
extract the correct sign of the peaks, reproducing the target source with higher quality with respect to the FBBD
algorithm.

Moreover, comparing figure 3(b-e) it has to be noticed that the quality of the reconstruction reaches an
acceptable level considering at least 30 cyclic frequency harmonics (figure 3(c)). Further increasing the number
of harmonics (figure 3(d-e)), the deconvolved source does not seem to present any improvement from this point
of view.

Figure 4: Comparison between the target source (a) and the sources estimated through the FBBD method (b)
and the CYCBD method (c).

Figure 4 compares the impulsive patterns recovered using both FBBD and CYCBD. All two methods has
been applied using the minimum number of cyclic frequency harmonics identified by the previous analysis, i.e.
10 and 30 respectively.
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Figure 5: Scheme of the experimental test rig.

The comparison clearly underlines the main difference between the results obtained applying the two meth-
ods, represented by the gap in term of reconstruction of the correct sign of the source. In fact, as already seen
in figure 2 the FBBD extracts a zero mean impulsive pattern, independently from the real sign of the peaks.
However, this issue may be considered irrelevant for diagnostics purposes where the main attention is pointed
out on the frequency of the impulses instead of their amplitudes. On the other hand, the FBBD seems to permit
the identification of the lower amplitude impulses better tha the CYCBD. For examples, comparing figures
4(b-c) it can be seen that the impulses close to 2500 and 4000 samples are clearly identified only by the FBBD,
due to the higher amplitude of the noise in the source deconvolved by the CYCBD that masks these peaks.

These results, combined with the lower number of cyclic frequencies required (70% less), demonstrates the
clear improvement given by the FBBD method for the extraction of hidden ciclostationary pattern directly from
noisy observations such as the characteristic vibration signal related to faulty bearings.

5 Application to real signal

The second part of the experimental application of the proposed method regards the early detection and
identification of a bearing fault during a run-to-failure test.

5.1 Experimental setup

This part of the analysis has been carried out by using the vibration signals contained into a data set provided
by the Center for Intelligent Maintenance Systems of the University of Cincinnati [15]. As shown by the scheme
in figure 5, the test rig is composed by four bearings type Rexnord ZA-2115 mounted on the same shaft. During
the test the rotational speed has been fixed at 2000rpm and a radial load of 27.7kHz has been applied to bearings
2 and 3. The vibration signals have been acquired through two accelerometers model PCB 253B33 mounted
in radial direction. Each bearing has been monitored continuously acquiring 1s of signal each 10min with
a sampling frequency of 20.48kHz. After 7 days the test has been stopped and an outer race fault has been
detected in bearing 1.

5.2 Results

The target of this section is to demonstrate that the proposed criterion is able to monitor the progressive
evolution of the bearing condition during the entire operative life in order to detect the appearance of faults as
early as possible. For this scope, the variation of the maximized BD criterion during the endurance test can be
observed taking account of three characteristic frequencies: the ball pass frequency outer race (BPFO), the ball
pass frequency inner race (BPFI) and the ball spin frequency (BSF).
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Figure 6: Final values of maximized criterion during the endurance test taking account of BPFO (a), BPFI (b)
and BSF (c).

The FBBD method has been applied considering only the fundamental cyclic frequency related to the
bearing fault and a 100 samples length FIR filter. Due to the experimental evidence, the analysis has been
carried out considering only the faulty bearing 1.

Figure 6 collects the values of the maximized criterion calculated on bearing 1 during the endurance test.
The figures depict a constant trend of values in the first stage of the test considering all the characteristic
frequencies. However, in figure 6a it is possible to clearly identify an increasing trend starting after 3.7 days.
This trend is not monotonically increasing but presents a decreasing trend between 5 and 5.5 days due to the
characteristic propagation phenomena of the bearing fault [16].

The identification of the fault appearance can be obtained by designing a statistical threshold starting from
the trend of the maximized values during the test. In this direction the values obtained are compared in figure
6 with a statistical threshold computed according to the Tukey’s method applied on the values estimated in the
first day of test, under the hypothesis that in this time span the system presents healthy condition. It is possible
to observe in figure 6 that, accordingly to the experimental evidence on the physical system, only the trend of
values related to the BPFO crosses the threshold after 3.8 days.

However, some values related to the BPFI and the BSF cross the respective threshold due to the dispersion
of the BD criterion also in the healthy stage. This issue can be overcome by smoothing the values of the
maximized criterion in order to make the data interpretation easier and to permit the identification of the time
instant related to the fault appearance in a clearer way. The smoothed curves shown in figure 6 have been
calculated exploiting the moving average technique implemented by convolving the BD final values series with
a 15 samples length rectangular window. From the observation of the smoothed curves it is possible to note that
only the trend related to the BPFO crosses the threshold and this behaviour confirms what has been detected
experimentally on the studied system.

This application on a real case explains the sensitivity of the proposed BD criterion to the presence of
cyclostationary patterns inside vibrational signals. This characteristic makes the FBBD algorithm suitable for
the online monitoring of the bearing conditions during the overall operative life. A particular attention has to
be pointed out on the number of cyclic frequencies considered; in fact the entire analysis has been carried out
with the only cyclic frequencies α related to the specific fault, without consider any harmonics.

These results agree with the analysis proposed in Ref. [10] where the fault has been identified through the
application of the CYCBD method also considering the harmonics of the cyclic frequency. The results prove
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the effectiveness of the proposed method that is able to identify the fault appearance considering only the first
cyclic frequency , although in this way the reconstruction quality of the estimated source may be not sufficient,
as demonstrates in the previous section.

6 Final remarks

This paper presents a novel BD method based on the maximization of the cyclostationary behaviour of
the signal. The proposed method exploits the Fourier-Bessel series expansion in order to rewrite the Indicator
of Ciclostationarity and define a new BD criterion. The choice of the Fuorier-Bessel transform instead of the
classic Fourier transform is related to the decay of the Bessel functions within the range defined by the length
of the acquired signal. Thus, the impulsive signal can be reconstructed with a lower number of coefficient with
respect to the Fourier transform based on sinusoidal functions.

The proposed algorithm, called FBBD, has been validated by means of both simulated and real signals in
order to demonstrate the improvement given with respect to the other BD method based on cyclostationarity
maximization, called CYCBD, in particular in term of lower computational time.

The application on simulated signal proves the lower number of cyclic frequencies required by the FBBD
algorithm with respect to the CYCBD (70% less) according to the theoretical properties of the two different
transform. The main issue is related to the inability of the FBBD to deconvolve the correct sign of the impulses;
in fact the proposed method extracts an impulsive pattern composed by zero mean impulses, i.e. symmetric
with respect to the zero, with the correct period and relative amplitude between the peaks.

The analysis of a run-to-failure test demonstrates the effectiveness of the proposed method for the continu-
ous monitoring of the bearing conditions, in order to detect the fault appearance and to describe the progressive
damage of the system. The proposed criterion proves to be very sensitive to the appearance of a cyclostationary
source inside the signal, considering only the cyclic frequencies related to the fault, without its harmonics.

All these results demonstrate the clear improvement given by the proposed method that combines the suit-
ability of the cyclostationarity for the description of vibrational signal related to bearing faults with the speed
up of the iterative algorithm obtained through the exploitation of the Fourier-Bessel series expansion for the
definition of the new BD criterion.
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Abstract 
 

Designed to break the paradigm for efficiency, the new generation of engines promises double-digit 

reductions in fuel burn, as well as an unparalleled single-leap improvement in emissions and lower noise to 

fulfil societal environmental objectives for a more sustainable future. The end-use consumer and 

environmental policy requirements for aircrafts of the next generation translate into components with higher 

temperature and speed. Furthermore, new monitoring technics are needed to closely monitor rolling contact 

during testing of the next generation of aero engine bearing to check its behavior under the new application 

condition. Vibration analysis for condition assessment and fault diagnostics is widely used nevertheless 

interpretation and correlation of collected data is often cumbersome.  

That is why combination of vibration analysis and acoustic emission techniques giving different types 

information in different frequency band can help to understand the behavior of new rolling bearing. This 

paper presents an experimental testing campaign on bearings with seeded defects. Correlation between low 

and high frequency signals with different strategy of signal acquisition are presented from signal processing 

step.  

Real time transient analysis with feature extraction was done in parallel with streaming acquisition on both 

signals. Pattern recognition of individual AE signal is possible and were correlated with more traditional 

analysis based on signal enveloping vibration analysis. Continuous monitoring on finished duration were 

done to provide information on no stationary regime and also time of stabilization. Comparison between 

features extraction is done on damaged and defect free rolling bearing at several rotating speed and loading 

level. 

 

Keywords: Rolling contact monitoring, vibration monitoring, EHL conditions 

 
1 Introduction 

Many studies are dealing about the use of vibration to detect fault in gear box and rolling bearings. Some 

of them are focusing on the use of Acoustic Emission (AE) and vibration for better characterization of the 

gear box default type. Based on vibration technology the acquisition of raw signal is done by a partial 

acquisition of the signal at random. AE technology is more focusing on the detection of transient above a 

predefined threshold in a narrow bandwidth [1,2]. According the progress of the acquisition system this 

study proposes a combination of all these types of acquisition with wide band sensors in parallel to offer 

richer bunch of data that allow us to investigate new method of processing and default characterization. The 

fault Characterization we propose will be more than a statistic acquisition but a continuous monitoring.  

Acoustic emissions (AE) are defined as transient elastic waves generated from a rapid release of strain 

energy caused by a deformation or damage within or on the surface of a material [4]. This technique is 

widely used as a non-destructive testing technique for fitness for service evaluation in industrial field. AE is 

also a powerful tool to characterize and understand damage initiation and propagation. Most of all 

microscopic mechanisms has been studied and correlated with AE signals as fretting [3]. Many 

developments in AE technology, mainly developments in AE instrumentation, have occurred in the past ten 

years. 
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In this investigation, AE’s are defined as the transient elastic waves generated by the interaction of two 

surfaces in relative motion. The interaction of surface asperities and impingement of the bearing rolling 

elements over the seeded defect on the outer race will generate AE’s. Due to the high frequency content of 

the AE signatures typical mechanical noise (less than 20kHz) is eliminated.  

 

 

 

  

 

 

 

 

 

 

 

Figure 1. AE signal from asperity in rolling contact 

 

There have been numerous investigations reported on applying AE to bearing defect diagnosis. Roger [5] 

utilised the AE technique for monitoring slow rotating anti-friction slew bearings on cranes employed for gas 

production. In addition, successful applications of AE to bearing diagnosis for extremely slow rotational 

speeds have been reported [6, 7]. Yoshioka and Fujiwara [8, 9] have shown that selected AE parameters 

identified bearing defects before they appeared in the vibration acceleration range. Hawman et al [10] 

reinforced Yoshioka’s observation and noted that diagnosis of defect bearings was accomplished due to 

modulation of high frequency AE bursts at the outer race defect frequency. The modulation of AE signatures 

at bearing defect frequencies has also been observed by other researchers [11, 12, 13]. Morhain et al [14] 

showed successful application of AE to monitoring split bearings with seeded defects on the inner and outer 

races. 

This paper investigates the relationship between AE signal for a range of defect conditions, offering a 

more comparative study than is presently available in the public domain. Moreover, comparisons with 

vibration analysis are presented. The source of AE from seeded defects on bearings, which has not been 

investigated to date, is presented showing conclusively that the dominant AE source mechanism for defect 

conditions is asperity contact. 

 

2 Experimental setup 

2.1 General 

The bearing test rig employed for this study had an operational speed range of 5000 to 15000 rpm with a 

maximum load capability of 50kN via a hydraulic ram. The test bearing employed was 3 points contact ball 

bearing. This bearing type was selected as it allowed defects to be seeded onto the races, furthermore, 

assembly and disassembly of the bearing was accomplished with minimum disruption to the test sequence. 

Five calibrated dents were done on the bearing inner ring (rotating). Pure axial loading is applied to the 

rolling bearing. The defects are located along the predicted rolling raceway path inside the hertz contact 

zone. Dent length against the rolling velocity are around 200µm. The acquisition is performed via a 

multichannel last generation Mistras AE acquisition system: Express 8.  

All capability of this system was used to record the maximum of information. First, we use continuous 

energy summation without threshold is much accurate than traditional RMS or ASL integration. Then, 

acquisition of transients based on smart threshold allows us to avoid triggering on continuous signal and can 

guaranty a significant hits rate whatever the level of background continuous is without any manual change 

all along the monitoring. Transient is characterized by hit and waveform, it can be feed in Noesis our pattern 

recognition software for multiparametric evaluation. Express offer also the capability to record streaming 
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(acquisition of row signal at very rate and with quasi unlimited buffer) to apply more traditional signal 

processing often use in vibration. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Experimental  set-up 

 

In parallel, vibration and AE enveloped signals were acquired on Dewesoft Sirius acquisition station. 

The next table presents the acquisition characteristics. FFT was computed from the enveloped signal. 

 

  

Sensor type Sampling frequency Enveloped bandwidth 

B&K 200 kHz 5-40 kHz 

Mistras WD AE sensor 2 gHz 100-500 kHz 

 

Table 1 Acquisition characteristics 

 

2.2 Acoustic emission acquisition setting 

Mystras Express8 system also offers the capability to record streaming (acquisition of row 
signal at very rate and with quasi unlimited buffer) to apply more traditional signal processing often 
use in vibration. 

  

  
Figure 3 acquisition with smart threshold (above graph) and waveform and hit correspondence (graph 

below). 



4 

The streaming has been also used it parallel without any reduction of performance of traditional AE 
acquisition. Streaming is a synchronized acquisition the 4 channels without threshold, the windows 
length can be arbitrary of defined like shown in figure 5. 

 
Figure 4 streaming acquisition during 5 sec at 2 Mega sample per second on the four channels. 

Three different wideband AE sensors (WD, S9208 and micro 80) are used in parallel with a 
standard accelerometer Bruel et Kjaer type 4374 (bandwidth 1 to 26KHz 0,5 pC ms-2). The 
calibration curve of the sensors are given in figure 5. 

 

       

Frequency response of S9208 
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Frequency response of WD 

 

Frequency response of Micro 80 

Figure 5 calibration curve of sensors S9203, WD and micro 80. 

The sensor must be held in place for the duration of the test. Dry contact between the sensor and 
the structure does not meet the goal for appropriate wave transmission. For the AE sensors 
coupling, we used an adhesive tape developed for aerospace industry called “KAPTON” on which 
the sensor is glued with cyanoacrylate or cement glue. (figure 3). This solution has been tested 
with success with cyanoacrylate glue for test space telescope for Astrium under high energetic 
vibration [15]. The reduction of measured amplitude compare to a traditional grease coupling is 
less than one dB for Hsu Nielsen source (NFEN1330-9). 
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Figure 6 picture of the different sensors used for the monitoring and coupling mode. 

 

3 Introduction 

We performed the same loading sequence for all bearings, see table 2. 

 

Speed (Rpm) Load  (kN) 

3000 5 

6000 5 

11500 5 

11500 10 

11500 15 

11500 20 

11500 25 

6000 23,5 
Table 2 loading sequence for bearing the colors are used to separate the loading sequences. 

 

Micro 80 channel 

2 

S9208 channel 

3 

WD channel 1 

Accelerometer channel 4 
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The four sensors are compare and the WD (channel 1) and micro 80 (channel 2) are giving better 

results than accelerometer and S9209.  

 

 

Figure 7 evolution of ASL and frequency centroid versus time with and without default. On the top graph 

channel 1 (WD) at the bottom channel 2 (Micro 80). 

A clear difference of behavior can be seen above 6000 rpm at 5 kN and it enhance at 11 kN on the 
energy of the AE signal on transients. Also, the center mass of the frequency spectrum (called 
frequency centroïde) increases a lot for the bearing with default it exhibits the best power of 
discrimination using our patter recognition software. The stabilization of the AE signal takes at least 
2 minutes after the loading condition change. 

Considering a more standard acquisition mode for channel 1 (WD), on the bearing with default, it 
can be seen a new pic at 27 kHz at 11500 tr/min and above speed. For another side, the width of 
the FFT increases as the load increases (fig. 8). 

 

 
Figure 8 Fourier transform on 5s files on channel 1 for different case of load levels and rotating speed. 

 

 

Fourier Transform from Enveloped Spectrum from enveloped AE and vibration Signal were computed in 

real time from the Sirius acquisition station. Bearing and shaft frequencies were identified from the signal. 

 

 

 

Good bearing 

Good bearing 

Good bearing 

Good bearing 

default 

default 

default 

default 
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Figure 9 Enveloped spectrum with bearing frequencies identified 

 

 

4 Discussion 

The source of AE for seeded defects is attributed to material protrusions above the surface 
roughness of the outer race. This was established as the smooth defect could not be distinguished 
from the no-defect condition. However, for all other defects where the material protruded above the 
surface roughness, AE transients associated with the defect frequency were observed. As the 
defect size increased, AE r.ms, maximum amplitude and kurtosis values increased, however, 
observations of corresponding parameters from vibration measurements were disappointing. 
Although the vibration r.m.s and maximum amplitude values did show changes with defect 
condition, the rate of such changes highlighted the greater sensitivity of the AE technique to early 
defect detection.  

Again, unlike vibration measurements, the AE transient bursts could be related to the defect 
source whilst the frequency spectrum of vibration readings failed in the majority of cases to identify 
the defect frequency or source. Also evident from this investigation is that AE levels increase with 
increasing speed and load. It should be noted that further signal processing could be applied to the 
vibration data in an attempt to enhance defect detection.  

Techniques such as demodulation, band pass filtering, etc, could be applied though these were 
not employed for this particular investigation. The main reason for not applying further signal 
processing to the vibration data was to allow a direct comparison between the acquired AE and 
vibration signature. From the results presented two important features were noted:  

• firstly, AE was more sensitive than vibration to variation in defect size 

• secondly, that no further analysis of the AE response was required in relating the defect 
source to the AE response, which was not the case for vibration signatures. 
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The relationship between defect size and AE burst duration is a significant finding. In the longer 
term, and with further research, this offers opportunities for prognosis. AE burst duration was 
directly correlated to the seeded defect length (along the race in the direction of the rolling action) 
whilst the ratio of burst amplitude to the underlying operational noise levels was directly 
proportional to the seeded defect width. 

 

5 Conclusion 

It has been shown that the fundamental source of AE in seeded defect tests was due to material 
protrusions above the mean surface roughness. Also, AE maximum amplitude has been shown to 
be more sensitive to the onset and growth of defects than vibration measurements.  

A relationship between the AE burst duration and the defect length will be established in further 
posttreatment. 
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Abstract 

The monitoring of machinery and especially ubiquitous bearings in all means of transport has gained 
importance for decades in the industry because of the need to increase the reliability of machines and reduce 
the possible loss of production due to failures caused by the different faults. Many of the available 
techniques currently require a lot of expertise to apply them successfully. New techniques are required that 
allow relatively unqualified operators to make reliable decisions without knowing the mechanism of the 
system and analyzing the data. Reliability must be the most important criterion of the operation. Artificial 
intelligence is the revolutionary answer in all areas of industrial control. The main goal of this paper is to 
propose new solutions for bearing diagnosis based on deep neural networks (DNN). However, in general the 
optimization of the neural network architecture is done by trial and error, and the features reduction problem 
is solved by using the principal component analysis. In this paper, the application of the neuro-evolution is 
proposed for bearing diagnosis where the optimization of the neural network topology as well as the features 
reduction are done by an evolutionary genetic algorithm. An application of the general procedure is proposed 
for real signals; that shows the superiority of the combination between neural networks and genetic 
algorithms for bearing diagnosis. 

1 Introduction 
Rolling element bearing is one of the most critical components used in rotating machinery and many other 
mechanical equipment [1]. In fact, most of such machines’ malfunctions are linked to bearing faults, such as 
fatigue, corrosion, overload, etc, that may occur unexpectedly if no predictive maintenance is used. This may 
lead to significant economic loss: high costs of maintenance and loss of revenue [2]. Therefore, bearing state 
monitoring and fault diagnosis are very important for discovering early bearing faults, assuring efficient and 
safe operation of all machines containing bearings. 
In general, all bearing condition monitoring approaches in the literature can be classified into two categories: 
statistical-based approaches and pattern recognition-based approaches. In statistical-based approach, various 
signal processing tools are used, followed by statistical thresholds to detect the presence of a fault as well as 
to classify the different types of bearing faults [3,4]. For pattern-recognition-based approaches, several 
machine learning and artificial intelligence techniques, such as Artificial Neural Networks ANN, Support 
Vector Machine, fuzzy Expert Systems, Random Forest, and many other, have been successfully employed 
in fault diagnosis [5,6]. More recently, deep learning algorithms, such as deep neural networks, 
convolutional neural networks and deep belief networks have shown great capabilities in the field of 
computer vision [7], speech recognition [8] and natural language processing [9], due to their ability to 
discover hidden patterns in the data by using architectures composed of several non-linear learning layers. 
These deep learning algorithms were also applied in the field of industrial diagnosis and have been very 
useful and effective [10,11]. 
In recent years, a new artificial intelligence approach known as the ‘Neuro-evolution’ has attracted 
considerable attention as they proved to be essential in so many applications. The basic idea is that it applies 
evolutionary algorithms, and more specifically genetic algorithms GA, in order to construct a well suited 
artificial neural network for a certain application. Earlier successful applications in the field of Neuro-
evolution are in reinforcement learning, evolutionary robotics, and artificial life. Sample applications include 
evolving behaviors for video games such as evolving new content in real time while the game is played [12], 
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controlling mobile robots such as evolving the neural networks of robots that were 3D-printed and could 
move around the real world [13], and investigating the evolution of biologically-relevant behaviors such as 
investigating abstract evolutionary tendencies, like the evolution of modularity or how biological 
development interacts with evolution [14]. 
Meanwhile, in order to benefit from such powerful tool of artificial intelligence in the field of industrial 
diagnosis, researchers in this domain have tried to apply this combination of neural networks and genetic 
algorithm on bearing fault classification problem: some have used the genetic algorithm for the weights 
optimization [15], and others for the features selection problem [16].  
The main goal of this paper is to apply this concept of Neuro-evolution in industrial automatic diagnosis 
without any human intervention, especially after the fourth industrial revolution characterized by the fusion 
of all modern technologies and the concept of digital factories [17]. In details, the optimization of the number 
of hidden layers and nodes in an artificial neural network is performed using this concept; in order to 
guarantee ANN architecture with the highest classification accuracy. In addition, feature reduction is 
obtained using the genetic algorithm instead of the Principal Component Analysis (PCA) [18], since it needs 
the tuning of some parameters whereas the GA gives good results without any assumptions.  
The main benefit behind this concept is to extend the optimization of the topology as well as the features 
from one dataset to another without any human intervention to find automatically the best classification 
accuracy; which could not be obtained using neural networks alone. The extracted features are divided into 
temporal classical and spectral ones. The spectral features are based on the indicators of probability of 
presence of faults introduced by S. Kass and Al based on the spectral coherence [19]. These indicators are 
very powerful due to their ability of condensing the whole information initially displayed in three dimensions 
into a scalar and returning information in terms of a probability of presence of a fault. They also take into 
consideration uncertainties in the bearing characteristic frequencies, which is crucial in bearing diagnosis. 
However, a statistical threshold was derived for decision making.  In this paper, this statistical threshold is 
absent and replaced by the techniques of artificial intelligence already mentioned above, and that will be 
detailed in the next sections. 
This paper is divided into seven sections, where section two introduces briefly the artificial neural networks 
and the third section describes the genetic algorithm. Section four presents in a general way the effectiveness 
of the combination between neural networks and genetic algorithm, and section five describes the application 
done in this paper. In section six, the features used as input to the neural network are presented and described 
and the proposed method is validated using two datasets in section seven. Conclusions are drawn in the last 
section.   
 
2 Neural Network 
Inspired by the human brain, Artificial Neural Networks (ANN) are a family of machine learning models that 
mimic the structural elegance of the neural system and learn patterns inherent in observations [20]. There are 
several types of neural networks: Backpropagation networks, Deep Belief networks, Convolutional neural 
networks, Recurrent networks, Radial Basis Function networks, etc…  
One of the most widely used type of neural networks is the Backpropagation network which is a multi-layer 
perceptron consisting of an input layer with nodes representing input variables to the problem, an output 
layer with nodes representing the different classes of the corresponding classification problem, and one or 
more hidden layers containing nodes to help discovering the hidden patterns in the data. 
While, in theory, it is possible to apply different types of activation functions for different layers, it is 
common to apply the same type of an activation function for the hidden layers in the literature [21]. 
However, it should be a nonlinear function such as the ‘logistic sigmoid’ function σ (z) = 1/(1+exp[−z]), and 
the ‘hyperbolic tangent’ function tanh(z) = (exp[z]−exp[−z]) / (exp[z]+exp[−z]). 
In addition, the connections between different layers are weighted: These weights are initially randomly set, 
and then adjusted between successive training cycles (learning process) in order to increase the classification 
accuracy. This is generally done by minimizing a cost function using several well-known optimization 
algorithms: the gradient descent which is the simplest and most popular training algorithm [22], the 
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stochastic gradient descent which is a lighter algorithm and therefore faster than its all-encompassing cousin 
[23], the Adaptive Moment, Adam, which is based on adaptive estimates of lower-order moments [24], etc.  
For K-class classification, it is common to use a cross-entropy cost function defined as follows: 

                                                         (1) 
where  is the weights set, tkn denotes the kth element of the target vector tn and ykn is the kth 
element of the prediction vector yn for xn, given a training data set {xn,tn}, n=1…N. 
 
3 Genetic Algorithm 
Genetic algorithm (GA) was first introduced by John Holland, from the University of Michigan, in 
1975 in its publication ‘Adaptation in Natural and Artificial System’ [25]. It is a general-purpose 
optimization algorithm that is, like neural networks, a bio-inspired artificial intelligence tool. It is a 
particular class of evolutionary algorithms that are based on the mechanics of natural selection and 
natural genetics. Unlike other optimization algorithms that improve a single solution at a time, GA 
uses a strategy of parallel search by working on a population of candidate solutions (also called 
individuals) to an optimization problem that evolves toward better solutions, enabling extreme 
exploration and massive parallelization. The basic idea is that over time, evolution will select the 
most suitable solutions [26]. This is done by evaluating, for each individual in a generation, the 
fitness function: the higher the fitness, the most probably the individual will be selected. 
Technically, when solving an optimization problem using the GA, one must first define: 

• Individual (or chromosome): Composed of several genes, it can be binary or real encoded. An 
individual represents one possible solution of the problem; the collection of multiple chromosomes 
forms the population which represents a subset of the whole searching space.  

• Fitness function: It is the function we tend to maximize; if the problem consists in minimizing a 
certain function, the latter should be transformed into a fitness function by simply inverting it. The 
fitness function corresponds to an evaluation of how good the candidate solution is. 

Once the fitness function is properly defined, the genetic algorithm generally starts by randomly 
generating the initial population. It should be large enough so that any solution in the search space 
can be later engendered [27]. Then, the algorithm loops over an iteration process to make the 
population evolve. Each iteration consists of the following genetic operators: 

• Selection: After evaluating the fitness f(i) for each individual i, Roulette wheel selection is applied in 
order to give the fittest individuals a higher chance to be selected than weaker ones. This is done by 
calculating the probability of selection of each individual as follows: 

                                                                        (2) 
where N is the total number of individuals in the population. 

• Crossover: Selected individuals should be paired randomly, with a crossover rate Pc, for 
recombination. The latter is done by exchanging genes between one or more crossover points that 
are randomly generated. 
 

0 0 0 0 0 0 

     

1 1 1 1 1 1 
 

1 1 1 0 0 0 

     

0 0 0 1 1 1 
 

 
• Mutation: It randomly alters one or more genes in a chromosome, with a mutation rate Pm, changing 

it from 1 to 0 and vice versa. It is a powerful operator used to avoid falling into a local optimum. 
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0 1 1 0 0 1 

 

0 1 0 0 0 1 
 

 
• Replacement: The new selected, recombined and probably mutated individuals form a new 

population that replaces the old one.  

Commonly, the algorithm terminates when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached for the population. When the algorithm 
terminates, the individual with the highest fitness is regard as the approximate optimal solution. 
 
4 Combination of neural networks with genetic algorithm 
Generally, when constructing an ANN classification model, choosing its various parameters, such as its 
topology, activation functions, training sample size, etc, may greatly impact the classification results [28]. 
Basically, one of the most critical tasks in artificial neural network design is choosing the best topology 
(architecture) that gives the highest classification accuracy. One starts with no prior knowledge as to the 
number of hidden layers and number of hidden nodes required [20]; Choosing a small number of hidden 
layers and nodes will lead to an ‘underfitting’ problem: ANN will not be able to reveal complex and hidden 
patterns in the data. In contrast, a network with too many hidden nodes tries to model exactly the training 
dataset following all its noise, and leading to a poor generalization for additional untrained data: this is 
known as the ‘overfitting’ problem. In the literature, several researchers have proposed different 
methodologies for fixing the number of hidden neurons. Most of the methodologies are presented in a review 
where the authors also proposed a new method to fix the hidden neurons in Elman networks for wind speed 
prediction in renewable energy systems [29]. In general, the most used technique for finding the optimal 
architecture is by trial and error. The latter approach has several limitations such as it is time-consuming and 
the obtained network structure may not be optimal. 
In recent years, new topology optimization techniques based on evolutionary algorithms have gained great 
interest by the researchers in the domain of artificial intelligence. The combination between artificial neural 
network and genetic algorithm, also known as ‘Neuro-evolution’, has shown important capabilities and 
effectiveness in so many fields as it meets the potential of the increasing high performance computation 
capabilities in our days [30]. Initially, the use of Neuro-evolution was only restricted to the optimization of 
neural networks weights in order to overcome some limitations of the backpropagation algorithm. Later, this 
combination was extended to optimize also the ANN architecture. The following flowchart describes the 
principal steps of the ANN architecture optimization algorithm. 

 
                                Fig.1 Flowchart of the ANN architecture optimization algorithm 
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5 Application 
As mentioned in section “GA”, in order to apply the GA for any optimization problem, one must first define 
the encoding way of an individual: the process of representing individual genes. We may have binary or real 
encoding; The encoding depends mainly on the application. The most common way of encoding is binary 
strings, which is used in this paper. 
For the architecture optimization problem, the chromosome is a binary string composed of 22 bits (genes). 
The first two bits are reserved for the binary representation of the number of hidden layers, while the other 
20 bits are devided into four parts, each of five bits, representing the binary representation of the number of 
nodes in each hidden layer. This results in a number of hidden layers varying between 1 and 4 layers, and a 
number of nodes in a layer varying between 1 and 32 nodes. Such chromosome can be illustrated as follows: 
 
 
 
 
 
 
 
 

 
 
On the other hand, such optimization problem tends to maximize the classification accuracy. 
Therefore, the fitness function must be directly linked to it. The only difference is that a mapping is 
used in a way to make 90% accuracy worth 10% fitness and 100% accuracy worth 100% fitness. 
The algorithm that illustrates this idea is as follows: 
If accuracy<90%: 
     Fitness=10% 
Else: 
     Fitness=((Accuracy-90%)/(100%-90%)) *(100%-10%) + 10% 

The main reason for this mapping is the use of the ‘Roulette wheel’ selection technique that 
calculate the probability of selection based on the fitness values. Accordingly, mapping is essential 
in order to ensure that probabilities of selection in a population are not so close in the selection 
process. 

For the features reduction problem, the total algorithm is the same, but with a single difference 
which is the way of representing an individual. Here, each chromosome in the population is 
composed of n bits, where n is the total number of features. The value of each bit can be either 1, 
which indicates the presence of the corresponding feature, or 0, which indicates its absence. In this 
case, the chromosome can be illustrated as follows: 
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Fig.2 Combination between ANN and GA in two cases of ANN architecture and Feature optimization. 
 
6 Features 

6.1 Classical Features 
Feature extraction is a very important step in a bearing diagnosis problem. Any feature chosen to be 
extracted from bearing signals will directly impact the classification results. Therefore, one must properly 
select the best feature set before moving to the next step of choosing the best classifier. 
For detecting the change in bearing signal, traditional statistic features can be used. The advantages of using 
these features is essentially the ease of implementation and the low computational time. Accordingly, this 
paper proposes the use of traditional time-domain features presented in the following table: 
 

RMS 

 
Kurtosis 

 
Peak to peak  

Crest Factor 
 

Shape factor 

 
Impulse factor 

 
Margin factor 

 
 

Tab.1 Temporal features 
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Along with the above traditional features, extra powerful features for bearing fault classification, 
based on the second order of cyclostationarity, are used in this paper. These features are deduced 
from a recently developed indicator that will be detailed in the next section. 
 

6.2 Spectral features 
Souhayb and al [19] introduces a new autonomous method of bearing diagnosis in the case where the fault 
characteristic orders are known, taking into account all factors that may hinder this diagnosis. It is based on 
the development of new scalar indicators, which can be interpreted in terms of the probability of the presence 
of a fault. These indicators result from a post-processing of spectral coherence, calculated using the fast 
version of the spectral coherence algorithm proposed by Antoni et al [31]. It was chosen as a basis for the 
indicator because it is considered to be the optimal three-dimensional representation in which the bearing 
failure manifests itself clearly despite extreme operating situations. 
In details, the envelope spectrum is calculated, as a first step, by integrating the spectral coherence according 
to the frequency variable. Therefore, all information initially displayed in three dimensions will be 
condensed into two dimensions. The next step is to recognize the characteristic peaks of the defects. This 
recognition must be confirmed by checking the presence of these peaks (theoretical fault frequency and its 
harmonics) in the envelope spectrum. This step then consists in searching for the maximum amplitude mi in 
narrow bands centered on the expected theoretical orders. The search for faults harmonics in bands is 
intended to compensate for the effects of the sliding phenomenon; The latter is critical since it causes a 
random deviation from the theoretical orders given by the manufacturer and compromises the automatic 
tracking of fault harmonics when performed on a single specific order. Therefore, a band B1 is first defined, 
centered at the theoretical fault characteristic order , with a deviation tolerance of 100X%, typically 
between 5% and 10%. The lower and the upper bounds  and  of band B1 are thus defined as: 
 

                                                              (3) 
After defining the highest peak m1 in B1, a measure that represents the probability of the presence of 
the first harmonic of the fault, PPF1, is calculated based on the statistical threshold  already 
obtained from the histogram of the envelope spectrum with p=0.1. PPF1 is calculated as follows: 
 

                          (4) 
The basic idea is that, as with visual inspection, the presence of the characteristic peaks of the 
defects is confirmed according to the intensity of their amplitudes. If these amplitudes are greater 
than a statistical threshold, representing background noise, then these peaks are considered 
symptoms of the defect. 
In the case of the non-zero value of PPF1, the algorithm then searches for the presence of the 
second harmonic in a new band B2. In order to properly define B2, the center of the first band is first 
corrected to account for the possible mismatch between the actual and the theoretical fault order by 
defining  such that =α where the highest peak m1 was found. Thus, B2 is centered on 

= 2 *  and given the same bandwidth as B1, PPF2 is calculated. The algorithm terminates 
when either PPFi is equal to zero, or a maximum number of harmonics is set. The general formula 
describing the theoretical fault frequency correction is: 
 

                                                 (5) 
Once the PPFis in all concerned bands have been calculated, an overall indicator PPF is calculated 
as the mean value. 
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                                                                  (6) 
It should be noted that PPF increases with the severity of the fault. This is because the severity of 
the fault affects the amplitudes and number of peaks that characterize it. 
In [19], defect detection was performed using a non-parametric hypothesis test using the proposed 
indicator. However, this article follows a different direction in which four of the proposed indicator, 
each on one of the four fault frequencies: Ball Pass Frequency Inner race (BPFI), Ball Pass 
Frequency Outer race (BPFO), Ball Spin Frequency (BSF) and Fundamental Train Frequency 
(FTF), are used as input parameters for the neural network. The four features, PPF_BPFI, 
PPF_BPFO, PPF_BSF and PPF_FTF, are used to calculate the probability of presence of different 
types of faults; inner race (PPF_BPFI), outer race (PPF_BPFO) and ball fault (PPF_BSF and 
PPF_FTF). 
 
7 Experimental Results 

7.1 Bearing Data Center 
The performance of the proposed algorithm is now evaluated on the bearing signals provided by the CWRU 
database. The CWRU database has been used in many references and can be considered as a reference to test 
newly proposed [32]. 
The datasets are divided into four categories: 48k baseline, 12k drive end fault, 48k drive end fault and 12k 
fan end fault – according to the sample frequency and the fault’s location. The experimental setup consists of 
a 1.4914 kW, reliance electric motor driving a shaft on which a torque transducer and encoder are mounted. 
Torque is applied to the shaft via a dynamometer and electronic control system. Four types of vibration 
signals are collected (normal, ball fault, inner-race fault, and outer-race fault), acquired by accelerometer 
sensors under different operating loads and speeds. The bearing type is a deep groove ball bearing SKF6205-
2RS JEM. 
 
 
 
 
 

Tab.2 Multiplicative factors to calculate four fault frequencies 
 
The table below presents some of the signals from this dataset with some of their corresponding features 
values (calculated for the four fault frequencies). 
 
 
Signal PPF_BPFI PPF_BPFO PPF_BSF PPF_FTF Kurtosis RMS Peak to 

peak 
Margin 
factor 

Inner 
fault 

0.99 0.53 0.15 0.54 5.38 0.29 3.11 10.42 

Outer 
fault 

0.76 0.96 0.04 0.48 6.94 0.31 4.64 14.99 

Ball 
fault 

0.45 0.1 0.55 0.89 3.77 2.14 20.36 7.83 

Normal 0.18 0.06 0.2 0.03 2.9 0.06 0.66 7.56 

                                    Tab. 3 Some of the signals with their features 
 
As indicated in this table, for an inner race faulty signal, the probability of presence of a fault indicator that 
searches for the presence of BPFI (PPF_BPFI) has a high value=0.99, which insure the presence of the inner 
fault. The same is for the outer race and inner race faulty signals that have [PPF_BPFO=0.96] and 

BPFI BPFO FTF BSF 
5.415 3.585 0.3983 2.357 
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[PPF_BSF=0.55 & PPF_FTF=0.89] respectively. However, the temporal features values clearly show their 
ability for detection. 
 

7.2 Second Dataset 
In order to validate the proposed algorithm, the latter is evaluated also on another dataset acquired by John 
Stokes in the University of New South Wales (UNSW) in Australia. The test bench has a gearbox composed 
of two shafts, one of which is driven by a three-phase motor. The power flows through a hydraulic motor and 
pump. The two input and output shafts are placed parallel to each other, and are connected to the gearbox by 
two bearings each. An accelerometer was installed above the defective bearing, and the signals were 
temporally sampled with a sampling frequency of 48 KHz. The defects installed are localized defects in the 
form of a small superficial notch placed either on the outer ring, or on the inner ring or on one of the balls. 
The vibration signals were acquired under different conditions of rotational speed, 3, 6 and 10Hz, and load 
torque, 25, 50, 75, 100 Nm. The bearing under-test, Koyo 1205, has the following fault frequencies: 
 
 
 
 

Tab.4 Multiplicative factors to calculate four fault frequencies 
 
 
The table below presents some of the signals from this dataset with some of their corresponding features 
values (calculated for the four fault frequencies). 
 
Signal PPF_BPFI PPF_BPFO PPF_BSF PPF_FTF Kurtosis RMS Peak to 

peak 
Margin 
factor 

Inner 
fault 

0.95 0.08 0.01 0.00 2.89 9.89 65.88 5.83 

Outer 
fault 

0.2 0.82 0.14 0.10 3.25 4.17 3.65 1.35 

Ball 
fault 

0.16 0.19 0.83 0.18 3.00 5.65 45.5 5.59 

Normal  0.055 0.18 0.27 0.57 4.01 4.26 9.25 2.21 

                                    Tab. 5  Some of the signals with their features 
 

7.3 Results 
The same code was applied on both of the datasets; Even the GA parameters were set the same. These 
parameters were chosen based on GA logic and concept of starting with a large population in order to be able 
to obtain a large variety of solutions, and evolving the population over too many generations so we attend the 
desired solution. Accordingly, the total number of individuals was set to 20, and the maximum number of 
generations to 30. These numbers may differ from one application to another. In addition, the crossover 
probability was set to 0.7, which indicates that only 70% of the individuals will be recombined to form the 
new population. And finally, it is well-known that the mutation probability must not be high, since it will, in 
that case, negatively influence the main GA concept of evolving the population towards fittest solutions. 
Consequently, it was set to 0.03 (3%). 
For the Bearing Data Center, results have shown that there may be several architectures giving the highest 
accuracy = 99%. This result is very logic since we are not solving an optimization problem with a well-
defined equation and a unique solution. Having several topologies could be very helpful and essential in 
many applications especially when the data is too large and requires many hidden layers. The architectures 
found by the GA are formed by two or three hidden layers: 
 
 

BPFI BPFO FTF BSF 
7.11 4.89 0.41 2.65 
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                                     Fig.3 Two possible architectures obtained by the GA 
 
 
For the features optimization, only six features out of eleven are relevant for the ANN. Those features are: 
PPF_BPFI, PPF_BPFO, PPF_FTF, Margin Factor, Peak to Peak, RMS. They are able to give the same 
classification accuracy 98% when fed into the ANN having the best architecture. The results were very 
convincing: this combination of both temporal features, capable of detecting the presence of a fault, and the 
spectral features, capable of classifying the different fault types, will surely be enough for getting good 
classification results. The figure below is an example of an envelope spectrum obtained for an inner race 
faulty signal. It explains clearly why the spectral indicator was able to classify the different faults by 
searching on the theoretical fault frequencies taking into consideration the slip phenomenon that may occur. 
 
 
 
 
 
 
 
 
 
 
    
 
 

 
                    Fig.4 Envelope Spectrum for an inner race faulty signal 
 
Below is the confusion matrix of the resulting classification model, where 0 indicates normal signals, 1 inner 
race fault, 2 outer race fault and 3 ball fault. 
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Fig.5 Normalized confusion matrix  
 
Applying the same code on the second dataset also gave important results. The same GA was able to find 
ANN architectures giving a 100% classification accuracy. These architectures are formed by a single hidden 
layer containing 31 nodes, or by 2 hidden layers having number of nodes higher than 20. The GA 
convergence was much faster in this case than in the bearing data center dataset. The main reason is that the 
envelope spectrum for this database was more clear and without noise which directly influenced the spectral 
indicators values. This is also the reason of obtaining a higher classification accuracy. Below is an envelope 
spectrum of an inner race faulty signal from the second database: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                    Fig.6 Envelope Spectrum for an inner race faulty signal 
 
 
For the features optimization problem, here also, the number of features was reduced from 11 to 6: 
PPF_BPFI, PPF_BPFO, PPF_BSF, Margin Factor, Peak to Peak, RMS, with a single difference of having 
PPF_BSF instead of PPF_FTF. This result was a little bit confusing, for both of the datasets, since it is well-
known that a signal with a ball fault is characterized by the presence of the combination of the ball spin and 
the fundamental train frequencies. Below is the confusion matrix of the resulting classification model: 
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                         Fig.7 Normalized confusion matrix  

 
8 Conclusion 
This study presents an algorithm based on neuro-evolution for bearing fault classification problems. 
Although it is widely known that Neural Networks alone are used for such applications, the fact that its 
architecture is fixed makes it not adaptive to change. This study suggests optimizing the neural network 
architecture and reducing the number of features using the genetic algorithm. This technique was tested on 
bearing fault detection and classification with two datasets and gave promising results. This concept of 
applying the neuro-evolution is very powerful and effective in so many fields especially when having a huge 
dataset to train and a big number of features. Additional work can be done with neuro-evolution like weight 
optimization in order to overcome some limitations of the classical gradient descent method. 
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Abstract 
Many production lines in the food industry, that run continuously 24 hours per day, are nowadays equipped 

with induction motors to drive machines to process raw materials to become final products. As the motor 

function in the production lines is vital, the failure of the motor can thus interrupt the production process that 

eventually leads to economic losses, i.e. higher production cost. The statistical analysis on the maintenance 

record of a specific production line conducted in this study confirms that induction motor breakdowns are the 

major contributors of the unplanned production downtimes.  Furthermore, this case study also shows that the 

common failure mode of the induction motors is due to the rolling element bearing faults, which is in-line 

with the findings of many authors in the literature. The main interest of the production line owner is how to 

minimize the unplanned downtimes such that the productivity can be maintained or increased, and at the same 

time, the production cost is minimized. In this paper, we present a testimonial story of a setting-up a vibration 

monitoring system to continuously monitor the condition of motors for the first time in a real production line 

with low-cost MEMS accelerometers available on the market. Some technical challenges and the state-of-the-

art techniques used to compute health indicators from the measured raw vibration signals are presented in this 

paper. The installed vibration monitoring system has successfully identified a damaged bearing in one of the 

monitored motors. This finding was also independently validated by a maintenance service company. 

1. Introduction 

Operations cost efficiency enhancement is the primary decision driver of manufacturing enterprises, in 

order to stay economically competitive [1]. It not only refers to reducing resource (material, energy, machine 

and labour) utilization per unit of manufacturing process output, and improving product quality and yield per 

unit of input but also includes reducing unplanned downtimes or delays of the production process due to 

technical issues (machine breakdown, unavailable material, blockage of a line). Conventionally, 

manufacturers tend to ignore a full exploration of the enormous power of data, although these data have huge 

potential to help increase their operations cost efficiency [2]. The production-related data generated on the 

shop floor is various, such as production logs, power consumption, maintenance registers, machine 

performance indicators, labour shifts, material availability, and storage status. A majority of manufacturing 

enterprises either do not gather these data, or have fragmented data, or simply store these data without any 

further management and analytics. 

With the emerging industrial transition toward Industry 4.0, the penetration of Internet-of-Things (IoT) 

technologies into manufacturing industry (industrial IoT, or IIoT) enables collecting these various data in a 

cheaper and more flexible manner [3], hereby unlocking the enormous potential of big data technologies 

applied to production lines. In this paper, we discuss our experience in assisting a food manufacturing 

company that runs its production lines 24 hours per day in the transition toward Industry 4.0. This company 

has a number of production lines to manufacture different types of food. The key performance indicator (KPI) 

set by the company that need to be achieved within this project is an improved operation cost efficiency and 

productivity. 

The production lines availability is one of the other important aspects that influence the operation cost 

efficiency and productivity. Currently, the preventive maintenance is applied to the production lines to 

maintain the availability, where the production lines have to be stopped in every pre-determined maintenance 

window (e.g. every few weeks). To reach the KPI, the maintenance strategy, therefore, needs to be changed 

from the preventive maintenance to the condition-based maintenance (CBM) /Predictive Maintenance (PdM) 



   

 

   

 

strategy. The first critical step to successfully implement the CBM/PdM strategy is to identify critical assets 

that have a significant impact on the business. Here, the asset criticality is determined by the duration of 

production downtimes caused by the failure of a certain asset. The longer the production downtime is, the 

more critical the asset will be. 

Since the beginning of the project, it was not entirely clear yet what production lines/sub-production lines 

or machines that can be categorised as critical assets. To identify critical assets in an objective manner, the 

maintenance record and production data of a pilot production plant for more than 6 years (from April 2011 to 

November 2017) were analysed. The analysis revealed that most of the downtimes in the production plant are 

caused by the failures of AC electric motors located at different production lines. Further analysis also showed 

that the majority of the AC electric motor failures is caused by the mechanical damages on the rolling element 

bearings. 

Once the critical assets have been identified, the second step is to determine which technologies necessary 

to monitor the health condition of the critical assets. Vibration based condition monitoring is a well-established 

approach that has been employed by industries for many years in their maintenance program of rolling element 

bearings [4]. The common practice of this approach is that, vibration measurements are periodically recorded 

using portable vibration sensors (i.e. accelerometers) and measurement signals are analysed by an expert to 

interpret the bearing condition. However, this common practice can lead to serious misinterpretation, where 

rapidly growing faults, that might occur in rolling element bearings, could be missed. In contrast, a continuous 

condition monitoring approach offers a more optimal solution in which the bearing condition is continuously 

tracked. This way total failures can be anticipated in advance thus allowing optimal maintenance action. 

Despite its advantages, the continuous monitoring program is however not well adopted by industry because 

of high investment cost, where sensor cost is a major factor. To remedy this gap, cost-effective accelerometers 

are therefore needed. 

The remainder of this paper is organised as follows. Section 2 discusses the market survey for low-cost 

accelerometers suitable for bearing condition monitoring purposes. Section 3 describes the architecture of the 

continuous monitoring system installed in a production line. Section 4 discusses the analysis results of the data 

acquired by the installed monitoring system. Section 5 presents the conclusions drawn from the analysis and 

proposes a future work. 

2. Sensor Selection and Deployment 

The high investment cost is one of the bottlenecks for adopting continuous condition-based maintenance 

strategies in the industry. A major part of these costs is introduced by the sensors. Advancements in the field 

of MEMS accelerometers have enabled opportunities for low-cost alternatives while maintaining basic-

performance requirements for vibration-based condition monitoring purposes. 

MEMS accelerometers offer many attractive attributes. They combine the economic benefit with, for 

example, a compact, a high sensitivity, a good resistance to shocks and acceptable stability over a wide range 

of temperatures. In the previous study [5], a market survey was carried out and it was concluded that the only 

MEMS accelerometers available on the market suitable for vibration-based condition monitoring (in particular 

for bearing faults monitoring) are the ones from Analog Devices, ADXL001-70/ ADXL001-250. The main 

criteria for selecting such sensor models are because of i) the high dynamic range and ii) the wide frequency 

range properties. However, the noise performance over higher frequency ranges of the selected sensor models 

is relatively low, i.e. higher noise density level, which is about 4000 μg/√Hz. 

Recently, the market study has been updated as summarised in Figure 1. It turns out that Analog Devices 

has released the new generations of MEMS accelerometers for more than one year, namely 

ADXL1001/ADXL1002 having ultra-low noise density level, which is about 25 μg/√Hz. These ultra-low 

noise sensor models are the successor of ADXL001-70/ADXL001-250. Despite the fact that the noise density 

level of the successors is much lower than that of the predecessors, other potential limitations of the low-cost 

ADXL1001/ADXL1002 MEMS accelerometers such as the long-term signal drift, bias offset and overall 

robustness of the sensor to industrial environments, are not clear yet. 



   

 

   

 

 

Figure 1: The market overview of analogue MEMS accelerometers updated version of [5]. The dashed lines 

indicate the minimum requirements set for condition monitoring applications. The diameter of the circles 

indicates the noise density as specified in the datasheets. 

Proper hardware solutions were exploited to cope with the inherent limitations of the low-cost MEMS 

accelerometer that can affect the monitoring performance. To this end, a printed circuit board (PCB) and a 

tailored-packaging have been designed and produced. Figure 2 schematically illustrates the sensor deployment 

process to protect the MEMS sensor and enhance its overall robustness. To preserve the frequency range of 

the MEMS accelerometer, the packaging should be designed with care. For this purpose, a design criterion for 

the packaging was imposed, namely, the first packaging resonance frequency should be higher than the 

maximum frequency range of interest, i.e. 10 kHz. The flowchart of the packaging design is shown in Figure 

3. 

 

Figure 2: Sensor integration and packaging process. 

 



   

 

   

 

 
 

Figure 3: Packaging design flowchart. 

3. The Continuous Monitoring System Architecture and The Installation 

in A Production Line 

The asset criticality analysis, as discussed in Section 1, has guided us to consider 4 electric motors which 

are located in different locations. Hence, four of the selected ultra-low noise sensor model (ADXL1002) have 

been packaged according to the sensor deployment flow described in Section 2.  

Figure 4 illustrates the architecture of the monitoring system, in which each vibration sensor is installed 

on an individual motor. Each sensor is oriented such that the measuring axis in parallel with the horizontal 

axis and radial axis of each motor. Note that each sensor is powered by 5 VDC power supply. Sensor #1 and 

#2 are both installed on an extrusion press in a regular industrial environment, while sensor #3 and #4 are 

installed on a ventilator and belt motor subject to harsh environmental conditions with the temperature 

variations between 20 and 120°C and the humidity up to 90%. The latter stressed conditions have a major 

impact on the lifetime of the motor bearings and are an ideal industrial use case for this study. 

 

Figure 4: Architecture of the monitoring system installed in a production line. 



   

 

   

 

Each sensor is individually connected to a four-channel data acquisition device (NI CDAQ9191) sampled 

at a high frequency of 50 kHz. The digital data from the data acquisition device is transferred to a server via 

an ethernet cable. On the server, a custom data recording program shown in Figure 6, which can be scheduled 

along the working hours, is run, which stores every half hour a few seconds of data. This monitoring system 

has been successfully running and generating a dataset of almost one year of production data. 

 

Figure 5: Custom data recording program. 

The two sensors installed in the regular industrial environment are still in operation until now. In contrast, 

after more than one month since the installation, the two sensors installed in the harsh environmental 

conditions showed an anomaly behaviour, where the DC values of the raw signals have dropped to values 

around zero. The comparison of the raw signals of a functional and failing sensor is shown in Figure 6. It is 

not clear yet the reason for the sensor failure. But it seems that one of the electronic components used in the 

sensor packaging is vulnerable to a long time high temperature. 

 

Figure 6: Raw sensor data of a functional (top) and failing (bottom) sensor, sampling at 50 kHz. 

4. Data Analysis 

Batch data acquisition Sensor data are acquired in batches: in a standard operating mode, a batch is 

recorded every 30 minutes. If necessary (e.g., if data analysis indicates imminent failure), the acquisition 

period can be gradually reduced to ensure up-to-date information for decision-making. The length of a batch 

depends on the rotational speed of the motor: for reliable analysis, a batch should contain a sufficient number 

of full revolutions. The rotational speed of the monitored motors while executing a typical production order 

ranges from 1400 to 1500 RPM (approximately 25 Hz), therefore we set the batch length to three seconds. 

Thus, one sensor generates at least 57 megabytes of uncompressed raw vibration data per day. 

Computing health indicators For each monitored motor and each batch, we compute several bearing 

health indicators, referred to as features. Figure 7 illustrates the feature computation algorithm. It requires 



   

 

   

 

three inputs: bearing fault frequencies, the rotational speed of the motor shaft, and the raw vibration signal. 

The required bearing fault frequencies include the bearing defect frequency (BDF), and the inner & outer ball 

pass frequencies (BPFI & BPFO), and the ball spin frequency (BSF) for the drive and non-drive ends; their 

values typically can be found in the manufacturer’s catalogue. The shaft speed can either be directly read from 

the motor controller interface (PLC) or estimated from the vibration data; in this work, we use the latter 

method. To filter out non-production situations (e.g., maintenance, cleaning, holidays, etc.), we skip the 

batches where the rotational speed is much lower than the typical values of 1400-1500 RPM; we set the filter 

threshold to 600 RPM. 

 

Figure 7: Inputs and steps of the feature computation algorithm. 

 

From a high-level perspective, the main steps of the algorithm are (1) centering the vibration signal, (2) 

estimating its envelope spectrum, and (3) informally, matching the spectral peaks with the expected fault 

frequencies: the closer the match, the higher the feature value and hence, the likelihood of a bearing failure. 

Figure 8 illustrates the third step: the bearing monitored by Sensor#2 is substantially more likely to fail than 

the one monitored by Sensor#1. For the detailed description of the algorithm and its options, we refer the 

reader to Ompusunggu et al. [5]. 

 

Figure 8: Final step of feature computation: matching envelope spectral peaks with bearing fault 

frequencies. Close matches for Sensor#2 likely indicate bearing fault. 

The algorithm computes 10 features in total: 8 features for each fault frequency listed above, one feature 

for the shaft, and an aggregate global feature. This enables a coarse-grained overview as well as fine-grained 

analyses. Figure 9 shows the evolution of the global feature over time for the two motors shown in Figure 8, 

indicating the stable condition of the first motor and the gradual increase of the failure likelihood of the second 

motor. These findings have been confirmed by an external audit. 



   

 

   

 

 

 (a) Sensor#1 (b) Sensor#2 

Figure 9: Evolution of the global bearing health indicator for two motors over eight months (missing values 

correspond to non-production periods, e.g., maintenance or holidays). 

Remaining data analysis challenges include accounting for operational context and calibration. Relevant 

contextual data (such as the shaft speed, load, ambient temperature, raw material, etc.) can be read from PLCs 

and various manufacturing systems, e.g., SCADA or MES. Accounting for these data will reduce the influence 

of external factors and mitigate spurious feature value fluctuations seen in Figure 9. Calibration requires data 

from the complete lifecycle of a bearing, from installation to failure. Once such data become available, 

dimensionless feature values can be used to calculate interpretable health indicators, e.g., fault size or time to 

failure. 

Implementation details The software is implemented in MATLAB with a thin Python wrapper for 

scripting. The implementation reads the TDMS files output by the NI acquisition device and generates CSV 

files that can be used directly or uploaded to a database, an IoT platform, or another data processing system. 

5. Conclusions & Outlook 

In this paper, we have shared our experience in assisting a food manufacturing company in setting up a 

continuous monitoring system in transition from the current practice preventive maintenance toward the 

condition-based maintenance/predictive maintenance. The maintenance record and production data recorded 

for more than 6 years have been used and analysed to objectively determine critical assets in a pilot production 

plant. It turns out from the analysis that AC electric motors located in different production lines are the most 

critical assets, where rolling element bearings are the main root causes of the motor failures. 

The architecture of the monitoring system with a low-cost vibration sensor solution has been proposed 

and realised in the pilot production line to monitor the health condition of four selected electric motors. The 

monitoring system has been running successfully and acquiring vibration data, which are stored in a server. 

The off-line analysis has shown that one of the selected motors is already faulty. The findings have been 

verified independently by a third party. As a result, a maintenance action for the faulty motor has been planned 

and will be executed in the coming weeks. 

The future work will be to further extend the framework that allows for on-line analysis and decision 

making. 
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Abstract
Pulse Width Modulation (PWM) is commonly used for driving asynchronous machines. The mechanical torque
is the result of the combination of several multiphysics conversions. The PWM is generally defined on the
basis of the electromagnetic performances determined with simple mechanical behavior: typically, rigid bodies
are considered to be representative of the mechanical behavior. However, since PWM generates numerous
harmonics of current and voltage, it may have an impact on the structural dynamics of the system. In particular,
the rotor is subjected to torque oscillations over a wide frequency range that may result in large vibration
amplitudes when coincidences occur. These excitations can induce severe damages like fans ruptures. In this
work, a finite element model and an reduced model are compared in terms of ability to describe the structural
dynamics of the system when the electric machine is driven with PWM. The results are compared and discussed
in terms of applicability for the design of electric machines.

1 Introduction

Trains are set into motion through electrical energy. Electrical signals are synthesized by the Pulse Width
Modulation (PWM). From a theoretical point of view, train motors can be driven by sine wave signals but
practically, due to signal synthesis issues and power limitations, motors are driven thanks to voltage impulsions.
This allows to manage easily the variation of the rotating speed. The PWM definition makes the fundamental
frequency equal to the sine signal frequency. Unfortunately, PWM generates small-amplitude oscillations which
frequencies correspond to the harmonics. They lead to vibration motions that engender spurious mechanical
stress. Figure 1 illustrates the difference between PWM and sinus waveform signal. This results in torque
oscillations over a wide frequency range and with large amplitudes, sometimes leading to the rupture of several
rotating parts due to resonance [1]. The aim of this study is to suggest and compare rotors dynamic modeling
able to capture the phenomenon.

In this paper, two models are submitted : the first one consists by coupling magnetic and mechanical finite
elements models whereas the second one uses reduced order modelling to get rotor oscillations faster. The
workflow of the methodologies can be found in the figure 2 .This study will allow to determine which scale of
refinement is necessary to describe the problem with a good accuracy.

2 Design methodologies

2.1 Weakly coupled magnetic and mechanic Finite Elements Model

Firstly, we propose a methodology that couples magnetic and mechanic Finite Elements Models (FEM). The
aim of this study is to evaluate the relevance of Maxwell mechanical stress projection on mechanical degrees
of freedom (dof), see figure 3. The magnetic model is built with Flux 2D (Altair) whereas the mechanical one
is set with Optistruct (Altair).
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Figure 1: Current waveform with PWM or sinus

Figure 2: Workflow of methodologies for weakly coupled model and reduced model

Flux2D/Optistruct coupling is introduced in the thesis of Jaafar Hallal [2]. The goal is to develop a multi-
physic model between 2D magnetic model and 3D mechanical model in order to evaluate the dynamic behavior
coming from magnetic forces to study acoustic noise. Here, the results of this work are used to determine the
vibratory fatigue failure that may occur.

The magnetic calculation takes place in two steps : firstly a magnetic harmonic response allows to initialize
transient magnetic computation. It is mandatory to define geometry, materials, mesh, and then to create the
electrical circuit that corresponds to the motor. Each component of the mesh is assigned to electrical component.
Finally, we define the solving scenario: voltage, current, frequency, number of rotation, discretization angular
steps. In our case, we simulate a working point that corresponds to a fixed rotating speed. The motor is powered
by sinus waveform signal. The magnetic field is governed by the following set of equations.

−−−→
rot (

−→
E ) =− ∂

−→
B

∂ t
div(

−→
B) = 0

−−−→
rot (

−−→
H ) =

−→
J

−→
J = σ

−→
E

−→
B = µ

−−→
H

(1)

where
−→
E is the electrical field (V/m),

−→
B is the magnetic induction (T),

−−→
H is the magnetic field (A/m),

−→
J

is the current density (A/m2), σ is the conductivity (S) and µ is the permeability (H/m). Flux 2D solves the
following equation including magnetic potential vector

−→
A and electric potential V , see eqn. 2.
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Figure 3: Maxwell pressure projection
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where [νr] is the magnetic reluctivity, ν0 is the vacum reluctivity (ν0 = 1/µ0 = 1/(4pi10− 7) m/H),
−→
A is

the magnetic potential vector (Wb/m),
−−−→
Hc is the coercitif field (A/m), [σ ] is the conductivity tensor (S) and V

is the electric potential (V). The link between eqn. 2 and eqn. 1 is given by
−→
B =

−−−→
rot (

−→
A). It allows to determine

the magnetic induction
−→
B and then the Maxwell pressure (3).

σr =
1
µ0
(B2

r −B2
t )

σt =
1
µ0

BrBt
(3)

where [Br] is the radial magnetic induction (T), [Bt] is the tangential magnetic induction (T), [σr] is the
radial pressure (N/m2) and [σt] is the tangential pressure (N/m2)). The mechanical frequency response is
driven by the following set of equations.

−ω2ρ û = div(σ̂)
σ̂ = H ε̂

ε̂ = 1
2

(
grad(û)+gradT (û)

) (4)

Flux 2D generates loadings for the mechanical model:

σ̂ .n =

∣∣∣∣∣∣

σr

σt1
σt2

on Γl (5)

where Γl is the set of rotor lamination surfaces. Both equations allow to know the displacement u and stress
σ in the rotor as a function of the frequency. Rotations can be determined by using a transformation matrix C
defined in the following relation :

θ =Cu (6)

with θ the rotation of sections, C the transformation matrix built with speed composition relation and u the
nodal displacement of the finite element model.

2.2 Mechanical reduced order model

An electromechanical lumped model has already been published by Bruzzese in 2016 [3]. He managed to
define electrotechnic model by solving equivalent electrical circuit and apply magnetic torque on a simplified
mechanical model composed by masses, springs and dampers. Inertia and stiffness matrices were calculated by
a lumped representation.

We offer to use a similar model to represent the electrotechnical part (by solving equivalent equation of
the motor), using d-q frame instead of α-β frame, but taking into account all parameters of the inverter and
the train (inertial effect). Upstream, algorithms are used to generate PWM signal. Thus, this model allows
us to simulate torque oscillations. Besides, we propose to compute mechanics from modal basis and nodal
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coordinates of sections coming from the 3D FEM in order to have a more accurate mechanical representation
of the real rotor.

The key of such a model is the transformation matrix that allows the reduction. The interest of model
reduction is based on the dimension change of the problem. We start with a complete 3D model composed
of thousands of translation degrees of freedom and we reduce it in order to obtain a model with only nine
rotational degrees of freedom.

Then, we choose to divide the rotor in nine sections as described in figure (4).

Figure 4: Rotor divided in 9 sections

Next, several matrices are built in order to create a transformation matrix. We define generalised coordinates
q as the projection on the modal basis Φ of the displacement u. Let’s consider a transformation matrix A between
the displacement u and the rotation of sections θ , see eqn. 7.

u = Φq
u = Aθ

Φθ =

∣∣∣∣
A−1Φ
CΦ

(7)

where A is defined thanks to the speed composition relation and contains coordinates of nodes in sections (A
is the inverse matrix of C defined in the previous paragraph) and with Φθ the modal basis expressed in rotation.

The set of equations (7) gives:
q = (AΦθ )

−1Aθ = Pθ (8)

The classic dynamic equation in translation is given by the following equation.

[M]ü+[D]u̇+[K]u = F (9)

Writted on the modal basis, the dynamic equation in generalized coordinates is :

q̈+[∆]q̇+[Λ]q = f (10)

with [∆] = 2ξ ω0[I].
By using the transformation (equation 8), the equation in the rotation coordinate frame becomes :

[J]θ̈ +[Dθ ]θ̇ +[Kθ ]θ = T, (11)

with 



[J] = PT P,
[Kθ ] = PT [Λ]P,

[Dθ ] = PT (2ξ ω0[I])P.
(12)

Rotations of rotor sections are obtained by solving the equation (11).
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3 Comparison of results

Rotations of rotor sections are obtained with both methods presented above. This paragraph shows the
results on the torsion modes, see figure 5. The first table illustrates the validation of the model reduction with
PWM excitation, whereas the second table compares the coupled model with sine wave excitation and the
reduced model with PWM excitation.

Figure 5: Frequency Response Function

PWM + FEM PWM + Reduced model Relative error (%)
Fondamental frequency 6.648E-7 6.645E-7 0.05

Fan torsion mode 7.03E-6 7.591E-6 7.98
First ring torsion mode 3.363E-8 3.374E-8 0.33

Second ring torsion mode 7.269E-7 6.44E-7 11.4

Table 1: Comparison of results obtained with both models and PWM input - Maximal rotation (rad)

Values of the table 1 are close and permit to justify the validation of the model reduction.

Sine wave + FEM PWM + Reduced model Relative error (%)
Fondamental frequency 1.134E-6 6.645E-7 41.4

Fan torsion mode 1.504E-7 7.591E-6 4947.2
First ring torsion mode 7.779E-9 3.374E-8 333.7

Second ring torsion mode 7.084E-8 6.44E-7 809

Table 2: Comparison of results obtained with both models with sine wave or PWM input - Maximal rotation
(rad)

Table 2 shows the difference between the weakly coupled model with sine wave input and reduced model
with PWM input. Values are not comparable except for the fondamental frequency of the PWM that corre-
sponds to the sine wave frequency. This illustrates the necessity to use the coupled model to simulate the
working point with PWM excitation to validate the approach.

The solving of the equivalent circuit is immediate, the computation of modal basis takes 8 minutes on a
calculator with 16 CPU, 3.2GHz and 225692 MB RAM and then the calculation of rotation thanks to reduced
model takes 5 seconds. In comparison, the magnetic computation with Flux 2D takes 9 hours in a laptop with
8 CPU, 2.7GHz and 16 Go RAM and then the mechanical computation with Optistruct takes 2 hours on the
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calculator. The model reduction permits to pass from 11 hours to 8 minutes of computation with in addition
PWM excitation.

4 Conclusion

This paper propose two methods to model the problem of vibratory fatigue that happened on train rotor
subjected to PWM excitation. The first one combines two Finite Elements Models in order to solve the mul-
tiphysic problem. The projection of magnetic excitation on mechanical mesh allows to determine rotation of
rotor sections. Secondly, we propose a model reduction to improve the computation time during design phase.
Transformation matrix is proposed to reduce model dimension and also to change the observation in rotation.

As mentioned, the Flux 2D simulation were performed with a sinus waveform instead of PWM, whereas
the reduce model included PWM excitations. Values are not comparable. The next step could be to simulate the
problem with PWM. Other points to improve are to simulate variable speed and to get stress with both models
instead of rotations to be able to design rotor in vibratory fatigue.
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Abstract
Electrical and mechanical fault diagnosis in induction machines is an extensively investigated field for cost and
maintenance savings, as induction motors operating at mains frequency are still the most widespread rotating
electric machines employed in industry. Many papers can be found in the literature concerning the general
condition monitoring of induction machines. Bearing faults are one of the most common failures in electrical
machines: bearing faults that are not detected in time cause malfunction, reduced efficiency, and may even
lead to failure of the driven machinery. Online fault detection can be obtained by vibration analysis, but the
diagnosis equipment is costly and invasive, requiring dedicated equipment and specific sensors to be installed.
Motor current signature analysis (MCSA) is an alternative method that relies on the monitoring of electrical
quantities, that are already acquired in the final application, e.g., to implement the control of an electric drive,
thus do not require the installation of dedicated transducers. Many research activities were focused on the
diagnosis of bearing faults by MCSA. The use of suitable signal processing techniques is required to efficiently
extract the fault signatures from raw signals. The use of current and/or voltage signal constitutes a noninvasive
method to bring information necessary to diagnose a fault in the system via online monitoring of the electric
machine. This paper details the results of a laboratory trial comprising different test sets on the condition
monitoring and fault diagnostic of a six-poles induction motor, using a design of experiment (DOE) approach.
The manuscript summarizes the results of research that the authors did in the last years, and the aim of the paper
is giving a unified point of view on the work done. After the selection of a proper fault-related scalar value, the
DOE proves its robustness against setup and working conditions of the motor. Finally, the same scalar value
will be proved to be effective as input to long short-memory networks, for automatic condition monitoring of
faulted bearings.

1 Introduction

Electrical and mechanical fault diagnosis in induction machines is an extensively investigated field for
cost and maintenance savings, as induction motors operating at mains frequency are still the most widespread
rotating electric machines in industry, mainly because of their low price, ruggedness and reliability.

Many papers can be found in the literature concerning the general condition monitoring of induction ma-
chines [1], [2]. The distribution of failures within the machine sub-assemblies is reported in many reliability
survey papers [3]. A rough classification identifies four classes: bearings faults, stator related faults, rotor re-
lated faults, other faults (lack of cooling, loose terminal box connection). Bearing faults are one of the most
common failures in electrical machines especially in the small-medium power sizes [4]. Bearing faults that are
not detected in time cause malfunction, loss of performance, reduced efficiency and may even lead to failure of
the driven machinery, [5].

In many situations diagnostics methods based on the analysis of the vibration signals have proved their
effectiveness [6], [7]. Among the mechanical problems detected by vibration spectra there are: imbalance,
misalignment, loose fitting, bent shafts, and bearing localized faults. On-line fault detection can be obtained
by vibration analysis, but the diagnosis equipment is costly and invasive, requiring dedicated equipment and
specific sensors to be installed.

Motor current signature analysis (MCSA) is an alternative method that relies on the monitoring of elec-
trical quantities, that are already acquired in the final application, e.g. to implement the control of an electric
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drive, thus do not require the installation of dedicated transducers. Many research activities were focused on
the diagnosis of bearing faults by MCSA [8]. In many cases mechanical signals cannot be directly acquired,
e.g. in harsh environments, remote locations, or because the application is difficult to access. Under such con-
ditions, electric signal measurements would be preferable as they are more immune to external disturbances,
[9]. Non-invasive fault diagnosis should ideally detects faults at the early stage, to allow for scheduled main-
tenance, minimizing system downtime. Under this circumstances, fault signature components feature a very
small amplitude that is usually buried in noise and can lead to false positive detection [10]. The use of suitable
signal processing techniques is required to efficiently extract the fault signatures from raw signals. The use of
current and/or voltage signal constitutes a non-invasive method to bring information necessary to diagnose a
fault in the system via on-line monitoring of the electric machine.

Thanks to a dedicated test bench, a laboratory trial comprising different test sets on the condition monitoring
and fault diagnostic of a 6-poles induction motor using a design of experiment (DOE) approach was performed.
Four different data were acquired (namely vibration data, currents, motor torque and radial force on the motor
shaft) and post-processed. This paper focuses on the results of the MCSA, while the analysis of the vibration
data is given only as comparison if a reference is needed. The diagnostic techniques used are three: a spectral
analysis with an ad-hoc pre-processing, the DOE analysis to qualify the effects of the setup parameters and a
machine learning approach based on Long Short-Term Memory (LSTM), particularly suited for the analysis
and classification of time-series.

The paper is organized as follows: section 2 reviews the relationship between vibration and current com-
ponents presented in literature. Section 3 presents the experimental setup with a description on the test bench.
Section 4 outlines the two methodologies adopted, specifically the factorial design of experiment and the ma-
chine learning technique. The results for test runs under different working conditions and bearing damage are
reported in section 5, followed by Conclusion.

2 Currents Based Condition Monitoring

Numerous papers in literature deal with the detection and diagnosis of electro-mechanical faults based on
MCSA in induction motors. The link between vibrations and motor current spectral components is still under
investigation in the scientific community and is treated in literature according to different approaches.

In the first one, the vibration component causes a rotor eccentricity [14].
The second one links the vibration component to a torque ripple that produces a speed ripple on the electric

machine [13]. A unifying approach is presented in [15]. Mechanical vibrations results in a torque ripple that
generates in the current a chain of components at frequencies Fbe:

Fbe =| f ± k fcar | (1)

where k is an integer.
Radial bearings consist of two concentric rings containing inner and outer races, separated by rolling ele-

ments, Fig. 1. Rolling elements are separated by a cage: a component that maintains a constant angular pitch
between adjacent rolling elements, preventing contacts.

Figure 1: Bearing structure and characteristic dimensions.

Localized faults will produce characteristic vibration frequency components. These bearing fault frequen-
cies are a function of the bearing geometry and the relative speed of the outer and the inner ring. Characteristic
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vibration frequencies can be calculated from the bearing’s physical dimensions, Fig. 1. In particular, consider-
ing the outer ring fixed to the frame:

Fcage =
1
2

Fr

(
1− Db cosθ

Dp

)
(2)

Fouter =
Z
2

Fr

(
1− Db cosθ

Dp

)
(3)

Finner =
Z
2

Fr

(
1+

Db cosθ
Dp

)
(4)

Fball =
Dp

Db
Fr

[
1−
(

Db cosθ
Dp

)2
]

(5)

where Db stands for the ball diameter, Dp for the pitch diameter, Z for the number of rolling elements, θ
for the ball contact angle, Fig.1. Table 1 summarizes the corresponding vibration related components on the
machine current for the torque fluctuation model.

Model based on torque fluctuations
Outer raceway defect f ± k Fouter

Inner raceway defect f ± k Finner

Ball defect f ± k Fball
Cage defect f ± k Fcage

Table 1: Vibration related components in the stator current spectrum.

Considering the torque ripple model, vibration effects on machine currents are caused by small speed
fluctuations of the rotor. Because of electromechanical filtering effects (due to the rotor inertia and winding
inductance) MCSA is in general more sensitive to low frequency phenomena.

To sum it up, it is usually very difficult to retrieve bearing fault signature components by MCSA. Especially
because when dealing with realistic incipient faults, the fault signature is buried in noise or it is only a small
fraction of the fundamental supply current component, especially when operating at rated load. In [16] the
torque ripple associated with a realistic (not drilled) localized fault was experimentally measured: the peak
value of the torque ripple was 3-4 orders of magnitude smaller than the nominal torque of the machine.

3 Test setup

The experimental setup, Fig. 2, comprises the electrical motor under test (MUT) that is installed on a test
bench in order to vary both the radial and the torque load conditions. The chosen MUT is a three phase induction
machine operated directly connected to the 50 Hz mains grid. The test bench also houses a brake/dynamometer
consisting of a vector controlled induction machine in order to vary the load torque on the MUT. Table 2
summarizes the nameplate data of the MUT.

Nominal Power 1100 [W ]
Number of poles 6
Nominal current 2.8 [A]

Power Factor 0.76
Nominal Torque 11.5 [Nm]
Stator Resistance 5.65 [Ω]

Table 2: Nameplate data of the Motor Under Test

Radial load on the MUT shaft is provided by a specially designed test fixture, comprising a pneumatic
cylinder coupled to a manifold with pressure regulator and transducer to modulate the radial load. The cylinder
is connected to a crosshead carrying an extension shaft that allows to apply a variable radial force at the motor

3



Table 3: Specifications of the ball bearing and expected fault frequencies
Supply frequency ( f ) 50 [Hz] Fr 15.9 [Hz]
Inner diameter 25 [mm] Finner/Fr 5.41
Outer diameter 52 [mm] Fouter/Fr 3.585
Number of spheres 9 Fcage/Fr 0.398
Basic static load rating 7800 [N] Fball/Fr 4.715

shaft’s end. The cylinder is supplied with compressed air at a pressure up to 6 bar, corresponding to a radial
force of up to 1180 N exerted on the front bearing.

Figure 2: Test setup overview: (1) MUT; (2) brake/dynamometer; (3) torque meter; (4) crosshead; (5) pneu-
matic cylinder; (6) accelerometer position. The compressed air hose connecting the cylinder to the manifold
with pressure regulator and transducer is not shown.

The test bearing is a SKF 6205 deep grove ball bearing. Table 3 summarizes the characteristic fault fre-
quencies with the MUT operated at nominal frequency.

Two different damages were artificially made on the bearings, in order to apply DOE to different data test
set: A single defect on the outer raceway, created by chemical etching of the bearing outer race, Fig. 3-left. A
simulated brinelling defect, generated applying a mechanical load of 4 tons (40 kN) to the bearing, Fig. 3-right.

Figure 3: Micrography of the chemically etched outer race defect (left). Photo of the hydraulic press employed
to impart bearing brinneling damage (right).

The physical quantities monitored are: the radial vibration of the motor, the stator currents fed to the
machine, the radial force exerted by the pneumatic cylinder and the load torque at the motor shaft. The vibration
of the motor is measured by means of a mono-axial accelerometer placed on the frame of the test rig (sensitivity:
10.28 mV/g). The currents are measured by means of LEM LTSR 6-NP closed loop Hall current transducers
(nominal current: 6 Arms; output voltage: 104,16 mV/A, accuracy: ±0,2%) and the pressure by mean of
a pressure sensor (output voltage: 0–10 V; measurement range: 0–10 bar, accuracy: ±0,5%). The torque
is measured by a torque meter mounted between the motor and the brake shafts (maximum torque: 20 Nm,
linearity: ±0,2% of full scale).
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4 Methods

4.1 Design of experiment

The Design of Experiment (DOE) procedure, a powerful statistical technique based on the analysis of
variance (ANOVA), can be conveniently applied to multivariable problems. The DOE is the branch of science
that deals with designing the correct sequence of experiments to minimize measurement errors and maximize
the evidence of dependencies between causes and results [12].

The inputs to the system are called “factors” and each of them could have more than one value (usually
called “levels”). The number of factors and the number of levels determine the complexity of the experimental
plan and the total number of tests to be done. The DOE approach fixes some procedures in order to minimize the
influence of parameters other than the selected inputs, and proposes statistical tools to determine the significance
of dependencies between the input and output of the system [17].

In this paper, the design of experiment for each test set consists of three independent factors with two levels
each: the value of radial load, the load torque and the type of damage on the front bearing. Table 4 summarizes
the factors and levels used in the first and second test run.

First test set
Factors: Radial load Load torque Bearing status
Level 1 3 bar / 590 N 50% healthy
Level 2 6 bar / 1180 N 100% Outer race

Second test set
Factors: Radial load Load torque Bearing status
Level 1 3 bar / 590 N 50% healthy
Level 2 6 bar / 1180 N 100% Brinneling

Table 4: Factors and levels of the independent variables used in the Design Of Experiment (DOE).

Two test set were performed in the laboratory trial, one employing a bearing with a localized fault on the
outer race, the other employing a bearing with artificial brinneling. The resulting full factorial experimental
plans consist of 8 randomized tests each, which are not replicated. The statistical analysis software Minitab was
used to lay out the randomized test plan and to perform the analysis of variance (ANOVA) on the results. The
levels of the independent variables were normalized: torque was normalized to the rated torque of the machine,
radial load was normalized to the maximum value obtainable, while the fault is modeled as a binary variable
(healthy = 0, faulty = 1).

The current signal has been filtered by a series of notch filters in order to the remove the 50 Hz fundamental
mains supply frequency and its higher harmonics over all the frequency range. The Root Mean Square (RMS)
value of the filtered current is taken as response factor for the ANOVA anlysis. The RMS is used to take into
account the energy of the residual signal, considering that any damage to the motor requires additional energy,
appearing in the spectrum as sideband modulations according to Table 1. Since the torque ripple due to the
bearing fault impacts is independent of the torque load on the machine, the residual signal was chosen as a
good candidate for a robust scalar fault index.

Figure 4 shows the post-processing flowchart of the current signal, where X is the input current signal, Y is
the residual signal after the filtering and Z is the RMS value.

 X 1kHz 
Lowpass Filter 

k · 50Hz 
Notch Filters RMS 

Y Z 

Figure 4: Flowchart of the current signal processing.
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Figure 5: Depiction of LSTM cell. σ (input, output, forget gates) are typically the sigmoid function. Recurrent
connections ht and Xt propagate information through time.

4.2 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs) are a class of recurrent neural networks. They are designed
specifically to process periodic input sequences, such as time-series. They were first introduced in the late
nineties [11], and demonstrated high performance in different tasks pertaining pattern recogniti and sequence
classification. Only during the last decade and thanks to the largely increased interest in neural networks,
LSTMs became the state-of-the-art in different application domains pertaining both to the industry and the
research [20]). Recurrent networks are capable of processing time sequences of arbitrary length. The output of
a RNN is not simply a function of the actual input, but it is also function of the internal state of the network. The
output of a generic cell h`t in layer ` at time t is a function of both the input of that layer (xt) and of the previous
output of the same cell at the time step (h`t−1). During training, classic RNNs suffer from a problem named
“vanishing gradient” [21]. That limitation greatly hinders their applicability in many practical classification
tasks. LSTMs were introduced to the particular aim of overcoming this limitation, thanks to the implementation
of a memory cell with a more complex structure. In simple terms, LSTM cells can maintain their state over
time, or forget what they have learned and also to allow new information in. In order to overcome overfitting
issues, LSTMs make use of a form of regularization called dropout [22]: during the training phase the inter-
layer connections between cells are randomly dropped with probability (1− p) and ,at prediction time, all the
weights are multiplied by p.

Figure 5 illustrates the schematic structure of such a cell. The cell’s status Xt depends on three non-linear
gates that control the information flow: the input gate, which allows new information to enter the state; the
forget gate, that controls how much of the value contained in the previous state is kept or forgotten at a given
time and the output gate that transfers the information to the upper layers.

The network input data, in the present work, is the time-series of the three phase current signals, pre-
processed to obtain the residual signal (Y signal in Fig.4). More specifically, each example fed to the network
is a 3×W matrix, where W is a preset window length of samples of each of the current signals.

5 Results

5.1 DOE results

The test runs were performed according to the DOE and the physical quantities defined in Section 4.1 were
acquired using 24 Bit, 51.2 kS/s data acquisition modules: for each test run, a 10 s length file was recorded for
post processing and analysis.

Figure 6 shows - on the same picture - a comparison of the spectrum of the current signal, in case of healthy
and faulty front bearing (localized defect on the outer race). For uniformity of presentation, both the faulty and
the healthy case shown are for a machine operated at rated output torque and 6 bar pressure on the radial load
cylinder. The sidebands already present are due to the intrinsic unbalance of the electric machine caused by
manufacturing tolerances.
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Figure 6: Comparison of FFT spectra of the notch-filtered current signal of the MUT operated at rated output
torque and 6 bar pressure on the radial load cylinder: healthy bearing (blue), faulty bearing with localized outer
race defect (red).

In a deep groove ball bearing the impact forces due to the bearing fault act along a radial direction mainly.
It is reasonable to expect the torque ripple related to the bearing fault to be dependent upon radial load, but to
be independent of the torque transmitted by the shaft. From preliminary observations on the radial vibration
signals, no significant difference was observed between the test run with the MUT operating at no torsional
load and at rated-torque: if the fault is present, fault signature is evident regardless of output torque.

There are a number of approaches to represent the results graphically to demonstrate the effects of the
variables on the system outputs. One of the most popular is the normal plot, used to estimate whether a certain
set of data follows a Gaussian distribution or not. If the data approximates a straight line the phenomenon is
statistically "normal" i.e. follows a stochastic law. The variables affecting the system response will then fall
outside the normal distribution line, thus their effect cannot be ascribed to a stochastic process. The greater
the deviation of the point from the normal line the larger the confidence interval (i.e. the probability that the
variables are significant is higher). The half normal plot, used in this paper is interpreted in the same way
as the normal plot but allows absolute values of the effects to be considered. Figure 7 shows the half-normal
probability plots from an analysis of the variance (ANOVA) test of current signals fault indicator in case of
single point defect (on the left) and brinneling defect (on the right).

The ANOVA highlights the effects that significantly influence a physical phenomenon by comparing these
effects of the output variable with a stochastic effect. This is obtained by comparing the results coming from the
several levels of the selected experimental variable, driven by the stochastic experimental error. These values
represent the probability that the effect of the variable is significant.

Half normal plots show the magnitude of the experiment’s effects ordered in increasing magnitude along the
x-axis. The effect for a factor is the difference of the average response variable over "high" factor levels minus
the average response over the "low" factor levels. As said before, half normal plot show the distribution of the
abs(X) with X having a normal distribution with mean zero. The points comprising factors with small and/or
insignificant effects on the response will describe (roughly) a straight line on the plot. The points for factors
with a ’large’ and thus significant effects will visually fall off of the straight line described by the insignificant
factors. A line through the insignificant factors helps to graphically delineate the difference between significant
and insignificant factors. To visually interpret half normal plots: selecting the factor points which lie reasonably
off of the line describing insignificant factors is an easy graphical way to identify important factors and start
the process of optimizing the model. Further details and additional statistical information on the half normal
plot construction can be found in [18] and [19].

Concerning the first test set on a single point defect on the outer race, the left part of Fig. 7 shows the half
normal plot of the current fault indicator: as it can be seen, only the effect of the fault presence is significant,
while load torque and radial load and their interactions have negligible effect.

Concerning the second test set on a simulated brinneling fault the right part of Fig. 7 shows the half normal
plot of the current fault indicator: as it can be seen, only the effect of the fault presence is significant, while
load torque and radial load and their interactions have negligible effect.
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Figure 7: Test set 1 (single point defect on outer race): Half normal plot of the scalar current fault indicator
(left). Test set 2 (brinneling defect): Half normal plot of the scalar current fault indicator (right).

It is worth pointing out that with the present test setup, the maximum pressure in the pneumatic cylinder
(6 bar) results in a radial loading force that is 1/6 of the maximum permissible static force provided by the
bearing’s manufacturer. This represents a normal working condition: much higher values of load could cause
an increase of the importance of radial load factor, but would result in reduced lifetime of the bearing and not
typical of practical applications in everyday use.

5.2 LSTM results

The deep network used in the fault detection experiments is composed of two LSTM layers, each of them
containing 100 cells, followed by other two dense layers containing 100 neurons each (this is a classical feed-
forward neural network), followed by one output neuron. A dropout value p = 0.5 and a batch size equal to
64 were used for training. The network was trained with the RMSprop algorithm, using an initial learning rate
η = 5 ·10−5. Concerning the data input, a window W = 300 was used and, as customary with neural networks,
all the features were normalized in the [0,1] interval using the statistics computed on the training set.

The data analysis task began with the simple binary classification of distinguishing faulty cases (class F)
from normal healty operation (class H). To obtain the training set, data coming from the experiment with 50%
radial load and 50% output torque was used, the data set related to experiments with a single defect on the
outer raceway represented the faulty class. To construct the validation set, the same cases were employed, but
pertaining to experiments with the radial load level equal to 100%. A relevant point is that no datasets realted
to the brinnelling fault experiments were used for training nor for validation sets.

In order to evaluate the proposed approach, we employ standard metrics in machine learning, such as
accuracy, precision, recall, and F1. When dealing with a binary classification task True Positives (TP) and
True Negatives (TN) are respectively the number of examples of the positive/negative class that are correctly
classified. False Positives (FP) are the negative (healthy) examples that are mistakenly classified as positives,
the opposite cases are False Negatives (FN). Accuracy A is defined as the total percentage of correct predictions:

A =
T P+T N

T P+T N +FP+FN
(6)

Precision P and recall R are related to the ratio of false positives and false negatives:

P =
T P

T P+FP
(7)

and
R =

T P
T P+FN

(8)

Finally F1 is the harmonic mean between P and R,

F1 =
2PR

P+R
(9)
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In our first experiment, the test set is the setting with half radial load, and maximum output torque: in this
case we achieve A = 0.759, P = 0.924, R = 0.564, F1 = 0.700, so that the network detects over than half of
the faulty examples, with less than 8% of false positives (see confusion matrix in Table 5, left). If we apply a
post-processing filter, where we detect a sample as faulty if at least m of the past n samples where predicted as
faulty, then performance rapidly improves. The parameters m and n can be chosen so as to balance the number
of FP and FN. For example, keeping n = 1,000 we achieve P = 0.840 and R = 0.990 with m = 100, whereas
we obtain P = 0.940 and R = 0.960 with m = 200. In the former setting, almost all the faults are detected, but
the number of FP raises to 16% while in the latter the two types of errors are more balanced.

In our second set of experiments, we considered the network trained in the first setting, and we evaluate its
performance with several different test sets. In absence of radial load, we achieve P = 0.849 and R = 0.818
with full output torque, and P= 0.931 and R= 0.594 with half output torque (see confusion matrices in Table 5,
center and right, respectively). The brinnelling fault is almost perfectly detected as well, with an accuracy equal
to 0.984 and 0.998 with half and full output torque, respectively (radial load is kept fixed at 50%).

This result confirms that the datasets obtained with experiments at different radial loads can be used both
for training and for validation, to avoid overfitting of the LSTM.

% H F
H 47.68 2.33
F 21.79 28.20

% H F
H 47.80 2.21
F 20.31 29.68

% H F
H 42.74 7.26
F 9.09 40.91

Table 5: Confusion matrices for three different test sets. Left: 50% radial load, 100% output torque; center:
no radial load, 50% output torque; right: no radial load, 100% output torque. Rows: true labels, columns:
predicted values.

6 Conclusions

This paper details the results of a laboratory trial comprising different test sets on the condition monitoring
and fault diagnostic of a six-poles induction motor, using a design of experiment (DOE) approach. The DOE
allows some considerations about the influence of external radial loads applied to the output shaft of the motor.
A scalar fault indicator based on current signal has been proposed as fault detector. This indicator proved
to positively identify the faulted case versus the healthy one. The main results of the DOE are that output
torque, radial load and their interactions have negligible effect on scalar fault indicators. Only the effect of
the fault presence is significant. This indicates a fair robustness of the chosen scalar fault indicators under
different operating conditions and in case of different faults. Finally,the radial load has no relevant effect on the
current signals in case of healthy bearing. The occurrence of false positive fault detection due to radial load is
avoided. The same scalar fault indicator based on current signal has been taken as input to a Long Short-Term
Memory network to test a machine learning approach for the fault detection of the bearings. The main results
are that the proposed LSTM fault detection positively identify the fault case with respect to the healthy one. It
can be efficiently trained on an easily reproducible single defect case, and then be employed to identify a more
complex fault. Finally, the proposed LSTM fault detection showed a fair robustness of detection under different
operating conditions and in case of different faults.
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Abstract
Assessing the dynamic response of vibrating structures which are described by means of finite element (FE)
models with many degrees of freedom (DOFs) is usually computationally cumbersome. The fact that the man-
ufacturing process and the material properties of structures are usually subject to variability means a dispersion
of the physical parameters which can be important. The parameters are therefore considered as uncertain DOFs,
which makes FE models more complex. The Monte Carlo (MC) method is commonly used to analyze the prop-
agation of uncertainties through FE modeling. However, it requires a large number of simulations which are
therefore very cumbersome in terms of CPU times. This work aims at developing a low cost computational
strategy to compute the harmonic response of vibrating structures having uncertain parameters. The strategy
works by considering the Craig-Bampton method to reduce the physical DOFs of a FE model [1]. Also, a sparse
Polynomial Chaos (sPC) expansion is considered to describe the propagation of uncertainties and estimate the
Quantities of Interest (QoIs), e.g., the displacement at some measurement points, or an energy quantity. In this
work, the sPC expansion is applied through a non-intrusive method, which requires a non-negligible number
of simulations of the FE model to be performed to estimate the sPC coefficients, and further the statistics (i.e.,
mean and variance) of the QoIs. The probability law of the QoIs can be obtained by considering the sPC expan-
sions along with the MC method with 10000 trials. The strategy is here applied to model an academic structure
composed of three rectangular Kirchhoff-Love plates made up of various materials and connected together
across one of their edges by means of a lineic density of springs with an uncertain stiffness. Comparisons with
the results obtained from a reference MC solution involving 10000 simulations of the FE model show good
agreement and substantial reduction of the computational effort. The influence of the Craig-Bampton reduction
method on the estimation of the QoIs of the FE model is discussed through numerical comparisons.

1 Introduction

Applying the FE method to perform the dynamic analysis of complex industrial structures usually involves
models characterized by large numbers of DOFs and leads to large computational costs. It may therefore be
necessary to reduce the size of the models to solve. One of the efficient model reduction strategies is the well-
established Craig-Bampton method, which is based on the projection of the system internal DOFs onto bases
of reduced sizes [1, 2].

In addition, the effect of uncertainties are of growing concern in the analysis and design of engineering
structures. These uncertainties in the parameters of the system result from the inevitable variability in the
manufacturing process of the structures and the fact that the material properties of the structures can change with
time [3, 4]. Taking into account these uncertainties in the dynamic analysis of vibrating structures is therefore a
crucial issue. The classic MC approach is usually used to analyze the propagation of uncertainties, and involves
a large number of FEM evaluations for various sets of values of the uncertain parameters. For complex industrial
systems owning a large number of DOFs and/or uncertain parameters, the computational cost associated with
this method becomes prohibitive. Polynomial chaos (PC) expansions have proved efficient to solve this issue,
among which sparse PC expansions (sPC) [6, 7, 8] are of particular interest when a large number of uncertain
parameters is at stake. For instance, Kieu et al. [5] have recently applied sPC expansions to analyze the stability
of a clutch system having uncertain parameters. In that study, comparisons with the generalized polynomial
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chaos (gPC) and the multi-element generalized polynomial chaos (ME-gPC) previously applied to the same
clutch system [9] shew that the sPC expansions ensured substantial time reduction with respect to the other PC
expansions, while providing a high accuracy of the results.

The aim of this paper is to associate an sPC expansion to a CB model reduction in order to reduce the
computational costs in the analysis of the dynamic behavior of a vibrating structure having uncertain parame-
ters. The Craig-Bampton method is briefly recalled in section 2, and the building of a sparse PC expansion is
detailed in section 3. The method is then applied to a system consisting of several plates connected with spring
of uncertain stiffness. The details of the model and the results are finally given in section 4.

2 The Craig-Bampton method

The Craig Bampton method [1] aims at reducing the sizes of FE models involving large numbers of DOFs.
Within the FE framework, the equation of motion of a structure is

[M]{q̈}+ [K]{q} = {F}, (1)

where [M] and [K] denote respectively the mass and stiffness matrices of the structure, {q} the vector of dis-
placements and {F} the vector of external forces. Considering harmonic forces and distinguishing the internal
DOFs qI from the boundary DOFs qB, the above equation may be rewritten as:

−ω2
[

MBB MBI

MIB MII

]{
qB

qI

}
+

[
KBB KBI

KIB KII

]{
qB

qI

}
=

{
FB

FI

}
. (2)

In the classical FE procedure, the unknown DOFs are obtained by inverting the above system, which can
be cumbersome in terms of computational time if the number of DOFs involved is important. The CB method
consists in decomposing the vector of internal DOFs onto a basis of static and fixed interface modes as follows:

{
qB

qI

}
=

[
I 0

Xst Xel

]{
qB

α

}
(3)

where Xst is the matrix of static modes, which are computed as −K−1
II KIB, Xel is the matrix of fixed interface

modes, i.e. the matrix of the eigenvectors of (KII , MII), and α is the vector of the modal amplitudes.
To reduce the size of the problem, only a limited number of fixed interface modes of amplitudes α̃ is

retained. The internal DOFs are then approximated by

{q̃I} ≈ [Xst]{qB}+ [X̃el]{α̃} (4)

where X̃el is a matrix of reduced size. Inserting Eqs. (3) and (4) into Eq. (2) leads to a system of reduced size
easier to invert.

3 Sparse Polynomial Chaos

3.1 Generalized polynomial chaos

The generalized polynomial chaos (gPC) has been proposed by Xiu and Karniadakis [10]. It consists in
expanding a random process X(ξ) depending on r independent random variables (ξ1, ..., ξr) = ξ as follows:

X(ξ) =
∑

α∈Nr

x̄αφα(ξ), (5)

where φα(ξ) are orthogonal polynomials which represent the stochastic components of the process, and x̄α are
the PC coefficients that account for the deterministic components of the process.

The Wiener theory as well as the generalized Cameron-Martin theorem [11] state that the series is conver-
gent in the mean square sense. According to the Askey scheme, if ξ is a uniform random vector, the polynomial
functions φα are most suitably obtained from Legendre polynomials [12, 10, 13].
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In practice, the random process X(ξ), which constitutes the quantity of interest (QoI), is approached by a
truncated expansion as

X(ξ) ≈
∑

α∈Ar,p

x̄αφα(ξ), (6)

where p is the order of the PC expansion and α = {α1, ...,αr} ∈ Nr.
The index set used in the truncated expansion (6) is then defined as

Ar,p =
{
α ∈ Nr : ‖α‖1 ≤ p

}
, (7)

with

‖α‖1 =

r∑

i=1

αi. (8)

Computing the QoI X comes down to finding the coefficients xα of the truncated gPC expansion Eq. (6).
The number of terms Np is linked to the order p and to the number of uncertain parameters r as [10]

Np = card(Ar,p) =
(p + r)!

p!r!
. (9)

In this study, the QoIs are quantities such as a displacement or an energy quantity that are solutions of a FE
model. The PC coefficients are here determined from a non-intrusive regression method that does not require
any modification of the FE model: they are built from a finite number Q = k Np (with k a small integer usually
equal to 2, 3 or 4) of values of the QoI X, computed from numerical Q simulations of the FE model. In practice
the Q sets of values of the uncertain parameters for which the QoI is computed, which will be referred to as the
nested expermimental design (NED) in the following, may be chosen with a Latin Hypercube Samples (LHS)
method [14].

Within the regression framework, the evaluation of the coefficients results from the minimization of the
following criterion [15]

ε2
reg =

Q∑

q=1

X
(
ξ(q)

)
−

∑

α∈Ar,p

x̄αφα
(
ξ(q)

)

2

, (10)

where ξ(q) =
(
ξ

(q)
1 , ..., ξ

(q)
r

)
(with q = 1, ...,Q) denotes the Numerical Experimental Design (NED), that is the set

of Q vectors of uncertain parameter values generated from the probabilistic support of the parameters; X
(
ξ(q)

)

denotes the vector of the corresponding FE model evaluations. The PC coefficients are finally calculated as

x̄ =
(
φT (ξ(q))φ(ξ(q))

)−1
φT (ξ(q))X(ξ(q)), (11)

with φ(ξ(q)) the matrix defined by

φ(ξ(q)) =



φ0(ξ(1)) . . . φNp−1(ξ(1))
...

. . .
...

φ0(ξ(Q)) . . . φNp−1(ξ(Q))


. (12)

If the number of uncertain parameters and the order p of the gPC expansion are high, the number of
PC coefficients and therefore the necessary number of simulations to build them become quickly prohibitive.
Strategies to reduce this number of simulations are consequently necessary.

3.2 Sparse Polynomial Chaos

The sparse Polynomial Chaos (sPC) can reduce the number of PC coefficients. In this paper, sPC with
anisotropic hyperbolic index sets will be used.
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3.2.1 Anisotropic hyperbolic index sets

The strategy to truncate the PC expansions favors input random variables ξi with large total sensitivity
indices S T

i . For this purpose, the truncation is based on the following anisotropic norm

‖α‖m,w =

( r∑

i=1

|wiαi|m
)1/m

, wi ≥ 1. (13)

The corresponding anisotropic index set is then chosen as

Ar,p
m,w =

{
α ∈ Nr : ‖α‖m,w ≤ p

}
, (14)

where w is a set of weights wi defined by

wi = 1 +
max1≤ j≤rS T

j −S T
i∑r

k=1 S T
k

. i = 1, ...,r. (15)

In the above equation, S T
i is the PC-based total sensitivity index [16] of the QoI with respect to the input

random variable ξi, and is computed as

S T
i =

1
DPC

∑

α∈I+
i

x̄2
αE[φ2

α(ξ)], (16)

where I+
i denotes the set of indices having a non-zero ith component

I+
i =

{
α ∈ Ar,p

m,w : αi , 0
}
, (17)

and DPC the variance of the QoI
DPC =

∑

α∈Ar,p
m,w

x̄2
αE[φ2

α(ξ)]. (18)

The anisotropic hyperbolic polynomial chaos expansions are finally defined with the index setsAr,p
m,w as

XAr,p
m,w

(ξ) =
∑

α∈Ar,p
m,w

x̄αφα(ξ). (19)

3.2.2 Error estimates of the polynomial chaos approximations

The building of a sparse PC expansion is based on an iterative search of the significant PC coefficients, and
therefore requires the use of error estimates to assess the accuracies of the consecutive PC approximations.

A relevant theoretical error in this context is defined as follows:

Err = E
[
(X(ξ)− X̂A(ξ))2], (20)

which is based on the difference between the deterministic evaluation X(ξ) of the QoI and its PC approximation
X̂A(ξ) computed from a finite non empty subsetA⊂ Nr, that is

X̂A(ξ) =
∑

α∈A
x̄αφα(ξ). (21)

The generalization error is estimated in practice by the following empirical error:

Erremp =
1
Q

Q∑

q=1

[(
X(ξ(q))− X̂A(ξ(q))

)2
]

(22)

in which the differences are computed specifically at the Q observations of a NED ξ(q) =
(
ξ

(q)
1 , ..., ξ

(q)
r

)
. The

latter will be used in the following to compute a coefficient of determination R2 defined as

R2 = 1− Erremp

V̂[X]
, (23)
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where V̂[X] is the variance of X
(
ξ(q)

)
:

V̂[X] =
1

Q−1

Q∑

q=1

(
X(ξ(q))− X̄

)2
with X̄ =

1
Q

Q∑

q=1

X(ξ(q)).

An overfitting phenomenon is likely to occur when using the empirical error, which, as a consequence,
underestimates the generalization error. The leave-one-out error [17], which is based on a sum of squared
predicted residuals ∆(i) defined hereafter, may be useful to avoid this drawback. A predicted residual expresses
the difference between the deterministic evaluation X(ξ(i)) of the QoI at the ith observation of the NED ξ(q), and
its prediction X̂(−i)

A (ξ(i)) obtained with a PC expansion X̂(−i)
A built from a reduced NED

(
ξ(1), ..., ξ(Q)

)
\ξ(i) (that is

the original NED from which the observation ξ(i) has been discarded) [7]:

∆(i) = X(ξ(i))− X̂(−i)
A (ξ(i)). (24)

The leave-one-out error is then defined as

ErrLOO =
1
Q

Q∑

i=1

(
∆(i))2. (25)

In practice, the predicted residual ∆(i) may be computed as [17]

∆(i) =
X(ξ(i))− X̂A(ξ(i))

1−hi
, (26)

where hi is the ith diagonal term of the matrix φ(ξ(q))(φT (ξ(q))φ(ξ(q)))−1φT (ξ(q)). The leave-one-out error is in
that case given by

ErrLOO =
1
Q

Q∑

i=1

(X(ξ(i))− X̂A(ξ(i))
1−hi

)2
. (27)

A determination coefficient S 2 equivalent to that of the empirical error, R2, may be defined for the leave-
on-out error:

S 2 = 1− ErrLOO

V̂[X]
. (28)

The two coefficients R2 and S 2 defined above will be used in an algorithm whose aim is to build an optimal
sparse PC expansion involving the most significant terms from an adapted NED of reduced size. This algorithm
is described in the next section.

3.2.3 sPC expansion building algorithm

As explained previously, the efficiency of the method may be increased by retaining only the most signif-
icant PC polynomials [7] among those corresponding to the index sets Ar,p

m,w. In the following, the final index
sets of the kept terms are denoted asAp

m,w.
The search for those most significant coefficients is performed through an iterative procedure which is

summarized below in 5 basic steps.
Step 1
Select a NED (ξ(q)), e.g. a random design based on LHS [14], of arbitrary size Qk = 4Np, where Np is

determined by Eq. (9) with r uncertain parameters and p = 1. The FE model evaluations at the NED points are
gathered in the vector X(ξ(q)). Set arbitrarily the values of the parameters corresponding to the chosen sparse
PC method: the maximal PC order pmax and the coefficient m used for the m-norm of truncation, as well as the
target accuracy S 2

target and two thresholds ε1 and ε2.
Step 2

Initialize the algorithm: the PC order is set to p = 0, and the truncation index set to the null element of Nr, {0};
the vector of weights wi is set to w = {1, ...,1}. The corresponding initial values of the determination coefficients
are denoted as R2

0 and S 2
0.

Step 3: Training step - Enrichment of the PC basis
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Increment the order value: p→ p + 1 ∈ [1, ..., pmax].
⇒ Forward step (Addition step): For each term from the candidate set

{
α ∈ Nr : p− 1 ≤ ‖α‖m,w ≤ p

}
, add it

to the set Ap−1
m,w and compute, as above, the PC coefficients and the determination coefficient R2. Retain only

terms which lead to a significant increase in the value of the coefficient R2, i.e. ∆R2 = R2 −R2
0 ≥ ε1. Let Ap+

m,w
be the final truncation set at this stage.
⇒ Backward step (Elimination step): Remove in turn each term in Ap+

m,w of order strictly lower than p, and
compute again the PC expansion coefficients and the associated coefficient R2 in each case. Discard fromAp+

m,w
the terms that lead to an insignificant decrease in R2, i.e. ∆R2 = R2

0 −R2 < ε2. Let Ap
m,w be the final truncation

set. The total sensitivity indices S T
i of the current PC approximation are computed and the weights wi are

updated (Eq. (15)).
Step 4: Verification of the conditioning of the regression information matrix
If the conditioning is satisfying, i.e. the size Qk of the NED (ξ(q)) is larger than 2.card(Ap

m,w) go to step 5.
If the conditioning is poor, i.e. the size Qk of the NED (ξ(q)) is smaller than 2.card(Ap

m,w), an enrichment of the
NED is done using nested Latin Hypercube designs [18, 7] to reach a size Qk+1. In this case, the truncation set
is reset to {0} and the enrichment procedure is restarted from step 2.

Step 5: Test step
Stop if either the leave-one-out error S 2

0 is larger than the target value S 2
target or if the order of the PC expansion

is equal to pmax. Otherwise, go back to step 3.
The detailed algorithms are presented in Figure 1.

-	Select	an	initial	NED	 	based	on	LHS	of	size	

-	Collect	the	FEM	of	initial	NED	in	 	

ξ(q) Q

X( )ξ(q)

Initialization:	 = {0}, = 1(i = 1, . . . r)wi

Enrichment	of	the	PC	basic:	

-	Forward	step:	add	to	 	those	terms	with	 	less	than	or
equal	to	 	and	not	proposed	in	the	privious	interations	which
significantly	increase	the	coefficient	

-	Backward	step:	discard	from	 	those	terms	with	 	less
than	 	that	lead	to	an	insignificant	decrease	in	

Compute	the	total	sensitivity	indices	
Update	the	weights	

p = p + 1

 (m − norm, w)

p

R2

 (m − norm, w)

p R2

(i = 1, . . . , r)ST
i

(i = 1, . . . , r)wi

Enrichment	of	the	NED	
if	Q < 2.card()

STOP	if	either	 	or	≥S2
0

S2
target p = pmax

Step	5

Step	3

Step	4

Step	1

Step	2

Figure 1: Algorithm applied to build a sparse polynomial chaos expansion with anisotropic hyperbolic index
sets

4 Results

4.1 Application model of three plates connected by springs with uncertain stiffness

The method is applied to a system composed of three plates connected together through torsional and
translational lineic springs as shown in Figure 2. Plates 1 and 3 are identical 1 m x 1 m square plates made of
steel, with the following material properties: density ρ = 7850kg/m3, Young’s modulus E = 2× 1011 Pa and
Poisson’s ratio ν = 0.3. The remaining plate 2, of dimensions 0.2 m x 1 m, represents a soft junction made up
of rubber; the corresponding material properties are chosen as ρ = 950kg/m3, E = 15×107 N/m2 and ν = 0.48.
Within the FE framework, the three plates of same thickness 5 mm are meshed using square plate elements of
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length 0.025m having three DOFs per node, namely the displacement uz and two rotations θx, θy. The meshes
of plates 1 and 3 therefore involves 1600 elements and 5043 DOFs, while 320 elements and 1107 DOFS are
used for plate 2.

The torsional stiffness of the springs along the x− and y− directions is assumed to be uniform and equal to
20 Nm/rad, whereas in the z−direction the stiffness kz is supposed to represent a random variable following a
uniform probability law over the range [100,200] N/m. The whole structure is clamped at both extremities (i.e.,
left edge of plate 1 and right edge of plate 3) and subjected to a harmonic point force of amplitude F = 40N
in the z−direction, located at the node of coordinates (0.25 m, 0.25 m) if the origin is chosen as the lower left
corner of plate 1.

F

z

�x
�y

x

y

O

Plate 1

u

1 m 1 m

1 m

k

z

0.2 m

Plate 2 Plate 3
k

Figure 2: Model of three plates connected by springs

The frequency response function of the structure is studied within the frequency band [0,50]Hz using
a frequency step of 10−3 Hz. Examples of FRFs are provided in Figure 3, which represents the frequency
evolutions of the deformation energy of plate 1, Ede f 1, for three values of the spring stiffness kz (namely the
two extreme values 100 N/m and 200 N/m, and the nominal value 150 N/m). As it can be seen in Figure 3, the
curves present a similar trend with extrema at the resonance frequencies of the system, but the amplitudes and
the frequencies of those peaks depend on the value of the stiffness kz.
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Figure 3: Deformation energy Ede f 1 of plate 1: (a) whole frequency range (b) zoom on the first two peaks
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4.2 Quantities of interest and statistics

In the following, we will focus on two particular QoIs related to the second peak visible on the Ede f 1 curves,
which is displayed in a detailed view in Figure 3(b): the frequency and the amplitude of the peak. Both QoIs
are determined from a maximum search over a small frequency band around the frequency of the peak obtained
at the nominal value of kz.

The statistics (e.g. mean value and variance) of each QoI are computed within a Monte-Carlo procedure
involving a number N of simulations that correspond to N values of kz chosen uniformly within the range
[100,200] N/m. Those N simulations may involve:

• the initial FEM model, which involves a total number of 11193 DOFs; the statistics obtained with this
model will be considered as the reference solution in the following;

• a reduced model resulting from a Craig-Bampton decomposition in which a limited number of fixed
interface modes is retained; two CB models will be proposed in the following: the first one, denoted as
CB50130, involves 50 fixed interface modes for plates 1 and 3 (out of 4563 modes), and 130 modes for
plate 2 (out of 819 modes); in the second one, denoted as CB3080, 30 modes are retained for plates 1
and 3 and 80 for plate 2;

• the sPC expansion of the QoI in which the coefficients have been built from a limited number of simula-
tions using the initial FE model, denoted as sPC-FEM;

• an sPC expansion whose coefficients are built from simulations involving one of the two aforementioned
reduced CB models, denoted respectively as sPC-CB50130 and sPC-CB3080.

For each QoI, comparisons between the statistics computed from the first three models will provide infor-
mation on the direct influence of the CB reduction on the accuracy of the results with respect to the full initial
FE model. At a second level, comparisons between the results from the FEM and sPC-FEM methods will give
insight into the influence of the use of a sparse PC expansion on the accuracy of the statistics. Finally, the
influence of the model reduction on the sPC expansions will be studied through the last sPC-CB50130 and
sPC-CB3080 methods.

In the following, the results related to the first QoI, namely the resonance frequency of the second peak of
the deformation energy Ede f 1, are first gathered in section 4.3. The results related to the amplitude of the peak
are then presented in section 4.4.

4.3 Ede f 1 peak 2 resonance frequency

4.3.1 Building of the sPC expansions

The different sPC expansions of the two QoIs are built in accordance with the iterative procedure detailed
in section 3.2.3. The same set of parameters is used in all the cases: the maximal PC order is set to pmax = 6,
the target accuracy is chosen as S 2

target = 0.999, and we use two identical thresholds ε1 = ε2 = 0.001(1−S 2
target).

As explained previously, the optimal order p of the sPC expansion of the QoI depends on the leave-one-out
error S 2

0 that is computed at each step of the iterative procedure and compared to the target accuracy S 2
target. For

the first QoI (peak 2 resonance frequency), the values of S 2
0 obtained for the three sPC expansions (sPC-FEM,

sPC-CB50130 and sPC-3080) are S 2
0 = 0.9820 for p = 1 and S 2

0 = 0.9997 for p = 2. The optimal order for the
three sPC expansions is therefore p = 2.

4.3.2 Accuracy of the QoI statistics obtained from the different methods

The statistics (mean and variance) of the QoI depend on the number of simulations N chosen within the MC
procedure. Several tests ranging from N = 1000 to N = 10000 have been performed for each of the six methods
detailed in the previous section. Figure 4 compares the statistics obtained with the six strategies detailed in the
previous section for ten values of N ranging from N = 1000 to N = 10000. The mean value and the variance
of the frequency are seen to reach a stabilized value from N = 2000. Two groups of curves are visible on each
graph, meaning that the use of an sPC expansion (whatever the model chosen to build the PC coefficients)
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Figure 4: (a) Mean and (b) variance of the QoI according to the number of MC simulations

induces a slight change in the resulting mean and variance values; the use of a model reduction does not modify
the statistics significantly.

The low variance levels obtained in Figure 4(b) also reduce the confidence intervals relative to the mean
resonance frequency. For instance, for N = 10000, the mean resonance frequency of peak 2 lies in the interval
f̄2±1.210−4 with a confidence level of 95%.

To further analyze the accuracies of the different method, the relative errors of the mean value of the QoI and
its variance with respect to the reference solution (i.e. N simulations from the initial FE model) are displayed
in Figure 5. The lowest error levels are logically obtained with the CB50130 method, which involves N direct
simulations with the reduced CB model with the largest basis of fixed interface modes. Further reducing the
size of the mode basis slightly increases the error levels, but the accuracy remains in both cases excellent, with
error levels close to 0. The use of an sPC expansion increases the error levels, which remain however lower
than 2.510−3 % for the mean value and 0.5% for the variance. Choosing a reduced model instead of the original
FE model to compute the coefficients of the sPC does not increase the error levels for this QoI.
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Figure 5: Relative errors of (a) the mean value of the QoI and (b) the variance of the QoI with respect to the
reference solution according to the number of MC simulations

Same conclusions arise when studying the mean (Figure 6(a)) and maximum (Figure 6(b)) values of the
relative errors of the QoI for a given N number of simulations (i.e. a relative error is computed for each of
the N kz values between the peak 2 frequency obtained with the considered method and the frequency found
using the initial FE model; the mean value is then computed over the kz range [100,200] N/m, along with the
maximum value). The errors mainly come from the sPC expansions, the influence of the model reduction being
again very limited; the accuracy level is also extremely satisfying with a mean relative error lower than 0.015%
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and maximum error lower than 0.05% whatever the retained N number of simulations.

Number of simulations

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ea

n 
of

 r
el

at
iv

e 
er

ro
rs

 (
%

)

0

0.005

0.01

0.015

sPC-FEM

sPC-CB3080

sPC-CB50130

CB3080

CB50130

(a)

Number of simulations

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ax

im
um

 o
f 

re
la

tiv
e 

er
ro

rs
 (

%
)

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

sPC-FEM

sPC-CB3080

sPC-CB50130

CB3080

CB50130

(b)

Figure 6: (a) Mean and (b) maximum values of the relative errors of the QoI with respect to the reference
solution according to the number of simulations

4.3.3 Evolutions of the resonance frequency according to kz

The results in this section are presented for the highest number N = 10000 of simulations, to ensure that
the QoI is predicted with the highest confidence level. Figure 10 represents the values of the second resonance
frequency obtained for each of the 10000 kz values chosen within the range [100,200] N/m with the different
methods: direct simulations with the initial FE model or the reduced ones, or estimations from the three sPC
expansions. The QoI exhibits a non linear increasing dependency to the stiffness kz, with a global variation of
about 5% with respect to its mean value. An overall good agreement is found between the different strategies, as
the six curves appear superimposed of the whole kz range (Figure 10(a)). However, when zooming on a smaller
range of kz values, such as in Figure 10(b), the slight differences behind the error levels presented previously
become visible. The curves corresponding to the three methods that involve direct FE simulations (FEM,
CB50130 and CB3080) present discontinuities that are linked to the frequency step used in this study, 0.001 Hz;
the peak frequency is either underestimated or overestimated according to the kz value as its precision cannot
exceed the frequency resolution of the simulations. Predicting the frequency value from an sPC expansion
avoids this behavior, as the frequency becomes a polynomial function of kz. The curves corresponding to the
three sPC expansions are therefore continuous plots that can be hardly distinguished from one another.
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Figure 7: Peak 2 resonance frequency according to the spring stiffness kz for N = 10000
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4.4 Amplitude of the deformation energy peak 2

4.4.1 Building of the sPC expansions

The sPC expansions of the second QoI are built using the same parameters and iterative procedure as the
resonance frequency. Leave-one-out error S 2

0 is using to choose the optimal order p of the polynomial chaos to
calculate QoI that is Ede f 1 in this section. The leave-one-out errors S 2

0 for the second QoI are similar for p = 1
and p = 2 to those obtained for the frequency, the optimal PC order being again p = 2.

4.4.2 Accuracy of the QoI statistics

As for the resonance frequency, the statistics related to the amplitude of the deformation energy at the
second peak are computed from N simulations corresponding to N values of kz, from N = 1000 to N = 10000.
The same trends as for the first QoI are retrieved, that will be illustrated hereafter for the variance only.

Figure 8(a) displays the variance of the QoI with respect to the number of simulations N, a stabilized
value being again reached from N = 2000. As for the first QoI (frequency), two groups of curves emerge from
the figure, which correspond respectively to the simulations involving the initial or reduced FE models, and to
those based on the sPC expansions. The relative errors between the variance values with respect to the reference
solution are shown in Figure 8(b), and exhibit overall very satisfying levels although they are higher than those
obtained for the the resonance frequency. The use of a reduced basis instead of the initial FE model has again
little impact in terms of variance errors, as the highest level error, corresponding to the CB3080 method, is about
0.02%. The influence of the sPC expansions on the accuracy of the variance estimation is more important, as
they induce error levels of about 1%. The best results are obtained when the sPC coefficients are computed
using the initial FE model (sPC-FEM case) while the error levels increase up to 1,1% with the sPC-CB3080
methods.
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Figure 8: (a) Variance and (b) relative error of the variance of the second QoI according to the number of MC
simulations

Figure 9 displays the mean and maximum error levels attained when computing the relative errors, for each
kz value, between the peak 2 amplitudes resulting of a given method (involving a reduced basis or an sPC
expansion) and those obtained with the reference solution (involving the initial FE model). As previously, the
error levels are constant from N = 2000 and result mainly from the use of an sPC expansion, while the CB
reduction induces low additional errors. All the methods provide an excellent accuracy with overall very low
error levels. For instance, the mean error level is about 0.002% with the CB50130 method, 0.01% with the
CB3080 method and 0.065% with any of the sPC expansions. The maximum error values are of the same order
of magnitude, from 0.005% and 0.02% with the reduced models (CB50130 and CB3080 respectively) to 0.2%
with the sPC expansions, the highest value being obtained when the sPC coefficients are computed using the
CB2080 model.
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Figure 9: (a) Mean and (b) maximum values of the relative errors of the QoI with respect to the reference
solution according to the number of simulations

4.4.3 Evolutions of the amplitude of peak 2 according to kz

The evolutions of the amplitude of the second resonance peak of Ede f 1, directly computed with N = 10000
simulations of the initial FE model or a reduced CB model, or predicted by one of the three sPC expansions,
are finally plotted in Figure 10. The QoI is here a decreasing non linear function of the stiffness kz, and the
six curves appear again superimposed throughout the whole kz range. The discrepancies between the solutions
are revealed in the detailed view (Figure 10(b)), where two groups of curves are again visible. The first group
gathers the simulations involving direct FE simulations, for which the frequency of peak 2 could be under-
or overestimated due to the limited frequency step of 0.001 Hz (cf. Figure 10(b)). These approximations in
the resonance frequency values lead to an underestimation of the peak amplitude and results in the uneven
appearances of the curves. The latter reach their maximum values when the peak resonance frequency value
coincides with a multiple value of the frequency step. The use of an sPC expansion to predict the peak amplitude
appears again efficient to solve this issue, as the resulting curves are smooth and match the maximum values of
the first group.

Regarding the accuracy of the predictions, it can be seen that within the first group, the CB50130 is perfectly
superimposed with the reference FEM curve, while the CB3080 is slightly shifted (but remains very close to the
first two curves). This trend is retrieved in the second group, where the curve corresponding to the sPC-CB3080
does not perfectly superimpose with the two other curves, although the differences are extremely weak.
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Figure 10: Peak 2 amplitude according to the spring stiffness kz for N = 10000
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4.5 Computational costs

The previous results have clearly established that an sPC expansion was efficient to produce accurate pre-
dictions of the different QoIs evolutions with respect to the uncertain parameter (i.e. the spring stiffness kz).
The main interest of the method is that the computational costs are also extremely decreased due to the limited
number of simulations necessary to compute the sPC coefficients. To illustrate this benefit, the computational
costs per QoI related to the six aforementioned methods are presented in table 1 for N = 10000. The reference
solution is obviously the most expensive as it implies N = 10000 simulations with the FE model owning the
highest number of DOFs. Substantial cost reductions are already achieved when using a FE model of reduced
size instead of the original model to perform those 10000 simulations. With the most reduced basis (CB3080),
the computational time reduction reaches 73.16% without loss of accuracy. The advantage of the sPC expan-
sions is that the number of simulations necessary to compute the PC coefficients is very limited. Applying the
iterative procedure depicted previously, we obtain the coefficients for p = 2 and one uncertain paramters with
only 14 simulations. Once the coefficients are known, performing 100000 computations to calculate the QoI is
costless. The computational time reduction therefore exceeds 99% for the three proposed sPC expansions. The
highest reduction (99.96%) is logically obtained when the coefficients are computed using the most reduced
CB3080 model.

Method FEM CB50130 CB3080 sPC-FEM sPC-CB50130 sPC-CB3080

Computational
time

formula

Nb of FEM
x

Unit time
per full FEM

Nb of reduced
FEM

x
Unit time

per reduced FEM

Nb of reduced
FEM

x
Unit time

per reduced FEM

Nb of FEM
to build chaos

x
Unit time

per full FEM

Nb of reduced
FEM to

build chaos
x

Unit time
per reduced FEM

Nb of reduced
FEM to

build chaos
x

Unit time
per reduced FEM

Nb of
simulations

with full
or reduced

FEM

10000 10000 10000 14 14 14

Computational
time 15 days 20h 5 day 6h 6 days 6h 32 min 11 min 9 min

Computational
time reduction

(%)
- 66.84 73.16 99.86 99.95 99.96

Table 1: Computational costs for one QoI and N = 10000 with the different methods

5 Conclusion

In this paper, we have proposed a strategy to analyze the dynamic response of a structure having a large
number of DOFs and uncertain parameters in the FE framework. The retained method associates the use of a
sparse PC expansion to compute the quantities of interest (e.g. a displacement or a energy quantity such as a
deformation energy) and a model reduction based on the Craig-Bampton decomposition to obtain at low cost
the PC coefficients.

This strategy has been successfully applied to the case of a structure, composed of several plates connected
with springs, presenting one uncertain parameter, namely the spring stiffness kz. The CB reduction has shown to
produce a negligible loss of accuracy while ensuring a substantial reduction of the computational cost. Combin-
ing the use of such a reduced model with an sPC expansion, the accuracy of the results remains fully satisfying
and the computational time reduction reaches exceptional levels.

In a near future, the proposed strategy will be applied to complex systems characterized by a larger number
of uncertain parameters. The benefits of using a sparse PC expansion instead of the classic generalized PC
expansion will then become more evident, as the computational cost necessary to compute the PC coefficients
can also become prohibitive when a large number of uncertain parameters is involved.
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Abstract 
Based on the idea that multidimensional data is better summarized as a shell rather than a cloud, we have 

developed a surveillance approach that can detect with high sensitivity behaviour changes in a monitored 

process and alert the operator. Our methodology uses the time series of a high number of monitored 

indicators which we cluster together dynamically as a function of operating conditions. These clusters 

represent groups of similar realizations used to characterize a multidimensional manifold that can be 

interpolated to assess each new realization of the process behaviour. We evaluated the methodology on the 

data from a hydroelectric turbine. The event of interest was the loss of the turbine propeller runner cone. The 

results are good and the approach is able to detect the abnormal behaviour months before the event 

happened. We are currently looking at larger scale deployment to benchmark the approach’s performance.   

 
1 Introduction 

One of the primary objectives of monitoring is the early detection of changes in a monitored system or 

process. Some of these changes can stem from modifications with time of operating conditions (i.e. system 

input) or changes in the behaviour (system response or output). Usually, changes in the monitored system 

inputs are intentional hence already known. Generally, we are interested in detecting changes in the system 

response. The objective of this paper is to account at the same time for changes in the expected behaviour 

and associated dispersions for any number of monitored inputs in order to detect significant changes while 

being able to explain in detail the contribution from each of these inputs. 

The basis for the proposed approach has been put forward by Léonard and Gauvin, 2013 [1]. They 

studied the sphere-hardening phenomenon in multidimensional signal projection problems. In fact, this is not 

a new concept and was first proposed by Shannon, 1949 [2]. While common in communication theory, it 

seems relatively unknown in the field of equipment and process monitoring. By looking at the cumulative 

combined random response and measurement noise of a given process over a high enough number of 

variables in an experiment 𝑹 repeated many times (𝑹𝑖, 𝑖 = 1, … , 𝑀), a shell will be formed at a given 

distance μ⊥𝑆  from the expected value 𝑺 as shown in Figure 1 for the two-dimensional case.  This means that 

looking at a deviation from the shell (𝑑𝑖 − μ⊥𝑆) rather than the deviation from the expected value (𝑑𝑖) of the 

noisy process in multidimensional space is more efficient. 

 

 
Figure 1: Multidimensional shell from noisy data 
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However, we cannot do statistics with only one realization of a given event and when monitoring 

equipment in operation, a difficulty arises since the exact same conditions usually never repeat themselves. 

The operating conditions of the equipment are always changing hence the need to group similar events 

together in order to use the sphere hardening concept. Monitored events in similar operating conditions need 

to be clustered together. Our approach uses a dynamic clustering approach [3] similar to the k-mean 

methodology [4]. Furthermore, since monitoring cannot be restrained to events that are members of a limited 

number of known clusters, we need to interpolate in-between the clusters and properly account for the 

uncertainty induced to prevent false alarms that would lead to unwanted downtime and maintenance costs.   

The concepts of shell hardening, clustering and interpolation are used to build the monitoring 

methodology put forward in this paper. To our knowledge, the approach is novel for situations where many 

channels or indicators are considered simultaneously. Similar to other monitoring approaches, our 

methodology starts by modelling the equipment response, then estimates the response under the current 

operating conditions and finally determines the deviation of the current observed response. Dynamic 

clustering is used to first model the response while also modelling the dispersion. Then, we use kriging to 

obtain the behaviour across all possible operating conditions. Finally, we assess the deviation in the obtained 

multidimensional subspace. 

Our paper is structured as follows. We start with the concept of a multidimensional shell resulting from 

noisy data. Next, the full methodology proposed is explained. Then a study case is presented to illustrate the 

capability of the proposed methodology. Finally, we discuss some of the limitations of the proposed 

approach.     

 

2 Noisy data and multidimensional shell 

At the root of the proposed methodology is the concept that noisy data over a large number of monitored 

dimensions generate a multidimensional shell with relative thickness that is inversely proportional to the 

number of dimensions as proposed by Shannon, 1949 [2], see also [5]. If we consider the information in the 

form of an equipment signature 𝑺 that we transmit over 𝑁 dimensions contaminated by noise, the received 

signal is given by: 

 

 𝑹 = [𝑆1 + 𝜀1,  𝑆2 + 𝜀2, … ,  𝑆𝑁 + 𝜀𝑁 ] = 𝑺 + 𝜺  (1) 

 

where 𝑹 is the received signal and 𝜺 the random noise vector. However, notice that in the case where the 

monitored signature is unknown it needs to be estimated using a sample of received signals; relying on the 

mean as an estimate, one has: 

 

 �̂� =
1

𝑀
∑ 𝑹𝑖

𝑀
𝑖=1   (2) 

 

Furthermore, since the signature transmitted is constantly changing with the operating conditions of the 

equipment, the signature 𝑺 is a manifold rather than a single location as shown in Figure 2. This point is 

discussed further in the following sections.  
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Figure 2: Multidimensional shell and manifold 

 

In this multidimensional space, the distance μ⊥𝑆 between the received signal 𝑹 and the transmitted 

signature 𝑺 at any given location on the manifold can be defined as the average of the realizations at this 

location as follows: 

   

 μ̂⊥𝑆 =
1

𝑀
∑ ‖𝑹𝑖 − �̂�‖𝑀

𝑖=1 =
1

𝑀
∑ 𝑑𝑖

𝑀
𝑖=1   (3) 

 

where �̂� is the estimate of the transmitted signature of interest 𝑺, a location on the manifold. In a similar 

manner, the dispersion can be obtained with: 

 

 σ̂⊥𝑆
2 =

1

𝑀
∑ (𝑑𝑖 − μ̂⊥𝑆)2 𝑀

𝑖=1  (4) 

 

where σ⊥S represents the standard deviation or half-shell thickness. In the present case, where the manifold is 

also estimated, as shown in Figure 2, the quadratic sum of the manifold dispersion σM
2  and shell dispersion 

σ⊥S
2  can be used to assess the likeliness of a given data point 𝑹𝑖. Note that the shell wraps around the 

manifold when N is greater than the number of operating condition indicators. 

 

3 Methodology 

In applications, the use of the multidimensional shell concept is not that simple. As shown in Figure 3, 

realizations need to first be assembled in clusters. Then, we need to interpolate and extrapolate in the 

hyperspace between clusters. Finally, a fast estimate of the likeliness of a given new realization needs to be 

made in order for the information about an alert to be relevant in the context of equipment monitoring. 
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Figure 3: Monitoring methodology 

 

3.1 Data acquisition 

The first step is to ensure the data quality before using our algorithm because any error in the data might 

trigger unwanted alarms. Such preliminary processing is highly dependent on the context of the study and 

will not be discussed here. For the purpose of this study, let us define the input data as a time series of 

snapshots 𝑿𝑖 ≡ 𝑹𝑖 ∪ 𝑶𝑖 where 𝑹𝑖 is a set of response indicators and 𝑶𝑖 is a set of operating condition 

indicators. These 𝑿𝑖 cannot be used directly and first need to be formatted and filtered properly to remove 

unwanted input operating conditions and/or output values. Then, each 𝑹𝑖 needs to be normalized in order to 

ensure that all indicators are represented on similar scales. 

 

3.2 Clustering 

Having filtered and normalized the 𝑿𝑖 vectors, our goal is to generate clusters of similar 𝑶𝑖 to estimate 

the multidimensional manifold 𝑺. Initially, for the creation of the clusters, it is important to have a reference 

dataset of validated history of 𝑿𝑖 that cover most operating conditions 𝑶𝑖 with corresponding responses 𝑹𝑖. 

Afterwards, with each new 𝑿𝑖, it is the dynamic clustering methodology that will determine if a new 𝑿𝑖 

should be included in the clustering data history. The clustering is dynamic in the sense that the centroid 

locations are updated every time a new 𝑿𝑖 enters the data history. Figure 4 shows the typical process every 

new 𝑿𝑖 is subjected to.  
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Figure 4: Data snapshots processing flowchart 

 

The clustering process for a new snapshot 𝑿𝑖 looks like this: 

 If the number of clusters 𝑘 < 𝑘𝑚𝑎𝑥 then the centroid location is 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 = 𝑶𝑖 and the 

population 𝑝𝑘 = 1  which processes the new snapshot 𝑿𝑖 

 If the number of cluster 𝑘 ≥ 𝑘𝑚𝑎𝑥 then find the smallest distance to an existing cluster 𝑐𝑚𝑖𝑛 

 

 𝑐𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑘‖𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 − 𝑶𝑖‖ (5) 
 

 If 𝑐𝑚𝑖𝑛 > 𝑐𝑚𝑎𝑥 then merge the two closest clusters together, 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 = 𝑶𝑖 , 𝑝𝑘 = 1  and 
process the new snapshot 𝑿𝑖.  
 

 𝑐𝑚𝑎𝑥 = 𝑐
1

𝐾
∑ ‖𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘 − 𝑶𝑖‖𝐾

𝑘=1   (6) 

 
 If 𝑐𝑚𝑖𝑛 ≤ 𝑐𝑚𝑎𝑥 then merge snapshot 𝑿𝑖 to the nearest cluster, update the population 𝑝𝑘 and 

location  𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑘  

 

Here, in equation 6, 𝑐 is an arbitrary decision level usually set between 1 and 3. Furthermore, note that 

any abnormal 𝑿𝑖 above the alert thresholds will be rejected and not used for the clustering data history (see 

section 3.4 for the alert threshold definition). More details about the clustering algorithm used in this study 

can be found in [5]. 

 

3.3 Interpolation 

Having clusters of similar data over a large set of different operating conditions 𝑶𝑘 with estimated 

expected response vectors 𝑬(𝑶𝑘) and standard deviation vectors 𝑪(𝑶𝑘) enables us to use a multidimensional 

interpolator to estimate the response vector for any new operating condition 𝑶𝑖 . The interpolated 𝑬(𝑶𝑖) with 

corresponding 𝑪(𝑶𝑖) can then be used to set an alert threshold and assess abnormal behaviour of the 

monitored system. For simplicity and to limit the computational cost of this interpolation step, the dual 

kriging formulation was chosen [6]. Kriging is a well-known and extensively used interpolation method. The 

two traditional formulations which assume a wide sense stationary field, known expected value and variance 

are the simple kriging formulation and the dual kriging formulation. Implementation of the simple kriging 

formulation can be either a 𝑂(𝑀𝑁3) + 𝑂(𝑀𝑁) or 𝑂(𝑁3) + 𝑂(𝑀𝑁2) process depending on the 

implementation compared to the dual kriging formulation which is a 𝑂(𝑁3) + 𝑂(𝑀𝑁) process for an 𝑁 
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positions over 𝑀 dimensions problem [6]. Furthermore, because the number of clusters is limited to 𝑘𝑚𝑎𝑥 

during clustering, we ensure that the numerical cost of the interpolation does not become unmanageable. 

 

3.4 Comparison metric 

With the estimated vectors of the expected response 𝑬(𝑶𝑖) = �̂�𝒊 (in the notation of section 2) and 

standard deviation 𝑪(𝑶𝑖) at any new operating condition 𝑶𝑖, it is possible to establish an alert threshold 

above which the behaviour of the monitored process is considered different from past typical responses. Our 

metric is based on the distance 𝑑𝑖 between the snapshot response 𝑹𝑖 and the expected response at the 

operating condition 𝑬(𝑶𝑖) : 

 

 𝑑𝑖 = ‖𝑹𝒊 − 𝑬(𝑶𝑖)‖ = √∑ (𝑟𝑖,𝑛 − 𝑒(𝑶𝒊)𝑛)
𝟐𝑁

𝑛=1  (7) 

 
More precisely, the alert threshold defines the acceptable relative deviation 𝑤𝑖 with regards to the 

expected value of a given ensemble of similar operating condition as shown in Figure 5. However, to have a 

faster algorithm, we recommend initially using a single average deviation for all the operating conditions. 

This can be refined as needed. The average distance �̅� and relative deviation 𝑤𝑖 are expressed as follow: 

 

 μ̂⊥𝑆 = �̅� =
1

∑ 1𝑗∈𝑨
∑ 𝑑𝑗𝑗∈𝑨  with 𝑗 ∈ 𝑨 if 𝑶𝒋 ≈ 𝑶𝒌 (8) 

  𝑤𝑖 = 𝑑𝑖 − �̅� (9) 
  

 
Figure 5: Illustration of the comparison metric 

 

The alert threshold is a function of the global standard deviation of the ensemble of snapshots 𝑑𝑖 which 

accounts for the interpolation standard deviation σ̂M = ‖𝑪(𝑶𝑖)‖ and standard deviation of the relative 

deviation 𝑤𝑖 as follows: 

 

 𝜎′ = √σ̂⊥𝑆
2 + σ̂M

2  (10) 

 σ̂⊥𝑆
2 =

1

∑ 1𝑗∈𝑨
∑ 𝑤𝑗

2
𝑗∈𝑨  with 𝑗 ∈ 𝑨 if 𝑶𝒋 ≈ 𝑶𝒌 (11) 

 

For the case study given next, we have used an alert threshold of 4𝜎′. 

 

4 Case study 

In this paper, we focus on a case study which is the loss of a hydroelectric turbine propeller runner cone. 

Figure 6 shows a view of the runner before and after the loss of the cone. The cone structure minimizes 

hydraulic losses and improves efficiency. Without the cone, we should expect reduced efficiency (around 

0.6%) and increased vibration due to the vortex rope which is normally dampened by the cone’s presence. 



7 

Here, the question is not if we can detect the loss of the cone but rather how early we can alert the operator 

that something is happening to the runner. The earlier we can detect a problem related to the cone, the more 

time is available for maintenance outage planning which reduces the unexpected downtime. In this case, we 

have used approximately two years of snapshots history prior to the event and limited the study to the 

following indicators: 

 Mean spiral case pressure (∈ 𝑹) 

 Water temperature  

 Peak to peak thrust bearing axial acceleration (∈ 𝑹) 

 RMS thrust bearing axial acceleration (∈ 𝑹) 

 RMS generator guide bearing radial displacement X (∈ 𝑹) 

 RMS generator guide bearing radial displacement Y (∈ 𝑹) 

 Mean turbine guide bearing radial displacement X (∈ 𝑹) 

 RMS turbine guide bearing radial displacement X (∈ 𝑹) 

 Peak to peak turbine guide bearing radial displacement Y b(∈ 𝑹) 

 Mean turbine guide bearing radial displacement Y (∈ 𝑹) 

 RMS turbine guide bearing radial displacement Y (∈ 𝑹) 

 Excitation tension  

 Wicket gates opening (∈ 𝑶) 

 Mean power output (∈ 𝑹) 

 

  
Figure 6: View of the propeller runner cone, before (left) and after (right) the loss 

 

5 Results 

With our methodology, we observe seven different phases in the behaviour of the hydroelectric turbine 

and two types of transient events (see Figure 7). In phase 1, the snapshots serve as reference data for the 

algorithm to dynamically define the clusters’ centroid and dispersion. We observe that the uncertainty bands 

gradually stabilize. In phase 2, the method is ready to be used to alert the user of unexpected behavior. 

Notice that the sudden increase in dispersion after phase 1 is artificial and helps highlight the transition 

between the learning and monitoring regimes. In phase 3, we systematically observe deviations above the 

alert level. The deviations increase gradually at each subsequent phase until phase 7 is reached and the cone 

is lost at the end of the snapshots’ time history. One can notice some holes in the time history because some 

snapshots were unsuitable for the methodology and automatically removed during the data acquisition step. 

Furthermore, two types of transient events are clearly visible in Figure 7. The first, event 8, is the largest of a 

family of such events that are due to a cooldown period where the monitored unit was stopped. When the 

unit is restarted, the generator temperature needs to first stabilize then the surrounding structure temperature 

also needs to stabilize. This generates a transient state that is not a real alert in the sense that the unit is 

working as expected; this type of event could easily be filtered out if needed. The second, event 9, is simply 

due to the initialization of the methodology and one can see that the alert bands rapidly stabilize after a 

sufficient number of data points have been processed. 



8 

 

 
Figure 7: Multidimensional deviation 

 

An advantage of the proposed methodology is that we have access to the contribution of each snapshot 

response 𝑹𝑖 for a given relative deviation 𝑤𝑖. This is of high importance to do a diagnostic of the alert and 

justify appropriate maintenance outage. In Figure 8, we present an excerpt of the evolution of the individual 

response contributions for timestamps in each phase from 2 to 7. At first, in phase 3, we observe a highly 

localised contribution with a slow but gradual increase in contribution from the other response indicators as 

we move towards phase 5. In subsequent phases, a sudden increase across many of the indicators becomes 

manifest. 

 

 
Figure 8: Screenshots for a given timestamp of the relative multidimensional deviation for each channel. 

From left to right: phase 2, 3, 4, 5, 6 and 7 

 

In comparison, if we look at the time series of certain selected response indicators, by for example 

intuitively selecting the ones related to the guide bearing which are the closest to the propeller cone, we get 

the results shown in Figure 9. The problem becomes noticeable only at the end of March 2015 in phase 5, 

even if the selected indicators are the closest to the propeller cone. By using a larger ensemble of indicators, 

the approach proposed in this paper is able to alert the operator of an abnormal behaviour more than three 

months beforehand in phases 3 and 4. 
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Figure 9: Selected individual responses prior to the propeller runner cone loss 

 

6 Discussions 

The case study shows that the sphere hardening principle is applicable to equipment monitoring and 

performs well in practice. For this application, the method alerts the user months before the actual failure 

was detected. However, no comparison was made with other mathematical approaches to detect abnormal 

operational behaviours. Moreover, we simplified the problem by limiting the number of data input to reduce 

the validation burden. In the proposed approach no difference is made between a change in the behaviour of 

the sensor and a change in the monitored system. The high sensitivity of the approach to deviations from 

previous behaviour relies on having data of good quality to avoid false alarms. 

Furthermore, no effort was made to optimize the methodology; our initial goal was speed and ease of 

implementation. In fact, we might be able to optimize the clustering approach to improve kriging 

performance. Even then, numerical performance might not be the right criteria. The numerical cost of the 

interpolation might not be a limitation if computational possibilities such as parallelization are considered, 

given that the necessary infrastructure is becoming more easily available. The same might be true for the 

alert threshold that could be assessed using conditional numerical simulations.  

 

7 Conclusions 

We demonstrated that the data gathered over a group of indicators can be reduced to a single global 

metric that can be used to monitor equipment behaviour and alert an operator of abnormal equipment 

behaviour months before an actual failure. The approach is statistically based and is highly sensitive to any 

deviation from normal past behaviour. An important advantage of the approach is that we can easily track the 

contribution of each individual indicator and thus explain an alert to establish a diagnostic. We are currently 

looking at implementing the proposed approach on our hydroelectric turbine fleet in order to benchmark its 

performance.  
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Abstract 
In recent years, machine diagnostics through vibration monitoring is gaining a rising interest. Indeed, in the 

literature many advanced techniques are available to disclose the fault establishment as well as damage type, 

location and severity. Unfortunately, in general, these high-level algorithms are not robust to operational and 

environmental variables, restricting the field of applicability of machine diagnostics. Most of industrial 

machines in fact, work with variable loads, at variable speeds and in uncontrolled environments, so that the 

finally measured signals are often non-stationary. The very common time-series features based on statistical 

moments (such as root mean square, skewness, kurtosis, peak value and crest factor) undergo variations related 

to changes in the machine operational parameters (e.g. speed, load, …) or in the environmental parameters 

(e.g. temperature, humidity, …), which can be seen as non-measured, and then latent, confounding factors with 

respect to the health information of interest. 

In order to face such issue, statistical techniques like (in a first exploratory stage) the Principal Component 

Analysis, or the Factor Analysis, are available. The pursuit of features insensitive to these factors, can be also 

tackled exploiting the cointegration property of non-stationary signals.  

In this paper, the most common methods for reducing the influence of latent factors are considered, and applied 

to investigate the data collected over the rig available at the DIRG laboratory, specifically conceived to test 

high speed aeronautical bearings monitoring vibrations by means of 2 tri-axial accelerometers while 

controlling the rotational speed (0 – 30000 RPM), the radial load (0 to 1800 N) and recording the lubricant oil 

temperature. The compensation scheme is based on two procedures which are established in univariate 

analyses, but not so well documented in multivariate cases: the removal of deterministic trends by subtraction 

of a regression, and the removal of stochastic trends in difference stationary series by subtraction of the one-

step ahead prediction from an autoregressive model. The extension of these methods to the multivariate case 

is here analysed to find an effective way of enhancing damage patterns when the masking effect due to the 

non-stationarities induced by latent factors is strong. 

 

Keywords: trend stationary, difference stationary, regression, autoregressive prediction, residuals, orthogonal 

regression, PCA whitening, Mahalanobis distance, cointegration, vector autoregression, novelty detection, 

damage detection, vibration monitoring, bearings.  

 
 Introduction 

Vibration Monitoring (VM) is a particular kind of condition monitoring which exploits vibration as a condition 

indicator. Indeed, an online non-destructive testing (NDT) based on vibration can be set up to monitor the 

health condition of the machine while in operation. This turns out to be fundamental in Condition-Based 

Maintenance (CBM) regimes, in which the maintenance is not programmed but preventive, and must then rely 

on diagnostics and prognostics. The advantage of VM against other techniques such as Oil debris analysis, 

Performance analysis, thermography, Acoustic analysis or Acoustic Emissions AE, etc. is related to the high 

reactivity to sudden changes in a machine, and to the flexibility of the accelerometers (i.e. the vibration 

sensors), which are not only cost effective and reliable, but also small and light so that almost any machine 

can be easily instrumented. 
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A vibration-CBM is basically a Data-to-Decision (D2D) process [1] but the present work will focus mainly on 

the signal and the pattern processing parts, namely that of selecting and extracting damage-sensitive features 

and that of building and validating a statistical model based on the data whose scope is the detection of a 

damaged condition (data-based modelling). Damage detection is commonly considered the first fundamental 

step of diagnostics and consists in producing an indication of the presence of a damage, possibly at a given 

confidence, so that an alarm can be eventually triggered in case of danger. This can be performed by looking 

for the symptoms which indicates the presence of a faulty condition (i.e., recognizing patterns in the data). 

Such damage distinguishing characteristics can be effectively highlighted only by the extraction of proper 

features, namely quantities which show: 

• Damage Consistency (i.e. they vary with damage) 

• Damage Sensitivity and Noise-Rejection ability (i.e. they are sensitive also to small, incipient 

damage), 

• Low sensitivity to unmonitored confounding factors. 

A perfect feature is then able to reject any influence other than damage, producing stationary sets of indices 

for which the departure from the normal condition can only be ascribed to a malfunctioning. In this case the 

detection of novelty corresponds to the detection of damage and is then a relatively easy task. 

In reality, researchers will always deal with features affected by operational (e.g. speed, load, …) and 

environmental (e.g. temperature, humidity, …) variations, which can be seen as latent (i.e., non-measured), 

confounding factors that can compromise the correct damage detection. 

The scope of this paper is to highlight some technique for compensating such confounders with a particular 

focus on damaged bearings data. In order to cope with the need of a fast and automated real-time damage 

detection, an analysis is here proposed, based on the common time-series features (i.e., root mean square, 

skewness, kurtosis, peak value and crest factor (peak/RMS)) which are known to be sensitive to bearing 

damage but also to the operational conditions of the machine under analysis. The Novelty Detection then, must 

be preceded by some algorithm compensating for the confounders. In particular, the regression and the 

cointegration will be discussed in section 2. The experimental data used in this work refers to the high-speed 

aeronautical bearings test rig available at the Department of Mechanical and Aerospace Engineering of 

Politecnico di Torino, shortly introduced in next section. 

 

 The test rig and the dataset 

The dataset considered in this analysis comes from a test rig built by the Dynamic & Identification Research 

Group (DIRG), part of the Department of Mechanical and Aerospace Engineering of Politecnico di Torino, to 

test high-speed aeronautical bearings. The rig is fully described in [2], but the main information is summarized 

hereinafter. The rig is made by a single direct-drive rotating shaft supported by two identical high-speed 

aeronautical roller bearings (B1 and B3 in Figure 1). B3 is known to be healthy while B1 is damaged by 

purpose with indentations of different size in different parts of the bearing (Rolling Element and Inner Ring) 

as described in Table 2. The third central bearing B2 is mounted on a sledge meant to load the shaft with an 

increasing force of 0, 1000, 1400 and 1800 N, while the speed is reducing from 470 to 0 Hz (run-down 

acquisitions). Table 1 summarizes the operational conditions. Two tri-axial accelerometers located 

respectively on the B1 bearing support (accelerometer A1, as reported in Figure 1) and on the loading sledge 

(accelerometer A2). The acquisitions last for a duration of about 𝑇 =  50 𝑠 at a sampling frequency fs = 

102400 Hz. In order to perform a significant analysis, the five selected features root mean square, skewness, 

kurtosis, peak value and crest factor are extracted on one hundred independent chunks (about 0,5 𝑠 each) for 

each of the 6 channels of the 4 original acquisitions in all the 7 health conditions (from 0A, healthy, to 6A).  

Finally, 100 observations in a 30-dimensional space (6 channels, 5 features) per each health conditions are 

obtained. A part of the dataset is visually summarized in Figure 2.  

 

Table 1. The operational conditions: the different loads while the speed is decreasing from 470 to 0 Hz (run-

down acquisitions). 

Label 1 2 3 4 

𝐹 [kN] 0 1 1,4 1,8 
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Figure 1. The experimental setup, the triaxial accelerometers location (A1 and A2) and orientation. 

 

 
Figure 2. The considered dataset after features extraction for load condition 1 (0 N) while the speed 

is decreasing until a stop starting from 470 Hz. The black dotted lines divide the different damage 

conditions (0A to 6A). For each, 100 observations are plotted sequentially. 

 

Table 2. Bearing B1 codification according to damage type (Inner Ring or Rolling Element) and size. The 

damage is obtained through a Rockwell tool producing a conical indentation of maximum diameter reported 

as characteristic size. 

 

Code 0A 1A 2A 3A 4A 5A 6A 

Damage type none 
Inner 

Ring 

Inner 

Ring 

Inner 

Ring 

Rolling 

Element 

Rolling 

Element 

Rolling 

Element 

Damage size [µm] - 450 250 150 450 250 150 

 

 
Figure 3. Stationary stochastic process and the biconditional relationship of novelty and damage. 
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 Methodology 

This work is devoted to the application of Novelty Detection on time-series features extracted from the raw 

acceleration data of a test rig. The idea of “novelty” is commonly related to that of “outlier”, a discordant 

measure inconsistent with the others and then believed to be generated by an alternate mechanism. 

The judgment on discordancy will depend on a measure of distance from a reference distribution (e.g., healthy), 

usually called Novelty Index (NI), on which a threshold can be defined [3]. 

This very simple idea can be exploited for Damage Detection when the healthy vibration signal can be 

modelled as a stationary stochastic process, meaning that the joint probability distribution function is invariant 

under time translation, so that damage is left as the only possible cause of discordancy (Figure 3).  

Unfortunately, hidden latent (non-measured) factors will always affect the measurements. When their effect is 

important, non-stationarities will arise, leading to misinterpretations of the novelty (and then damage), so that 

they are often referred to as confounders (Figure 4). 

 

 
Figure 4. Non-stationary stochastic process and the effect of confounders 

 

In these cases, a wise feature selection able to reduce the effect of the confounders may be important but is 

usually not enough for solving this issue. Algorithms for compensating such effects become then essential. 

In this work, the temperature is controlled, and the load is kept constant so that the only confounder is the 

variable speed, which strongly affect time features as the peak level and the RMS of the acceleration signal 

(see Figure 2). The measurement involves an uncontrolled braking of the machine from full speed (470 Hz) to 

a stop. The features from the first channel of the first accelerometer with a null load are reported in Figure 5. 

 

 
Figure 5. The five selected features from the first channel of the first accelerometer – 0N. 
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Stationarity is noticeably violated as a trend is clearly visible in Figure 5. In the literature [4] two simple models 

for such violations can be found. 

The first involves a deterministic trend, so that the resulting signal takes the name of trend stationary. A 

polynomial fitting can be used in this case to find and subtract the trend, leading to a stationary residual which 

is said to be “white” as the resulting frequency spectrum turns out to be flat (i.e. the residual is a white noise) 

or “decorrelated” as its autocorrelation is null for any lag different from 0. 

 

𝑦𝑡 = 𝛽𝑡 + 𝜀𝑡 𝜀𝑡~𝑁(0, 𝜎2) 

 

A second model on the contrary involves a stochastic trend. In the simplest case, this means that the increment 

in the signal from time to time (innovation) is defined as a stochastic process 𝜀 such that 

 

𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡 

 

In this case the signal 𝑦 is the result of the integration of the considered stochastic process 𝜀 and is then called 

integrated of order 1 or 𝐼(1). This process which corresponds to a random walk is difference stationary as its 

first difference is stationary. Again, it is possible to get a stationary signal which can be considered white. 

 

 

  
Figure 6. The raw RMS from 10 to 40s and its autocorrelation function (ACF). Below, on the left the 

residual from removing the linear regression and its ACF, on the right, the differencing (equivalent to the 

residual after an AR(1) fit) and its ACF. 

 

To generalize, the random walk can be considered as a particular case of an autoregressive AR(1) model with 

a unitary coefficient. That explains why it is very common in the literature to whiten the data by fitting an 

AR(1) to the series and focus on the residual, as done in [5] to highlight the damaged bearing signature. 

These concepts can be extended to multivariate spaces. When the features are affected by the same confounder 

in fact, they turn out to be strongly correlated (in simple terms, they vary in sympathy).  
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Under the first assumption (trend stationarity) then, a multivariate regression can be used. In this case, 

considering that both the variables are affected by measurement errors and that it is not easy to find a dependent 

and an independent quantity, the orthogonal regression [6] based on PCA is proposed. 

 

 
 

(1) (4) 

 
 

(2a) (2b) 

  
(3a) (3b) 

Figure 7. (1) The bivariate scatterplot with time evolution (from blue – 10s to red – 40s) 

(2a) PCA rotation (3a) Rotated PC2 corresponding to the residual and its ACF 

(2b) coitegration scatterplot (3b) stationary residual from cointegration and its ACF 

(4) sum of squares of 3a and 3b components compared to the raw Euclidean squared distance 
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Orthogonal regression is fundamentally a reconstruction of the dataset in a subspace obtained by neglecting 

the first principal component. This methodology can be merged to the PCA whitening, to directly obtain a 

white, unitary covariance residual. 

PCA orthogonal regression and whitening are mathematically tackled in section 2.1. 

On the contrary, difference stationary multivariate series can be whitened by fitting a vector-auto-regressive 

VAR(1) model and computing the multivariate residual. In this case the dimensionality is not affected. 

Nevertheless, the considered variables must be I(1), so that a statistical hypothesis test such as the Augmented 

Dickey-Fuller is needed [4]. This procedure commonly takes the name of cointegration [7,8] and is described 

in section 2.2. 

 

The results of a simple bivariate analysis on the RMS and the Peak value of the first channel are reported in 

Figure 7 to show the ability of the two methods on a real acquisition. In case of real measurements in fact, as 

confirmed by this simple analysis, it may be difficult to confidently identify the underlying model as both may 

work in a quite proper way. 

Nevertheless, keeping focused on the final scope of detecting novelty (and damage), a relevant consideration 

can be made about novelty indices (NI). Novelty detection in fact, is commonly based on the Mahalanobis 

distance [3,9] which is known to be equivalent to a Euclidean distance on a features space rotated to match the 

principal components and normalized to obtain unitary variance PCs [2]. 

Hence, the squared Mahalanobis distance equals the sum of the squared whitened principal components. 

Obviously, it involves also the first PC which pictures the confounding factor, so that it is not stationary, as 

shown in Figure 8. A good idea then is to use as novelty index the sum of the squared principal components 

rejecting the first or first few.  

The same idea of summarizing the residuals with a single novelty index computed as the sum of squares of the 

cointegrated series can be extended to cointegration (Figure 7.4 and 8).  

 

  

Figure 8. Standardized principal components (whitening) and sum of squares of the two PCs (in red) and 

of the second alone (blue, mid graph) compared to the squared Eulerian distance (raw) and to the sum of 

squares of the cointegrated residuals. 

 

 

 PCA orthogonal regression and whitening 

Orthogonal regression is an extension of traditional regression for datasets in which the independent variable 

is not assumed to be perfectly known but admits errors. Indeed, in statistical literature this is known as “errors-

in-variables” model, or also, “total least squares”. A simple but effective way to perform it is based on Principal 

component analysis PCA [10,11]. 

Mathematically, given a 𝑑-dimensional centred dataset of 𝑛 observations 𝑋 ∈ 𝑅𝑑×𝑛, an unbiased estimator for 

the covariance can be used to obtain: 
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𝑆 =
1

𝑛 − 1
𝑋𝑋′ 

 

PCA corresponds to the solution of the eigenproblem: 

 

𝑆 𝑉 = 𝑉Λ 

 

where 𝑉 is the orthogonal matrix whose columns are the 𝑑 eigenvectors 𝑣𝑗 while Λ is the diagonal matrix of 

the 𝑑 eigenvalues 𝜆𝑗 (usually sorted in descending magnitude) of the matrix 𝑆. 

The matrix 𝑉 can be used then to decorrelate the dataset 𝑋, that is, to rotate the reference frame to the one 

identified by the eigenvectors (i.e. the principal components, PCs) of matrix 𝑆: 

 

𝑍 = 𝑉′𝑋 

 

If the eigenvectors in 𝑉 are normalized to have unit length (𝑣𝑗
′𝑣𝑗 = 1), the transform is a pure rotation, and it 

can be proved that 𝜎𝑗
2 = 𝑣𝑎𝑟(𝑧𝑗) = 𝜆𝑗. Namely, the diagonal matrix Λ is the covariance of 𝑍.  

Focusing on linear orthogonal regression, the direction given by the first eigenvalue corresponds to the 

regression line, so that the residuals 𝑋𝐿 can be simply found as a projection on the subspace generated by the 

𝐿 = 𝑑 − 1 components other than the first: 

 

𝑧j = 𝑣j
′𝑋 = 𝑣j1𝑥1 + 𝑣j2𝑥2 + ⋯ + 𝑣j𝑑𝑥𝑑 = ∑ 𝑣j𝑘𝑥𝑘

𝑑

𝑘=1

 

 

𝑍𝐿 = 𝑉𝐿
′𝑋 

 

𝑋𝐿 = 𝑉𝐿𝑍𝐿 = 𝑉𝐿𝑉𝐿
′𝑋 

 

The orthogonal regression is visualized in Figure 9. 

 

 
Figure 9. Visualization of the PCA orthogonal regression – the residuals corresponding to PC2 are 

highlighted. 

 

Different normalizations for the eigenvectors are obviously possible. Another quite common one consists in 

normalizing for 𝑣𝑗
′𝑣𝑗 = 𝜆𝑗. In this case 𝑣𝑎𝑟(𝑧𝑗) = 1 so that the covariance matrix of 𝑍 is the identity matrix 𝐼. 

In this case, on top of the rotation, a rescaling on the principal component occurs. 𝑉 is then commonly called 

a “whitening matrix” 𝑊 or also sphering matrix as it transforms the data covariance ellipsoid to a spheroid [6]. 
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𝑍𝑊 = 𝑊′𝑋 = Λ−1/2𝑉′𝑋 = Λ−1/2𝑍 

 

Finally, the squared Mahalanobis distance can be then written as  

 

𝑆𝑀𝐷 = 𝑋′𝑆−1𝑋 = 𝑍′𝑉′𝑆−1𝑉𝑍 = 𝑍′Λ−1𝑍 = ∑
𝑧𝑗

2

𝜆𝑗𝑗
 = 𝑍𝑊

′ 𝑍𝑊 = ∑ 𝑧𝑊𝑗
2

𝑗
 

 

This proves that the squared Mahalanobis distance corresponds to the sum of squares of the whitened features. 

Hence, removing the first whitened component(s) from the sum corresponds to merging orthogonal regression 

and PCA-whitening: the so found distance is therefore robust to confounders. This makes it a good candidate 

to substitute the Mahalanobis distance as NI in the presence of non-stationary operational or environmental 

conditions. 

 

 Cointegration 

Cointegration is a property of multiple nonstationary time series which can be linearly combined through a 

cointegrating matrix 𝐵 to produce stationary series as the residual from a one-step-ahead prediction from a 

Vector Auto Regressive (VAR) model: 

 

�̂�(𝑡) = B 𝑋(𝑡 − 1) 

𝑍(𝑡) = 𝑋(𝑡) − �̂�(𝑡) 

Figure 10. The VAR(1) model and residual. 

 

The resulting 𝑍(𝑡) can be proved to be stationary if the considered series in 𝑋 share the same order of 

integration equal to 1. This can be verified by an Augmented Dickey Fuller univariate test [4,7] run on all the 

series. 

In simple terms, ADF is based on the estimation of an AR(1) model 

 

𝑦𝑡 = 𝜌 𝑦𝑡−1 +  𝜀𝑡 

 

Obviously,  

Obviously, different cases can be found: 

• If 𝜌 = 0 the signal is a pure white noise, 

• If |𝜌| < 1 the signal is stationary, or I(0), 

• If 𝜌 = 1 the signal is a pure random walk, or I(1), 

 

Therefore, ADF tests the null hypothesis 𝐻0: �̂� = 1 against the alternative 𝐻𝑎: �̂� ≠ 1.  

Hence, a confidence interval can be built around the estimated 

 

�̂� =
∑ 𝑦𝑡𝑦𝑡−1𝑡

∑ 𝑦𝑡−1
2

𝑡

= 𝜌 +
∑ 𝜀𝑡𝑦𝑡−1𝑡

∑ 𝑦𝑡−1
2

𝑡

 

 

If �̂� − 1 falls within the interval centred around 0, then the signal is proved to be I(1) at the selected confidence.  
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Once the I(1) series are highlighted, the VAR model can be fitted, and the residual vector 𝑍(𝑡) computed.  

By analogy to Mahalanobis distance and PCA orthogonal regression & whitening, the sum of squares of the Z 

residuals can be used as a NI, proved that these residuals are stationary and uncorrelated. 

In practical cases, PCA orthogonal regression & whitening performs decorrelation, but not ensures necessarily 

the stationarity of the series. On the contrary cointegration enforces stationarity but does not guarantee 

uncorrelatedness. That is why it may be a good idea to merge the to procedures into a single approach. 

By exploiting cointegration on pre-whitened series in fact, both uncorrelatedness and stationarity can be 

obtained. 

 

 Novelty detection and classification: performance assessment 

Diagnostics, and in particular damage detection, can be considered a classification problem. The simplest 

binary classification can be tackled via novelty detection: when novelty is found (i.e. when the NI exceeds a 

threshold) the measure is assigned to the “damaged” class and an alarm is triggered, otherwise the acquisition 

is believed to be “healthy”. 

This implies the possibility of two kind of errors: 

• type I error, which corresponds to triggering a False Alarms (FA or False Positive)  

• type II error, which is a missed indication of damage although present (Missed Alarm, MA or 1-True 

Positive). 

These error rates are usually collected in tables such as Table 8, which are very common when binary 

classification is considered. If the classification involves more than two groups, larger tables can be found with 

the name of confusion matrices. 

On the contrary, in the field of Operational Research (OR), a discipline that deals with the application of 

analytical methods for making better decisions, the Receiver Operating Characteristic (ROC) is usually 

preferred for assessing the diagnostic ability of a binary classifier while its discrimination threshold is varied. 

Figure 7(b) summarizes the true damaged rate as a function of the false alarm rate for some relevant effect 

sizes 𝑑 = 𝜇1−𝜇2
𝜎

⁄
 (the variance-normalized distance of the healthy and the damaged distributions) while the 

threshold takes all the possible values. The threshold corresponding to the very common 5% false alarm rate 

is highlighted. In general, anyway, the farthest is the ROC curve from the 1st – 3rd quadrant bisector, the better 

the classification, which obviously improves as the effect size is increasing. 

 

 

  
(a) (b) 

Figure 11. Receiver Operating Characteristic (ROC) as a function of the threshold (Gaussian 

distributions). (a) graphical summary of the table of type I and type II errors in yellow (Table 3). (b) 

ROC for binary classification with different effect sizes 𝑑 and the position of the 5% false alarm rate. For 

𝑑 = 0,2 the performance is very poor as the ROC is near to the 1st-3rd quadrant bisector (nearly a 

random classifier). 
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Table 3. Type I and II errors in damage detection. 

 
  True Health Condition: 
  Healthy Damaged 

C
la

ss
if

ic
at

io
n

: 

    Healthy 
No Alarm 

true healthy 

Missed Alarm 

type II error 

   Damaged 
False Alarm 

type I error 

Alarm 

true damaged 

 

 Results and Discussion 

The methodology introduced in section 2 is tested on the experimental acquisition regarding high speed 

aeronautical bearings described in section 1.1. The dataset collecting 5 simple time features per each of the  6 

channels (i.e., 30 features) is analysed separately for the 4 different load conditions. The confounding effect 

of the reducing speed (from 470 Hz to 0 Hz) will be compensated during the healthy training with 5 different 

approaches: 

 

• Plain Euclidean distance (raw) 

• Cointegration of the standardized features, 

• Mahalanobis novelty, 

• PCA orthogonal detection and whitening, 

• Cointegration of the PCA-pre-whitened features.  

 

The standardization which precedes the cointegration is necessary as the considered features have different 

order of magnitude, and this could lead to wrong estimates of the cointegrating matrix (poorly conditioned 

problem). 

The novelty indices for the healthy reference and for the damaged conditions are reported in Figure 12 for 

condition 4 (load 1800N, decreasing speed). This graph highlights relevant considerations previously 

introduced in section 2. 

 

 
Figure 12. The Novelty Detection with the different NIs. 0-100 samples are the healthy reference, 100-

200 corresponds to 1A damage, and so on until 600-700 coming from 6A damage. 

  

In particular, cointegration based healthy NIs are stationary, while the Mahalanobis NIs are not. A trend is 

clearly visible, as this algorithm is targeted on decorrelation. An improvement in stationarity is obtained by 

neglecting the first 20 whitened principal components and focusing on the subspace individuated by the last 

10. An additional note should be added to explain that the behaviour of the NIs at the end of all the run-down 

is ascribable to the fact that the record is not stopped exactly when the machine stops, so that the last points 

are practically acquiring just noise as the machine is already at a stop. 
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Despite the NIs curve already gives a qualitative impression of good detectability of almost all the different 

damages (from 1A to 7A), a quantitative comparison of the performances of the different methods is necessary. 

At this scope, Figure 13 reports the ROC curves for all the 4 different load conditions. 

   

  
(1) (2) 

  
(3) (4) 

Figure 13. The ROC for Novelty Detection in the 4 loading conditions, respectively 1800, 1400, 1000, 0N 

 

All the 4 graphs lead to a similar result: in this particular application, cointegration of the standardized features 

can enhance the damage detection in case of non-stationary rotational speed, but its performances are always 

comparable or inferior to Mahalanobis novelty detection. Removing the first 20 principal whitened 

components from the NIs computation (PCA-Ortogonal Regression & whitening), is able to further improve 

the results. The best performances anyway are given by cointegration of the PCA-pre-whitened features, as, 

accepting a 5% of false alarms, the missed alarms are always lower than 5% (100-95 % in the graphs). 

The only issue with cointegration in this application is that decreasing the acceptable false alarm rate to 1% a 

knee of the curve is reached, so that the missed alarm rate increases dramatically. This phenomenon is not 

evidenced my Mahalanobis or PCA-Orthogonal Regression & whitening NIs.   
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 Conclusions 

This work focused on the compensation of confounders through two procedures which are established in 

univariate analyses, but not so well documented in multivariate cases:  

• removal of linear deterministic trends in series by subtraction of a linear regression, 

• removal of stochastic trends of difference stationary series by subtraction of the one-step ahead 

prediction from an autoregressive model. 

In order to extend these approaches to the multivariate case, PCA orthogonal regression was used in the first 

case, while a vector autoregressive VAR(1) model was estimated in the second case. 

In order to obtain consistent results from the VAR estimation, the analysed features were first standardized. 

This is unnecessary for PCA, as a standardization can be more wisely performed on the principal space at a 

paltry expense. Indeed, just by normalizing the eigenvectors of the data covariance matrix so as to have the 

modulus equal to the corresponding eigenvalue, a sphering transform can be obtained. This is called PCA 

whitening and is “hidden” inside the Mahalanobis distance. 

On the contrary, focusing only on the 1-D reduced dimensionality space individuated by the first principal 

component, orthogonal regression was performed. Therefore, a residual was found by removing the first 

principal component and focusing on the reduced dimensionality space. 

Doing this on the whitened principal space, a Novelty index analogous to the Mahalanobis distance was found 

by summing the squares of the residuals (PCA-Orthogonal Regression & whitening). 

Finally, cointegration was performed also on the PCA-pre-whitened dataset, to get the best of the two 

detrending strategies. 

All the introduced methods enhanced the damage detection with respect to the raw Euclidean-distance-novelty-

detection. The best damage detection in terms of reducing the missed alarms at a fixed maximum false alarm 

rate of 5% is without doubts the PCA-pre-whitened cointegration, which ensures missed alarm rates lower than 

5% in all the loading conditions. Nevertheless, if the acceptable false alarm rate is decreased to 1%, the PCA-

Orthogonal Regression & whitening proved to outperform all the other methods. 

In general, the here proposed methodology, gives a quick, human independent and simple but effective way of 

performing damage detection also in case of non-stationary operational conditions. The nice compensation of 

the confounders in fact allows to enhance the damage, which can be easily highlighted by novelty detection. 
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Smart Structures
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1.Introduction 

The failure of materials involved in large 

infrastructures, such as bridges or roads, may cause a 

huge loss of life, economy or a loss of services. An 

attractive solution to upgrade existing infrastructures 

and increase their life-span is to bond fibre reinforced 

thermosetting composite patches to strengthen the 

damaged structure and to prevent failure growth. And 

in doing so, understanding the properties as well as 

failure mechanism of the bonded thermosetting 

composites is essential. Initiations and growths of 

defects occur during almost all life of the composite 

up to final failure which occurs by coalescence of 

previous damages (cumulative damage). Hence, how 

to detect the latent cracks in materials and how to fix 

the damaged materials with more cost-effectively 

ways are research emphasizes. 

As a non-destructive inspection method, in-situ 

Structural Health Monitoring (SHM) implies the use 

of sensors, such as piezoelectric ceramics (PZT), 

which are embedded within a structural material and 

provide real time performance feedback based on the 

measurement, such as electrical impedance. These 

sensors can be used to monitor the health state of 

thermosetting composites, from their curing process 

to the propagation of microcracks then to the end of 

their life cycle, which is useful for analyzing the 

fabrication or failure procedure of materials. By 

monitoring the change in the impedance spectrum 

which is linked to the changes of matrix viscoelastic 

properties as curing progressed, the different steps of 

the epoxy curing regarding molecular motion, 

viscosity, crosslinking density and their 

consequences on the mechanical properties of the 

material can be understood.  

2. Experiment and method 

2.1. Monitoring method with PZT 

The monitoring circuit is shown as figure.1, an 

oscilloscope is applied as a voltage signal source. In 

output option, the parameters are set as followingg: 

sinusoidal, frequency 4kHz (the resonance frequency 

of  PZT), 2.5V offset. An electric resistance with 

fixed value (6.8MΩ or other values in the order of 

mega ohms, which is in similar to the order of 

magnitude of impedance of PZT, in order to minimize 

the measuring error) and a PZT ceramic disk are 

connected in series with the source. A data acquisition 

system (DAQ) is connected to the circuit, detecting 

the electric tension of the source and the electric 

resistance mainly by a differential operational 

amplifier, and then the data is sent to a laptop. 

According   to the tension relation in the series circuit, 

the following equation can be given: 

𝑈0 − 𝑈𝑅
𝑈𝑅

=
𝑍𝑃
𝑅

 

where U0 represents the total electric tension applied 

to the circuit, UR represents the electric tension 

applied on the piezoelectric ceramic, R is the electric 

resistance value, ZP is the impedance of PZT 

concerned in this monitoring. The expression of 

impedance ZP can be written as following: 

𝑍𝑃 = 𝐴 · 𝑅 

where 

A =
𝑈0 − 𝑈𝑅
𝑈𝑅

 

A series of programs based on MATLAB are 

running with the monitoring process. Variables such 

as total monitoring time and sampling frequency 

should be set before experiments, and should be 

adapted to monitoring requirement. For long-time 

monitoring such as epoxy resin curing monitoring or 

epoxy/flax composite monitoring, the system 

calculates and records the impedance every minute. 

But if this system is applied for monitoring the 

behaviour of material during tensile test, there would 

be greater sampling frequency. 
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Fig. 1. Circuit diagram of monitoring system 

 

Fig. 2. Monitoring electric circuit and equipment 

2.2. Material preparation 

In this work, the resin for fabricating the patch 

composite is designed for ambient temperature curing. 

Its prepolymer is a low molecular weight “green” 

epoxy resin that made from bio-based 

epichlorohydrin. The hardener used is Cardolite 

NX5619, a solvent-free, low viscosity phenalkamine 

curing agent made through the Mannich reaction of 

cardanol from cashewnuts, formaldehyde, and amines. 

The natural fiber used is flax, and a quasi-

unidirectional fabric made of untwisted rovings was 

used. The weft and warp ratio is 9/91 and the areal 

density is 200 g/m2. The manufacturing of the natural 

fibers reinforced epoxy composite was accomplished 

by the use of wet hand lay-up process (2 plies) at 

room temperature.  

2.3. Epoxy resin curing monitoring  

Epoxy and its hardener are fully mixed in room 

temperature with mass ratio of 1.8:1, and stored in a 

cylindrical container of 50ml, which is show as 

figure.3. A PZT sensor (0.2 mm thick disk with a 

diameter of 7 mm) is placed inside the resin right after 

the mixture. Then the epoxy resin and PZT are 

transferred to the inside of a constant temperature 

chamber which is preheated to 40℃. The monitoring 

is carried on within this temperature during 16 hours. 

For the epoxy resin curing monitoring, a fixed value 

electric resistance of 9.68MΩ is used. 

 

 

Fig. 3. Specimen of epoxy resin curing monitoring 

2.4. Epoxy/flax composite curing monitoring 

As a consequence of hand lay-up molding 

process, the proportion of natural fibers in the final 

composite can not be precisely controlled. In this 

experiment, composites containing about 14%wt flax 

fiber are used. A PZT sensor is embedded between 

the two plies of flax fabric during the manufacturing 

process at room temperature. Before the experiment, 

the composite plate has cured for 4 days under 

ambient temperature, and preheated 1 hour inside the 

constant temperature chamber. Different from the 

epoxy resin curing monitoring experiment, a fixed 

value electric resistance of 1.0MΩ  is used, which 

indicates more intense electric current in the 

monitoring circuit. The composite plate with 

embedded sensor is similarly keep inside of the 

constant temperature chamber under 40℃ 
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Fig. 4. Specimen of epoxy/flax composite monitoring 

2.5. Composite monitoring in water environment  

In order to measure the influence of water 

environment to the composite, another composite 

plate (manufactured with the same process) with PZT 

embedded is dipped in deionized water during a week. 

The change of impedance is recorded by the 

monitoring system. This experiment is implemented 

under ambient temperature, which is variable in a day. 

 

Fig. 5. Impedance of PZT sensor embedded in the 

specimen of epoxy resin 

3.Results 

3.1. Epoxy resin curing monitoring 

The results of epoxy resin curing are shown in 

Fig. 5. According to the figure, the impedance of PZT 

has a rapid decrease in the first hour from the 

beginning of experiment. Then the impedance 

increases similarly fast as the decrease period. After 

about 2 hours, the impedance arrives at a platform, 

where only slight but continuous augmentations can 

be observed. 

The decreasing section is considered caused by 

the change of temperature, which indicates that, 

comparing to room temperature, the augmentation of 

temperature surly reduce the viscosity of epoxy resin. 

The fast increase section indicates an abrupt change 

of viscosity of epoxy resin, which matches the 

gelation of polymer. The gel point of epoxy resin 

should be found before the lower pole of impedance 

curve, synthesizing the heat-related decrease. 

 

Fig. 6. Impedance of PZT sensor embedded in the 

specimen of epoxy/flax composite 

3.2. Epoxy/flax composite curing monitoring 

The behavior of pre-cured epoxy/flax composite 

is principally different from that of pure epoxy resin. 

After the four-day-long curing, the epoxy resin has 

already passed its gel point for rather long time, the 

cross-linking reaction has well developed. The epoxy 

resin has mainly lost its fluidity. The characteristic of 

composite should be described as viscoelasticity, and 

storage modulus is used as a reference of curing 

process. 

The increasing rate of impedance during the 

whole composite curing monitoring is about 0.2% per 

hour, which is very close to the rate found in epoxy 

resin monitoring, at the platform section. Although, a 

relatively faster augmentation is observed at the first 

hours of monitoring, as a result of higher temperature 

in monitoring experiment than curing temperature. 

The curing process is accelerated by heat, as shown 

in Fig. 6. 

Aiming at qualitative analysis of the relation 

between storage modulus and curing of epoxy, a 
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series of DMA (Dynamic mechanical analysis) tests 

were carried on. The composite was tested after 1, 2, 

3, 4, 6 and 12 days of curing. The storage modulus 

under 40℃ are shown in Fig. 7. An evident increasing 

tendency of storage modulus is found, which is 

associated with polymerization of epoxy. 

 

Fig. 7. Storage modulus of epoxy/flax composite 

measured by DMA tests in a series of days 

3.3. Composite monitoring in water environment 

After a week’s monitoring, the impedance 

variation is shown as Fig. 8. A curve of tendency 

(blue line in Fig. 8) is added by Gaussian fitting which 

is only utilized to give a clearer view. 

According to the figure, the curve is a kind of 

combination of two parts. One is the decreasing 

tendency which is driven by water absorption of 

composite. The hydrophilic groups in cellulose or 

other molecules allow flax fiber to have relatively 

high water absorption rate, comparing to synthetic 

fibers, which causes degradation of mechanical 

properties of composite. The epoxy resin was still 

curing, thus a balance appears with saturation of 

water absorption, and then the curing is more 

dominant, which explains the final slight 

augmentation of impedance. The other part is a 

sinusoidal within an envelope. This part is caused by 

the variation of room temperature during a day, which 

can be proved by its period about 8000 seconds 

        

 

 

 

Fig. 8 Impedance of PZT embedded in epoxy/flax composite steeped in water 
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4.Conclusion 

The change in the impedance spectrum which is 

linked to the changes of matrix viscoelastic properties 

as curing progressed was used to follow the different 

steps of the epoxy matrix curing.  

The results showed that the piezoelectric 

transducers are well suited to in-situ monitor the 

reaction progress during isothermal curing of a flax 

reinforced epoxy materials. Other factors being able 

to influence the mechanical properties of composite 

can be correlated with the change of impedance and 

be monitored by PZT sensor. After curing, the sensor 

was used as damage detector. In order to assess the 

efficiency of such a system for health monitoring, 

tests will be performed based on tensile 

measurements using digital image correlation (DIC), 

classical acoustic emission and scanning electron 

microscope (SEM). 
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Abstract
These last years, the additive manufacturing and 3D printing technologies have known some major break-
throughs. The motion of a printer head can be made with cable transmission. The deployment of the cable-
driven parallel robots (CDPR) in the industry is studied in very various application fields for their low cost and
large workspace. Furthermore, the use of cables for the transmission induces a reduction of the mobile parts’
masses, compared to a rigid transmission, which enables to reach higher accelerations. Moreover, the structure
of a CDPR is modular and reconfigurable thanks to the repositioning of the actuators’ anchor points. However,
the lack of rigidity of a CDPR raises issues of accuracy and the rise of vibrations, which can be generated by
the trajectory of the mobile parts, the actuators, the friction between pulleys and cables or disturbances.
Several dynamic models of cables have been studied to understand the vibrating behaviour of a CDPR: a simple
elastic model of springs with positive tensions, a lumped mass-spring model and a finite elements model based
on a continuous one for the cables dynamics. The numerical simulation of the dynamic behaviour of the CDPR
with these models enables the analysis of an appropriate control system and the design of a controller. It aims
at ensuring an accurate positioning and a decrease of vibrations.
In this contribution, we will firstly present the dynamic behaviour’s model and the issue of the actuation’s redun-
dancy, systematically present on these robots to guarantee stiffness with the tension in the cables. A comparison
will be done between the effects of the models on the conception and the performance of the controller. Thus,
we explain that significant decreases in the vibration levels may be observed with the use of PID controllers.
The generalisation of the command, the use of active control technologies and an experimental validation will
be the next steps of this study.

1 Introduction

Cable-Driven Parallel Robots (CDPR) are a type of parallel kinematic machines in which cables link a mo-
bile platform to a fixed base. Reels allow the control of cables length and cables tension. Several applications of
CDPR have been studied, such as high speed manipulation [1], heavy materials handling [2], haptic perception
[3]. Their large workspace enables to visualise [4, 5] or print [6] large 3D objects.

Modelling CDPR requires to take into account the cables dynamics, which are complex and non-linear. The
main models of cables dynamics are the following :

• Elastic models (valid and efficient for low-density and thin cables);

• Analytic models with non-linear equations (Irvine model [7]);

• Semi-analytic methods for cable with small sag [8, 9];

• Lumped mass methods [10];

• Finite element models, using cables with time-dependent length [11, 12]

.
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A CDPR constituted of a punctual mass linked by two cables driven by two actuators is considered in the
following paper. It is an over-actuated CDPR, since the only controlled Degree Of Freedom (DOF) of the ef-
fector is the horizontal position.

The contribution of this paper is to compare three dynamic models of a CDPR in Section 2: an elastic
spring model, a lumped mass-spring model and a variable length finite elements model. Section 3 is dedicated
to the strategies of command. Results are discussed in Section 4.

2 Models of dynamic behaviour

2.1 Elastic model

An effector of mass M is linked with two cables, modelled by two elastic springs. The cables tension is
controlled by means of actuators, allowing the effector motion control. The distance between the two cable
reels A1 and A2 is d = 1 m. This configuration is shown in Figure 1.

Figure 1: CDPR with 2 cables

Given the Young’s modulus E = 102 GPa of the cable and its cross-sectional area A = 1.76e−6 m2, the
cable tension can be described as :

T = EA
l− l0

l0
(1)

with l the strained cable length and l0 the unstrained cable length.

The effector of mass M is constrained under the two cable tensions T1 and T2, and its dynamic equation is
given by : (

ẍ
z̈

)
=

1
M
(T1~e1 +T2~e2)+~g (2)

Unit vectors state the direction of efforts transmitted through the cables. For the ith cable, we have :

~ei =

−→OAi−−→OC

||−→OAi−−→OC||
(3)

2.2 Lumped mass-spring model

Each cable is now lumped into N = 40 mass-spring elements. Each of them is formed by a spring, of
unstrained length l0 = L0

N and stiffness k0 =
EA
l0

, and by a mass m = ρAl0.
As shown in Figure 2, the length of modelled cable is larger than the length between A1 and the end-effector.

The purpose is to have always the same amount of elements when the effector is moving. The cable located to
the left of A1 and to the right of A2 corresponds to the cable rolled in the reels.
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Figure 2: Lumped mass-spring model

Figure 3: 3 elements of the lumped mass-spring model

To understand the difference of dynamics between the rolled cable and the free one, the Figure 3 gives a
closer look at the lumped mass-spring model near A1. We consider the points M j with j = {i−1, i, i+1, i+2}.
The corresponding lengths are : 




li−1 = ||−−−−→Mi−1Mi||
li = ||−−→MiA1||+ ||−−−−→A1Mi+1||
li+1 = ||−−−−−−→Mi+1Mi+2||

(4)

The tensions, computed using these lengths, are the following :




Ti−1 = k(li−1− l0)
Ti = k(li− l0)
Ti+1 = k(li+1− l0)

(5)

We can also determine the accelerations Ẍi =

(
ẍi

z̈i

)
and Ẍi+1 before and after A1. In Mi the mass element

is only constrained by horizontal tensions and in Mi+1 unit vectors give the directions of the efforts :

mẌi =

(
−Ti−1 +Ti

0

)
(6)

mẌi+1 =




Ti
xA1−xi+1

||
−−−−→A1Mi+1||

+Ti+1
xi+2−xi+1

li+1

Ti
zA1−zi+1

||
−−−−→A1Mi+1||

+Ti+1
zi+2−zi+1

li+1


−m~g (7)
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2.3 Variable length finite elements model

We consider that each cable is divided in N = 10 elements with the same unstrained length l = L
N . The

length l is time-depending during the movement of the CDPR and its variations are taken into account in the
dynamics. The details of the equations can be found in the article of J. Du and al. [13].

For a cable of length l, the kinetic energy is :

T =
∫ l

0

1
2

µ~̇rT
.~̇rds (8)

where µ is the mass per unit length and~r is the position vector of the element.

The elastic potential and gravitational potential energy of the same cable is :

U =
∫ l

0
(
1
2

EAε2−µg~rT .~z)ds (9)

where ε is the element strain.

The changing mass of the system can be written as :

δH = δ~r j
T f j +µ~̇r1

T
.δ~r1v1 +µ~̇r2

T
.δ~r2v2 (10)

with v1 the winding speed in A1 and v2 the winding speed in A2.

The application of the Hamilton’s principle on the cables gives the following equation :
∫ t

0
T dt−δ

∫ t

0
Udt +

∫ t

0
δHdt = 0 (11)

Eventually, this leads to the dynamic equation, which describes the position ~r j of the j index point :

mj~̈r j + cj~̇r j +kj~r j = ~f j +
~f g

j (12)

In Eq. 12, mj is the conventional mass matrix, cj describes, with convective terms, an energy transfer due to
length variations. The stiffness matrix kj is composed of the axial deformation of the element and of a second
term due to the first and second derivatives of the element length variation with respect to time. ~f j is the nodal
force acting on the cable. ~fg is the equivalent nodal force of the cable element self-weight.

3 Strategies of command

3.1 Trajectory

The chosen trajectory is a step5-function (Equation 13), which enables to avoid chocs and discontinuities
and to lower vibrations. The principle is to go smoothly from x1 to x2 between t1 and t2 ; it means that the
velocities at t1 and t2 are both equal to zero.

step5(t) =





x1 if t < t1
x1 +a∆3(t)(10−15∆(t)+6∆2(t)) if t1 ≤ t < t2
x2 if t ≥ t2

(13)

with a = x2− x1 and ∆(t) = t−t1
t2−t1

.

Here we consider t1 = 0 s, t2 = 0.2 s, x1 = 0.5 m and x2 = 0.6 m. The maximum speed in the case of the
parameters mentioned below is 0.9375 m.s−1 at t = 0.1 s. The maximum acceleration is ±14.434 m.s−2 at
t = (0.0423;0.1577) s.
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3.2 Control

There are two ways of controlling the end-effector of a CDPR : by controlling the cables length or their
tension. The choice, here, has been made to control the cables tension, mainly for observed stability reasons.
Moreover, the choice is led by the fact that the mechanism is redundantly constrained, which means that the
number of cables driving the end-effector is one greater than the number of the robot’s DOF.

Because of the actuation’s redundancy, we face an issue of tension distribution in the cables. The next step
is to chose a set of additional equality or inequality constraints before designing an algorithm of optimisation
that finds an optimal tension distribution [14]. The most commonly used constraints in order to get the optimal
tension distribution are :

• positive cables tension (to avoid an unstressed cable) [15];

• minimal sum of cables tension (to minimise the actuators’ energy);

• tensions in an interval [tmin; tmax] [16];

• continuous cables tension.

For the tensions distribution, we chose to force 100 N of pretension on each cable, which means that
∑T = T1 + T2 = 200 N. PID controllers are robust enough to be used in CDPR control, even if CDPR be-
haviour is non-linear [17]. Our PID controller provides the effort needed by the effector so that it follows the
desired trajectory. Thus, the tensions distribution in the controllers will be written : T1 =

∑T−F
2 and T2 =

∑T+F
2 .

The controllers’ gains have been settled on the elastic model, which enables a faster and easier setting. We
do not present the optimisation of the parameters for the controller, but a comparison between the controlled
models. The PID controllers’ gains for each model are :





P = 1860
I = 8700
D = 100
filter coefficient N = 540

The blocks containing the calculation of the trajectory, the controller and the dynamic model are shown in
the Figure 4.

Figure 4: Simulink diagram

4 Results and discussion

Computation of the dynamic models is done using MATLAB and SIMULINK. Parameter settings of the nu-
merical simulation are as follows : MATLAB solver used is ode45, the relative tolerance is 1e−5, the minimum
time step is 1e−5 s and the sample time is 1e−5 s.

The initial position of the elastic model (Section 2.1) is computed by solving the static equilibrium of the
Equation 14, which gives the starting position for the end-effector.
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T1~e1 +T2~e2 +M~g =~0 (14)

To get the initial positions of the models presented in 2.2 and 2.3, we add a damping in the dynamic
parameters of the model and we compute a free simulation in order to determine the equilibrium of each
element of the model. The Figure 5 outlines the simulation results of the three dynamic models introduced in
Section 2 for a computing time of tfinal = 5 s. Very small oscillations, in the range of 1e−5 m, are observed for x.
They are similar in all the models. The error, computed by error = xtrajectory− xeffector and presented in Figure
6, is lower than 1e−2 in the transition phase, and lower than 1e−5 after 1 s of simulation.

Figure 5: Evolution of x and z effector’s position

Figure 6: Position error of the CDPR

For z, oscillations are observed at the same frequency, with an amplitude of 1 mm. The mean of z oscilla-
tions in the elastic model is higher than in the two other models, because this one does not take into account the
mass of the cables. The Figure 7 shows a spectrum analysis of the error signals between t = 1 s and t = 5 s. A
peak at 20.11 rad.s−1 is observed for the three models. It corresponds to the end-effector’s vertical oscillations,
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Figure 7: Spectrum analysis of ∆x and z

as shown in Figure 5. The vertical resonance frequency of a system constituted of two strings and one mass is
given by the following equation :

ω =

√
T
M

(
1
x
+

1
d− x

)
(15)

With the parameters values used in the three models, this resonance frequency is equal to 20.41 rad.s−1,
which is closed to the frequency of the peak on the spectrum. The high frequency peaks, observed for the
lumped mass-spring model and the variable length finite elements model, corresponds to the discretization of
the cables.

Figure 8: Cables tension T1 and T2

Figure 8 represents the evolution of the cables tension. In order to follow the trajectory acceleration, the
tension T1 decreases down to 92 N, then increases up to 108 N, and finally stabilises around 99.95 N. The tension
T2 does an inverse evolution and finally stabilises around 100.05 N. In the configuration where the effector’s
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position is x = 0.6 m, the two tensions are not exactly the same because the cables are not symmetrical. This
enables the end-effector to get the desired position .

5 Conclusion

Three cable models for a CDPR have been presented in this paper : an elastic model, a lumped mass-spring
model and a finite elements model. Eventually, these models’ results are consistent with each others. For the
three models, the PID controller enables to achieve good performances. Indeed, the static error is lower than
1e−5 and the overshoot is lower than 1 cm. It can be noticed that the PID controller is robust enough to control
the effector’s position and keeps constant gains, regardless of the dynamic model used in the simulation. The
gains’ adjustment was not problematic to control numerical models, thus we can hope that adjusting the gains
on an experimental model will not be problematic either.

In further studies, we shall test other strategies of control, such as inverse dynamics control or model-free
control, add the behaviour of the actuators to the dynamic model, and build a test bench to bring an experimental
validation to the results that are introduced in this paper.
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