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Abstract
The characterization of wind turbines in yawed conditions is one of the most important topics as regards the
latest advances in optimizing power production and mechanical behavior in wind farms. The classical wind
turbine control strategy consists in keeping the rotor constantly aligned with wind direction: whereas this
approach maximizes the power coefficient of each single turbine, it might not be the best solution when, in a
wind farm, upwind turbines generate wakes on downwind ones. Considering this, yawing the rotors gives a
steer to wakes, improving the flow on downwind turbines. This new kind of control strategy has been attracting
the scientific interest not only by an energetic point of view, but also as regards the mechanical behavior of
turbines operating not aligned with wind, in particular for what concerns generation of forces and vibrations.
On these grounds, the aim of this paper is to study in deep how a wind turbine works on yawed configurations.
In order to do this, wind tunnel tests have been performed with yaw angles that range over from −45◦ to
45◦ on a 2 m. diameter small scale wind turbine. Experimental measurements of forcespower and tower
vibrations are then compared with the results of simulations from two different codes. The first, called BEM,
is internally developed following the principles of Blade Element Momentum theory and it is used to estimate
forces and torque acting on the rotor. The second implemented model is developed using the FAST (Fatigue,
Aerodynamics, Structures and Turbulence) software, developed at the National Renewable Energy Laboratory
(NREL). FAST simulations provide in output forces, torque and vibrations of tower and blades. Simulations
are set up with similar conditions as the wind tunnel tests, with many yaw angles and steady wind speed. One
of the main results of this study is that there is a remarkable agreement between simulations and measurements
as regards the estimate of the power coefficient CP in yawed and non-yawed configurations. In spite of this,
thrust coefficient CT is not faithfully estimated when the yaw angles is vanishing. This matter of fact is then
explained by the fact that low-fidelity numerical models are not capable in reproducing reliably the effect of
the tower blockage, slowing down the air stream in its proximity. As a consequence, when a blade passes close
this area of reduced flow speed, the generation of aerodynamic forces decreases. In yawed configurations, this
phenomenon is less relevant because of the increased distance between blades and tower on air flow direction.

1 Introduction

The optimization of power production and mechanical behavior of wind turbine through advanced control
strategies [1, 2] has been recently becoming one of the main topics in wind energy research. The blade pitch
[3, 4] and the yaw management are two very fertile fields of investigation for the research in wind turbine
control optimization [5, 6].

The classical approach to control wind turbines nacelle orientation consists in continuously following the
wind direction, in order to maintain the rotor axis constantly parallel to air flow. This method guarantees that
the single turbine has always the maximum tip-speed ratio and so the maximum energetic production. In spite
of this, in wind farm configurations an aspect that has to be considered is that upstream wind turbines generate
wakes affecting the downstream ones and this affects the power production [7] and the mechanical loads [8].
By this point of view, new methods for active wind farm control are oriented: the general idea is that a slight
decrease of the power produced by the single upwind turbine can optimize the total production of the entire
farm. Haces-Fernandes et al. [9] states that a selective turbine deactivation allows an enhancement on wind
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farm production and found that improvement is more prominent as the size of the turbines, and so rotor diame-
ter, increases. Another method is the derating [10], that consists on running some turbines with a non-optimal
rotational speed in order to catch less energy from air stream but generating less wake effect on downwind
turbines: in this case the increase of energy production can range from 1.86% to 6.24%. A novel approach,
instead, called wake steering [11, 12, 13], consists in keeping the upwind turbines not aligned with wind direc-
tion with the purpose to deviate the wakes and let the downwind turbines to be invested by an air stream with
a more energetic content. For a single wind turbine, the power is related to φ , the yaw angle between the wind
flow and the rotor, with a cosine cube law [14]: as a consequence, the energy production decreases as the yaw
angle increases. To understand the net increase of generated power at wind farm level, Archer et al. [12] found
that yawing the first row of a turbine array of 20◦, the power of the following rows increases profitably (more
than the losses of the first row).
To have a wider outlook on wake steering wind farm control, it is necessary to consider not only the effect on
energy production, but also the possible side effects on wind turbine structural integrity. For example, Bakshi
[15] estimated the reliability of blades in yawed asset, performing a stress analysis in different yaw configura-
tions.

On these grounds, the present study aims at providing a contribution to the experimental analysis and
numerical characterization of horizontal-axis wind turbines in yawed conditions. Wind tunnel measurements
on a 2 m. diameter turbine are performed, with yaw angles ranging from 0 to ±45◦: forces generated by
the rotor, nacelle accelerations, rotational speed and generator power are monitored. Experimental data are
then compared to numerical results of simulations performed with two different algorithms. The first is called
BEM and has been internally developed according to Blade Element Momentum theory. This code allows
an estimation of forces generated by the rotor. The second code, FAST, is developed by NREL, National
Renewable Energy Laboratory, Colorado, and is one of the most used software for aeroelastic wind turbine
modeling. In FAST, it is possible to obtain in output information concerning power, forces, moments, torque,
accelerations and deformations. This software is frequently used to simulate large size wind turbines: by this
point of view, one of the purposes of this study is to investigate the reliability of the FAST environment for
small wind turbine simulation too. Actually, the critical point is that small wind turbines are strongly affected
by fatigue, as a result of their size and the variability of loads , induced by the unsteady wind conditions
(especially in urban environment [16]), and modulated by a very high rotational speed [17]. It is therefore
interesting to understand the capability of simplified numerical models in reproducing reliably the dynamical
behaviour of this kind of devices, especially in yawed conditions.

This paper is organized in the following sections: Section 2 presents the methods and facilities and a
discussion on the equipment used. In section 3 the results are presented and examined. Finally Section 4 is
devoted to conclusions and future developments.

2 Experimental Set Up and Numerical Models

In this study, experimental tests in wind tunnel and numerical tools are used to characterize the behaviour
of a small wind turbine in yawed configuration.

2.1 Wind Turbine and Wind Tunnel for Experimental Tests

The HAWT prototype selected for this work has these main features:

• 40 kg nacelle mass;

• rotor diameter: 2 meters;

• hub height: 1.2 meters;

• hub radius is 0.13 meters;

• minimum chord of the profile: 5 cm. Maximum: 15 cm;

• angle of attack variable between 1.7◦ and 32◦;
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• the prototype is equipped with three polymer reinforced with fiberglass blades;

• fixed pitch angle;

• operative rotational speed between 200 and 700 RPM;

• 3 kW of maximum power;

• electric control based on experimental optimal power curve.

In Fig. 1 the test case wind turbine placed inside the wind tunnel is represented; the configuration in the
Figure is at 0◦ of yaw angle but many tests have been performed with yaw angles of up to ±45◦.
The wind tunnel used for this research is located at the Department of Engineering at the University of Perugia,
Italy (www.windtunnel.unipg.it). The facility consists on a closed loop, open test chamber wind tunnel with a
squared cross section of the ducts of 2.2 m. per side. The recovery section is about 2.7 m. x 2.7 m. A 375 kW
electric motor puts in rotation a fan that is able to produce variable wind speed in the test section up to 45 m/s.
A peculiar characteristic of this tunnel is the extremely low turbulence of the air flow that can be quantified in
0.4%. The wind speed is measured by a Pitot tube and a cup anemometer placed at the inlet section. In Figure
2 a scheme of the wind tunnel is reported.

Figure 1: The small HAWT in the wind tunnel open test section.

Figure 2: A sketch of the wind tunnel.
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As the test section of the wind tunnel is not a free field, it has to be considered a confined environment
where the airflow gets modified by the presence of the turbine itself: this phenomenon is called blockage. To
consider the blockage, in this discussion wind velocities and thrust or power coefficients will be scaled by a
corrective factor, BF (Blockage Factor), estimated following Kinsey and Dumas [18] as in eq.1:

BF =
U
U ′

, (1)

where U is the free stream wind speed in the wind tunnel with the rotor and U ′ without the presence of the
rotor. Using the blockage factor, it is possible to correct both power and thrust coefficients as expressed by eq.2
and eq. 3:

C′P =CP ·
(

U
U ′

)3

=CP ·BF3 (2)

C′T =CT ·
(

U
U ′

)2

=CT ·BF2, (3)

where C′P and C′T are the corrected power and thrust coefficient. Previous experimental and numerical
studies, in particular Eltayesh et al. [19], have been devoted to the analysis of the blockage factor of the wind
tunnel of University of Perugia and the results have been employed for the purpose of this study to correctly
estimate the reference free wind speed. According to this, to reliably compare numerical and experimental
tests, it should be intended that the CP and CT factors obtained from simulations are the corrected ones.
The HAWT has been subjected to steady wind time series having duration of 60 s. During each time series, the
yaw angle has a fixed value. The tested yaw angles are:

• 0◦;

• ±22.5◦

• ±45◦.

The selected wind intensity is 10 m/s and some tests have been performed at 8 m/s too.

2.2 The FAST Software

FAST (Fatigue, Aerodynamics, Structures,and Turbulence) is an open-source aeroelastic software devel-
oped by NREL (National Renewable Energy Laboratory) and it is used to perform simulations of energetic and
mechanical behaviour of horizontal axis wind turbines.
This software offers many alternatives to customize the modeling of turbine components. Electric generator,
yaw controller, pitch controller and shaft brake can be modeled in many ways; the most used includes the use
of subroutines, look up tables and the interface with external software environments. The number of input files
depends on the characteristics of the simulation. In this test the employed input files are:

• Primary: is the main file where simulation parameters can be setted and contains the link to the other
files.

• InflowWind: this file describes the wind characteristics. Data about wind speed magnitude,vertical and
horizontal components has to be implemented in this file. In addition, it contains the spatial discretization
resolution.

• AeroDyn: it includes environment air condition, links to the table of blade airfoils polars, and tower
aerodynamic properties.

• ElastoDyn: in this file, the wind turbine mechanical design (pre-cone, tilt angle, masses and inertia) is
described. Links to blades and tower shape modes are also included.

• ServoDyn: it manages the behavior of the controllers.Through this file it is possible to implement gener-
ator, pitch, yaw and braking models.
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Figure 3 is a block chart representing how the files interact during the simulation running.

Figure 3: A flowchart of the FAST simulation.

As usual for small wind turbines, the model studied in this paper does not have an active pitch or yaw
control, as discussed for example in Scappaticci [20]. To meet market requests and in consideration of the lack
of adequate spaces to house actuators, small wind turbines are typically not equipped with advanced control
systems. For this reason, in ServoDyn, only the electric generator is modeled. FAST offers many solutions to
set up the simulation of generator, in this case, a look up table is considered the best solution. The of external
software (like Simulink) is a better choice when PID (Proportional, Integrative, Derivative) controllers have
to be implemented, especially for unsteady simulations. In the present paper, instead, simulations are always
performed in steady conditions. Neither the default generator model, present in FAST, can be profitably used
because it is arranged for large wind turbines. According to this, the choice of look-up table is the most suited
among all the possibilities.
Look-up table creates a relationship between the instant rotational speed of the shaft and the resistant torque
that has to be applied. Electric generator response is tested experimentally in wind tunnel steady runs with
variable wind speed. In this way, once the system reaches the equilibrium, shaft speed and the corresponding
torque is collected and than used to create the look up table. It has to be noticed that turbine power controller
works according to MPPT (Maximum Power Point Tracking) in order to always find the best performance in
terms of power production. FAST allows to impose and keep fixed the the yaw angle in ElastoDyn file. The
tested yaw angles are the same as the experimental ones: 0◦ , ±22.5◦ and ±45◦.

2.3 The BEM Algorithm

The second numerical framework used to estimate mechanical loads on wind turbine is internally developed
on the grounds of the BEM (Blade Element Momentum) theory. Many handbooks on wind turbine aerodynam-
ics explain this mathematical approach; in the following, we refer to a summary by Burton[21]. Drag and lift
coefficients are defined in eq.4 and eq.5:

Cli f t = 2
L

ρAre fU2
∞

(4)

Cdrag = 2
D

ρAre fU2
∞
, (5)

where L and D are the aerodynamic lift and drag forces; ρ the air density; Are f the area of wind turbine
rotor and U∞ the free stream wind speed. Moreover, labeled as Ud the wind speed at the disk, it is possible to
introduce the axial induction factor a′, eq.6:

a =
U∞−Ud

U∞
(6)

To keep in account the rotation effect that the disk imparts to the downstream flow, the a′ coefficient is
introduced, eq.7

a′ =
1

2Ω
ω, (7)

labeled as ω the angular velocity of the wake imparted by the rotor, whose velocity is Ω. Using the a factor,
it is possible to rewrite the axial and tangential speeds as eq.:

Vx =U∞(1−a) Vy = ΩR(1+a). (8)
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After the calculation of speed components, the angle of attack(φ ) on each section of the blades is obtained
using polar charts available from aerodynamic simulation software (i.e. Xfoil). Knowing φ , the Cx and Cy

coefficients (eq. 9) can be computed:

Cx =Cl cos(φ)+Cd sin(φ) Cy =Cl sin(φ)+Cd cos(φ). (9)

As stated by Ning[22], it is possible to obtain tip and loss coefficients using eq.10 and eq.11:

ftip =
B
2
(R− r)
|sinφ | Ftip =

2
π

acos(e− ftip) (10)

fhub =
B
2
(r−Rhub)

Rhub|sinφ | Fhub =
2
π

acos(e− fhub), (11)

where:

• Ftip: tip loss correction;

• B: blade number;

• R: rotor radius;

• r: distance from center of the rotor to root blade section;

• Fhub: hub loss correction.

Introducing the solidity σ as eq.12:

σ =
Bc
2πr

, (12)

with c representing the chord length, then one can write eq13:

k =
σCx

4sinφ sinφF
k′ =

σCx

4sinφ cosφF
, (13)

considering F = f 2
tip. Many formulations of a are available according to the values of φ and k; in particular for

φ > 0 and k > 2/3 equations 14 and 15 can be used:

γ1 = 2Fk− (
10
9
−F) γ2 = 2Fk−F(

4
3
−F) γ2 = 2Fk− (

25
9
−2F) (14)

a =
γ1−
√γ2

γ3
. (15)

If φ < 0 and k > 1, the axial induction factor has the following formulation:

a =
k

k−1
. (16)

Instead, if φ > 0 and k < 2/3, one obtains

a =
k

k+1
(17)

For a′, a unique formulation is obtained:

a′ =
k′

k′+1
(18)

From the aforementioned equations, induction flow factors can be estimated in each solution region. When a
turbine is yawed, otherwise, it is necessary to consider additional corrective factors: in this case the induction
factor with yaw correction is eq.19:

ayaw = a(1+K
r
R

sin(ψ)), (19)
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where ψ is the azimuth angle and K, from Shen[23], is given in eq20:

K =
15
32

π tan
χ
2
. (20)

χ is known as skew angle and it is obtained from eq.21:

χ = (0.6a+1)γ (21)

In literature, different formulations for correcting the induction factor considering yaw are available [24]. For
example Coleman[25] proposed eq.22:

K = tan(
χ
2
). (22)

For White and Blake [26] one has eq.23:
K =
√

2tan(χ). (23)

Moreover Shen[23] proposed eq.24:

ayaw = a

[
1+

15π
32

√
1− cosγ
1+ cosγ

r
R

Ksinψ

]
. (24)

Different, additional formulations have been proposed by Ackermann [27] and Bianchi [28]. All these
formulations have been compared but noticeable differences that may cause substantial changes to the algorithm
have not been found.

3 Results

3.1 Analysis of Power and Thrust Coefficients

In this section, results from simulation codes and experimental measurements are shown. Figure 4 compares
the measured and simulated Cp values in different yaw configurations. Cp is computed using eq. 25:

CP =
P

1
2 ρAre fU3

∞
, (25)

where P is the generator power. Physically Cp measures the ratio between the power that is produced and the
kinetic energy of the flow. The maximum theoretical limit of this coefficient is indicated by the Betz law [29].
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Figure 4: Power coefficients at 10 m/s: experimental vs numerical results.
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Similarly to power coefficient, thrust coefficient is used to characterize turbine behavior. Its definition is
given in eq.26:

CT =
F

1
2 ρAU2

∞
= 4a(1−a), (26)

where F is the thrust force acting on the rotor in the flow direction. In figure 5, the measured and simulated
behavior of CT is shown.
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Figure 5: Thrust coefficients at 10 m/s: experimental vs numerical results.

It can be seen that both numerical models reproduce the power coefficient fairly but they largely overesti-
mate the thrust one. The maximum percentage error for CP is about 5% for the BEM code and 8% for FAST.
In spite of this, for CT errors are up to 25% for BEM and 20% for FAST. In numerical simulations a 95% of
generator efficiency has been considered and the small errors on CP for vanishing yaw angles shows that it can
be considered a reliable estimation.

The mismatch between measured and simulated CT coefficient can be imputable to multiple causes: the
most important can be supposed to be the fact that the numerical models do not take into account blades
deformations. In section 3.2, it will be discussed how the combined effects of blade deformation and tower
blockage are linked to yaw configuration. In fact, the aerodynamic thrust generation depends on the distance
between blade and tower in stream direction. When the turbine is yawed, this distance tends to be increased
and the blades are affected by a lower tower blockage effect producing more thrust: in this case, the mismatch
as regards the CT , where blockage is not implemented, is negligible.

The slight asymmetry, visible in experimental tests, can be related to wind tunnel layout. In the open test
chamber the lateral walls are placed at different distances respect the air stream and the turbine rotor. Because
of this, the flow that impacts the rotor at negative or positive yaw angles is slightly different. Anyway, the
discrepancies are estimated to be 3% on CP and 8% on CT .

3.2 Study of Thrust Cyclic Variation

Because of the critical issues revealed by the previous analysis, it has been considered useful to set up a
study devoted to the cyclic variations of the aerodynamic forces during a complete rotation of a blade. The ref-
erence angle is denoted as azimuth. From Figure 6, it arises that there is periodic component in correspondence
of the first blade passing frequency 3P. This phenomenon is well known and can be interpreted as due to the
interaction between tower and airflow, causing cyclic decrease of aerodynamic forces. As previously explained,
the intensity of the fluctuations is lower for increasing yaw angles because the blade passes farther from the
low velocity air situated close to the tower.
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Figure 6: The rotor thrust variation(N), with respect to the average value, as a function of the azimuth angle.
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Figure 7: The rotor thrust relative variation(N), with respect to the average value, as a function of the azimuth
angle.

The curves of thrust as a function of the azimuth angle have been scaled with respect to the corresponding
mean value in fig. 7. It can be seen that there is a consistent overlap: this means that the amplitude of oscillations
is not dependant on the yaw angle.

Additional experimental tests with a wind speed of 8m/s has been performed to discover the dependence
of thrust oscillations with flow characteristics at 0◦ yaw value. The results are reported in fig. 8.
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Figure 8: The rotor thrust coefficient cyclic variation in different wind tunnel tests with a wind speed of 8 m/s
and 10 m/s.

From the comparison between the 10m/s and the 8m/s tests, it results that the CT fluctuations at 10 m/s
are more than doubled with respect to 8 m/s. According to this, it can be stated that the tower interference
has a less relevant effect as the wind speed tends to be lower. Blade deflections in facts are strictly dependant
on the aerodynamics loads and, since they decrease when the wind speed decreases, the space between the
deflected blade and the tower increases and therefore the thrust is less affected by blockage. To quantify the
blade deflection, it has to be considered that in previous measurements campaigns the blade deflection at the
tip has been measured to be around 7% with a wind speed of 32m/s, so it is expected that at 10 m/s it is of the
order of 1% of the rotor radius: it is remarkable that this small value can induce such large tower interaction
effects.

3.3 Analysis of Tower Interference on Accelerations

The above results indicate that the tower inference is a non-negligible aspect of the dynamical behavior
of the small scale wind turbine considered in this study. Wind tunnel tests have been useful to deeply under-
stand how tower interference effect gets modified by the yawing the turbine: this has been possible thanks to
the triaxial accelerometer located on the nacelle, recording the aerodynamic induced vibrations. Fast Fourier
Transform (FFT) theory has been used to analyze the spectrum of vibrations and making a comparison between
0◦ yaw and +45◦, fig.9.
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Figure 9: Experimental normalized order spectrum of the acceleration (fore-aft component normalized on the
amplitude of the 3P component with zero yaw).
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Figure 10: Experimental normalized order spectrum of the forces (fore-aft component normalized on the am-
plitude of the 3P component with zero yaw).

Figure 10 is the FFT of the thrust force measured by load cell placed between tower top and nacelle.
Spectral analysis shows that order 3P, related to tower blockage, undergoes a substantial decrease passing from
0◦ yaw to 45◦. This is an additional proof that gives consistency to the thesis that tower inference is more
prominent for vanishing yaw angle and that justifies the thrust overestimation obtained with numerical codes,
where it is not possible to account for tower blockage.

4 Conclusion

The objective of this study was the characterization of the mechanical behavior of horizontal axis wind
turbines in yaw configuration. This field of study is attracting the scientific interest because yawing turbines
allows several types of wind farm cooperative control, as for example the wake steering, that is useful to
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optimize the energy production.
A small scale horizontal axis wind turbine, with 2 m. of rotor diameter has been tested at the wind tunnel

facility of the University of Perugia. The prototype has been equipped with accelerometers, load cell, electric
power meter and tachometer in order to collect information about its operative conditions when undergoing
different yaw angles. Experimental tests have been performed with a wind speed of 10 m/s and ±45◦,±22.5◦

and 0◦ of yaw angle; additional tests have been carried out with 8 m/s of wind speed at 0◦ yaw. In addition, two
numerical models have been adopted with two different software: an internally developed BEM algorithm and
the open source FAST code. The numerical models have been set up in order to reproduce the conditions of the
experimental test: the results are then compared in therms of power coefficient CP and thrust coefficient CT .

The main result is that the numerical models fairly reproduce the CP coefficient. There are more critical
points as regards the thrust coefficient: whereas for the cases of yawed configurations, the simulations fairly
agreed with experimental test, for vanishing yaw angle the discrepancy is remarkable. This fact has motivated
further analysis of the experimental data and the interpretation is that the mismatch between simulation and
measurements is given by the fact that the tower blockage is a relevant phenomenon that the numerical models
employed in this work do not take into account. The tower blockage is related to the streamwise distance
between blades and tower, and so it is related to blade deflection too.

The cyclic variation of the thrust as a function of the azimuth angle has been analyzed for different yaw
configurations, confirming the presence of a 3P periodicity which testifies the presence of a tower induced
blockage effect variable respect to yaw angle. Under this circumstance an experimental test, with a wind speed
of 8 m/s has been useful to confirm that with lower aerodynamic loads also the blade deflections decrease and
so they do the lower thrust oscillations.

In addition, FFT analysis has been used to compare order spectra of nacelle accelerations and thrust for
the 0◦ and 45◦ yaw configurations. The accelerations and thrust at 3P order appear diminished when the rotor
is yawed. As this order is characteristic of tower interference effect, the order analysis brings an additional
argument is support of the fact that blockage phenomenon is strictly correlated to the yawing behavior and
cannot be neglected when yaw angle tends to vanish.

The results of this study can be useful to increase the knowledge of the behaviour of small wind turbines
in yawed configuration and to evaluate the ability of low-fidelity numerical models predicting loads on yawed
rotors. Future improvements of this study regard the possibility of better characterizing the interactions between
blade tip and turbine tower, possibly using CFD codes. This study can also be useful for the implementation
of wake steering wind farm control where it is expected that turbines will runs in yawed configuration for long
periods and so an accurate estimation of loads is a crucial step to guarantee best performances and to assess the
fatigue loading of the machine.
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Gears and bearings, used in many industrial areas are subject to failure that may lead to costly 

shutdowns. The current trend is to detect failures (cracks, spall, pitting …) and to identify and control 

their evolution. Such monitoring leads to a huge amount of data. With a double skill in test and 

simulation, Vibratec proposes an approach based on measurements coupled with Machine Learning 

(ML) processing. 

This presentation defines the fault detection global approach used by Vibratec, from signal acquisition 

to the classification of indicators. The methodology is firstly applied on a specific HMS test bench. 

Then, the machine learning strategy is deployed on a database. The numerical simulations are in good 

agreement with the measurement results obtained on the test bench, and the machine learning indicators 

provides encouraging results. In the upcoming months, this complete methodology will be applied on a 

collaborative project aiming to improve the maintenance of aircraft engines. 
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Abstract 
Transmission error (TE) has long been thought to be a major contributor to gear vibration and noise, but 

insufficient consideration has been given to the different types of TE and how they generate vibrations. TE is 

defined as the difference in torsional vibration of two meshing gears, scaled so as to represent linear motion 

along the line of action. There are three distinct types of TE; 1) Geometric TE (GTE) given by deviations of 

the (combined) tooth profiles from ideal involute;  2) Static TE (STE) including elastic deformation of the 

teeth and therefore being load dependent;  3) Dynamic TE (DTE) including inertial as well as stiffness 

effects, and thus being speed as well as load dependent. It has long been recognized that TE can be measured 

very accurately by phase demodulation of the signals of shaft encoders rigidly attached to each of the gears 

in mesh, but only recently realized that all three types can be measured; GTE at low speed and low load, STE 

at low speed and higher load, and DTE at higher speed and higher load. This paper demonstrates that TE has 

several advantages over vibration acceleration (or even the raw torsional vibrations) as a diagnostic 

parameter, being close to the source (the gearmesh) and with “common mode rejection” from the two gears, 

thus being much less sensitive to operating conditions and rig parameters, including the much greater 

number of transfer paths, modulations, and resonances in the casing vibration measurements. The 

measurements in this paper were made on a single stage gearbox, over an input gear speed range from 2 – 20 

Hz, and input shaft torque range from 0 – 20 Nm. Earlier measurements on the same gearbox were for soft 

gears which developed distributed pitting over an operating period of many hours. Unfortunately, the 

encoders used at that time (actually included in slip rings) had a low torsional resonance frequency, which 

precluded obtaining TE at higher than 2 Hz shaft speed, so only GTE and STE could be estimated. New 

results are presented here for ground, hardened gears with a simulated tooth root crack on one tooth. Not 

only does this illustrate the differences with a local fault, but new encoders were mounted, valid up to a shaft 

speed of 20 Hz, so that DTE could also be measured. 

 
1 Introduction 

Gear transmission error (TE) is defined as the difference in torsional vibration of two gears in mesh, 

scaled so as to represent linear motion along the line of action, this being common to the two gears. Already 

in 1996 [1], it was shown that TE could be measured simply and accurately by phase demodulation of the 

pulse signals from high quality shaft encoders on the free ends of the shafts on which the gears are mounted. 

The measured torsional vibrations, in terms of angular displacement, are scaled by the respective base circle 

radii, and subtracted to give relative motion along the line of action. The accuracy of the encoders 

themselves corresponds to fractions of a micron of TE, and virtually no further error is introduced by the 

phase demodulation processing by Hilbert transform techniques (as compared with the earlier use of 

analogue phase meters, or polynomial interpolation between pulses). It is often possible to mount the 

encoders on the free ends of the gear shafts (the section not transmitting torque) so that they follow the gear 

motions up to a very high frequency. The proposed application in [1] was to the measurement of TE in 

design, development and manufacture, to add to information gained from measurements using gear 

metrology machines, but it has also been proposed as a tool for gear diagnostics in [2]. However, at the time, 

that was limited by the necessity to mount encoders on the machines. 

It is now becoming more common for encoders to be built into machines, to provide valuable information 

for both control and monitoring of, for example, variable speed machines such as wind turbines, and this will 

presumably increase with the adoption of the Internet of Things, so it is likely that measurement of TE will 

become more available as an indicator of gear faults. 
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Transmission error (TE) has long been thought to be a major contributor to gear vibration and noise, but 

the relationship between them has not been fully understood. For a start there are three distinct types of TE: 

1) Geometric TE (GTE) given by deviations of the (combined) tooth profiles from ideal involute;  2) Static 

TE (STE) including elastic deformation of the teeth, and therefore being load dependent;  3) Dynamic TE 

(DTE) including inertial as well as stiffness effects, and thus being speed as well as load dependent. 

Measurement and application of these three types of TE as a diagnostic tool were discussed in [3], but it 

was found that the encoders used there (actually included in slip rings) had a low resonance frequency, 

which precluded measurements at high enough speed to give DTE. The same test rig has now been equipped 

with high quality encoders, and the current paper uses new measurements with that system. Another 

difference is that the old measurements were made with soft gears, run for an extended period so that 

(uniformly distributed) pitting developed, but no distinct local faults. The current paper uses measurements 

made with hardened ground gears, but with a simulated tooth root crack seeded in one tooth on the pinion, to 

give information on local faults, and tooth root cracks in particular, this being one of the most critical faults, 

and most important to distinguish from less critical faults such as local spalls. 

 

2 Test rig and measurements 

The overall layout of the spur gear test rig is shown in Figure 1.  

  
Figure 1: The spur gear test rig at UNSW. (a) photo; (b) schematic diagram 

 

For the original measurements in [3] the reduction ratio was 19:52, and the gears were of mild steel. The 

original encoders were also slip rings, and had a low frequency resonance so that the highest valid input 

speed was 2 Hz.  

For the new measurements, the reduction ratio was changed to 27:44 (same centre distance) and the gears 

were of hardened steel to avoid surface distress. The encoders were replaced by Heidenhain type ROD426, 

with 1000 pulses per rev, as well as a one per rev tacho pulse as a phase marker, and they gave valid results 

up to at least 20 Hz shaft speed. An EDM-generated half-tooth root crack (a 45 slot across the entire 

facewidth, 2.86 mm deep, extending to the tooth centreline, and 0.35mm wide) was seeded on one pinion 

tooth (input gear). Measurements were made at speeds 2, 5, 10, 15, 20 Hz, and loads 0, 5, 10, 20 Nm (all 

referenced to the input pinion). In addition to the encoder and tacho recordings, accelerometer measurements 

were made in the vertical direction on the casing above the input shaft at the motor end, and above both 

shafts at the brake end. 



3 

 

3 Results and discussion 

3.1 Earlier results from the spur gearbox 

A short summary is given here of the results published in [3], because they contain some findings which 

are different from those of the more recent measurements, published for the first time here. As mentioned, 

the gears were of mild steel and were run for a long period (nearly 50 hours) during which time they 

developed surface pitting fairly uniformly distributed around the gears. This was much more pronounced on 

the 19 tooth pinion than on the 52 tooth gear, because each tooth had a much greater number of contacts in 

inverse ratio to the tooth numbers, so only the pinion is discussed here. 

Wear was monitored by trending the amplitude of the TE gearmesh harmonics (and the corresponding 

component of the synchronously averaged TE signal) in two conditions: low speed-low load (GTE) and low 

speed-high load (STE).  

The effect of wear on GTE and STE showed an unexpected trend. The growth of the gearmesh harmonics 

was more pronounced on GTE during the first 6 hours of operation (mild pitting), and on STE later (severe 

pitting). The greater sensitivity of GTE in the initial phase was interpreted as being due to the fact that the 

unloaded GTE would have been dominated by (a few) local high spots at the edges of the pits, which would 

be easily deformed under relatively light load to give a reduced STE. On the other hand, with severe pitting 

more continuously distributed along the contact line, high spots would reduce the visibility of wear in GTE, 

and increased load would tend to give an increase in TE. Figure 2 shows a schematic representation of this 

interpretation, together with snapshots of the surfaces after about 2.5 and 42.5 hours of operation. For a 

detailed description of this test campaign the reader is referred to [4]. 

 

 

 
Figure 2: Schematic example of the interpretation of the effect of mild (top) and severe (bottom) pitting on  

GTE and STE, with corresponding example images of the gear surface. 

 

In simulation models it is quite common to have GTE as a fixed value in series with the toothmesh 

stiffness. The latter is not always constant, but any nonlinearity is usually taken to correspond just to the 

extra compliance of the Hertzian component at low load, which still does not give a large difference in the 

overall stiffness, since the Hertzian component typically only represents about 25% of the total compliance, 

with the dominant bending stiffness component being almost linear. The above experience with “high 

points” does seem to indicate that, to obtain a reasonable match between such a simplified model and 
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experiment, it would be better to use a value of GTE measured at a low, but non-zero, load sufficient to 

negate the effect of the high spots, and giving a more sudden transition to the Hertzian affected section of the 

stiffness curve. 

Another interesting finding from the same study showed that, differently from TE, vibration was almost 

entirely insensitive to wear in both unloaded and loaded cases, at low speed. This was attributed to the fact 

that the proportion of the STE due to tooth deflection is still relatively small, but in fact it is only the 

dynamic tooth load, giving this deflection, which gives rise to vibration. At low speed there is no inertial 

resistance to rotation, so the driven gear can simply absorb the GTE by relative torsional motion, with almost 

no change in the GM spring force, even for the loaded case where the static load is almost constant. It could 

be expected that for DTE the much greater angular accelerations involved might prevent the driven gear 

from simply “moving out of the way” and thus force tooth deflection and increased vibration. This was 

actually found in [3] for the higher harmonics of gearmesh. Unfortunately, the encoders mounted at the time 

of this first test had a low resonance preventing reliable measurements of TE at speeds higher than 2 Hz (i.e. 

DTE) and their comparison with the vibration.  

 

3.2 New results from the spur gearbox 

As mentioned above, the new measurements were for a different gear ratio, and the gears were hardened 

and ground, to mitigate against surface distress. Moreover, they were reduced in face-width from 20 mm to 

5 mm to reduce the gearmesh stiffness proportionately. The tests are to check the effects of the simulated 

half tooth-root crack described in section 2. It should be noted that the gearbox test rig is non-ideal (and non-

typical) because the shafts are relatively long and slender (to give access inside the casing), but this means 

that the TE tends to be dominated by shaft deflections rather than tooth defections, making it difficult to 

detect changes in tooth stiffness, such as result from a crack. The tooth stiffness is at least an order of 

magnitude greater than the shaft stiffness. Both TE and vibration acceleration were measured over a range of 

speeds and loads, but speeds of 2 Hz and 20 Hz, and loads from zero (nominal) to 20 Nm are presented here. 

There was a small friction load corresponding to nominal zero, which was sufficient to keep the gears in 

contact, and allow measurement of the GTE at low speed. 

Figure 3 shows the measured TE, synchronously averaged with respect to the pinion, for loads of 0, 5, 10, 

15 and 20 Nm, for four different conditions: 

1) Original TSA at 2 Hz 

2) Original TSA at 20 Hz 

3) Filtered TSA at 2 Hz 

4) Filtered TSA at 20 Hz 

Two (identical) rotational periods are shown. Bandpass filtering was performed to remove the masking 

effect of the gearmesh (GM) components and the first two harmonics of the input shaft speed, and so shaft 

harmonics from the 3rd to the 13th were retained in the TE signals. It was checked that the main effect of the 

crack was additive rather than multiplicative (modulation of the GM harmonics) so the signals were lowpass 

filtered just under half the GM frequency to enhance additive impulses from the crack, having components 

above the first two rotational harmonics, but removing modulation sidebands along with the GM harmonics. 

Considering first the unfiltered results at low speed in Fig. 3(a), the increasing load gives a corresponding 

increase in the gearmesh component, but no change in a shaft speed component, which is likely due to a 

small eccentricity of the pinion. The TE for zero load could be taken as the GTE for this gear. The increasing 

GM component with load corresponds to the static deflection component of the STE.  

For the equivalent results at 20 Hz, in Fig. 3(b), it is seen that the DTE is substantially different from the 

STE, at least with respect to the GM component. This can be explained by the fact that the GM frequency 

(540 Hz) is very close to a resonance of the system. This interpretation is also consistent with the fact that the 

increased GM component is dominated by the first harmonic, whereas that in Fig. 3(a) has many GM 

harmonics. 

The filtered low speed results in Fig. 3(c) reveal the effect of the crack, at about 50 degrees along the 

scale, although the effect becomes less evident with increasing load. With this knowledge, it will be seen that 

the crack can also be detected in the unfiltered signal in 3(a), though only at the lowest load.  
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Figure 3: Comparison of original and filtered TE measurements 

(a) Original TE, 2 Hz  (b) Original TE, 20 Hz  (c) Filtered TE, 2 Hz  (d) Filtered TE, 20 Hz 

(a) 

(d) (c) 

(b) 
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The situation is very similar for the high-speed results in Fig. 3(d) (and 3(b)), and it is quite remarkable 

that once the effect of the resonance on the GM component is removed, the STE of Fig. 3(c) and DTE of 3(d) 

are very similar, at least for the lowest two loads. This illustrates one of the advantages of TE rather than 

vibration (including torsional vibration) as a diagnostic parameter, since the effects of operating conditions 

are greatly reduced.  

The unexpected reduction in TE with increase in load gave rise to speculation as to the cause, and it was 

realised that it must be due to the fact that the “crack” has actually started slightly closed with respect to the 

undamaged gear, and the effect of increasing load is to counteract this with increasing tooth deflection under 

load. This is the opposite to what is expected to happen in the case of a genuine natural crack, where it has 

been demonstrated [5] that there is a tendency for the crack to be permanently open, in the unloaded 

condition, because of the plastic deformation at the crack tip which is an intrinsic part of crack development. 

The reason for the “crack” closure in this case is undoubtedly because of relief of residual stresses from heat 

treatment when the slot was machined, but this should never occur with real crack development, where STE 

due to loading would be in the same direction as the original GTE. 

The change in TE as a result of tooth deflection is not easy to see, even from the filtered results in 

Fig. 3(c) and (d), but Figure 4(a) and (b) show a zoom of the differential TE in the vicinity of the crack. This 

represents the difference with respect to the curve at the highest load (20 Nm), but with reversed sign so as to 

show the increase of deflection with load. This is seen to be monotonic and close to linear. The 

corresponding linearised compliance can be derived from the deflection vs load curves in Fig. 4(c, d). These 

differ by only 33%, and indicate that it may be possible to estimate gearmesh stiffness from DTE as well as 

STE, even where measurements cannot be made at low speed. 

   

 

 
 

Figure 4: (a, b) Zoom on differential TE in vicinity of crack  (c, d) corresponding compliance curves 

(a, c) 2 Hz shaft speed  (b, d) 20 Hz shaft speed 
 

(a) (b) 

(c) (d) 
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It is interesting to compare the (differential) compliance values in Fig. 4 with the typical value given for 

total stiffness by Smith in [6] as “A generally accepted figure for the mesh stiffness of normal teeth is 1.4 

×1010  N/m/m”, which works out in this case to be 7 × 107 N/m, or 14 m/kN in terms of compliance. This 

constant value (per unit facewidth) is based only on the bending stiffness component, and is independent of 

scale for a given shape of tooth since the stiffness varies directly with the cube of the depth, and inversely 

with the cube of the length. The values in Fig. 4 represent the differential compliance (additional deflection 

for the same load), which would be 5.18 and 6.89 m/kN, respectively. In Ref. [7], an estimate is made of 

the change in stiffness of the toothmesh due to cracks of various sizes, using FEM and an improved 

simplified method, which agree. For their largest crack, which extends to 48.4% of the tooth thickness, and 

which has a sharp tip, the increase in compliance is 33% in the single tooth pair zone and 25% in the double 

tooth pair zone. Considering that the “crack” in the current results has a depth of 50%, and is actually a slot, 

it is likely the increase in compliance would be greater than those from [7], giving good agreement with the 

results from Fig. 4.  

It is interesting to compare these TE results with those from response accelerations. Figure 5 shows 

synchronously averaged signals (over two rotation periods) at zero and 20 Nm load, and 2 and 20 Hz input 

shaft speed. Only the response at highest speed and highest load shows the tooth root crack. Although not 

shown here, even the responses at 20 Hz and 15 Nm did not show the crack. From Fig. 5(d) it appears that 

the effect of the crack is mainly multiplicative (local amplitude modulation) so it could be that the resonance 

near the GM frequency has also amplified the effect of the crack. 

 

  
Figure 5: Synchronously averaged acceleration signals for two speeds and two loads 

(a, b) 0 Nm  (c, d) 20 Nm  (a, c) 2 Hz  (b, d) 20 Hz 

 

It is quite possible that further signal processing could extract evidence of the crack from more of the 

response signals, but the main point with respect to this paper is that the TE and vibration responses give 

quite different information about a tooth root crack, with perhaps the main point being that it only excites a 

vibration response when teeth are deflected, and therefore not under zero load. The GTE, on the other hand, 

does show the crack at zero load, in this case because the “slot” had actually closed because of relief of 

residual stresses. However, in the case of normally developing cracks, they would be partially open because 

of plastic deformation at the crack tip, and would open further under load, this being detectable by 

measurement of STE and DTE, the latter at higher speeds, where it would not be possible to measure the 

GTE. 

The fact that information was obtainable, from the measured TE, of toothmesh stiffness, even at higher 

speed where the GM frequency excited a resonance, emphasises the fact that the TE is measured right at the 

source, whereas vibration response measurements at different measurement points would all be different, and 

correspond to different (possibly time-varying) transmission paths. 

 

4 Conclusion 

This paper gives a number of examples of how measured gear TE can be useful in gear diagnostics, as an 

alternative, or supplement, to vibration measurements. It explains how GTE, STE and DTE can be measured 

if it is possible to run the machine at low speed and low load (GTE), low speed and high load (STE) and high 

(a) (b) 

(c) (d) 
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speed and high load (DTE). An earlier paper demonstrated some of the characteristics for generalised 

distributed wear and pitting of the teeth, giving changes on tooth profiles, whereas the current paper shows a 

number of advantages, compared with vibration measurement, for the critical case of a tooth root crack. Of 

particular interest was that it was possible to obtain estimates of the change in toothmesh stiffness (actually 

compliance) due to the crack, and indirectly of the toothmesh stiffness itself. The latter would probably 

require comparison with simulations of the cracked tooth, for example with an FE model. 

Potential advantages of using TE for gear diagnostics are: 

1) The measurement is closer to the source, and less disturbed by transfer function effects than vibration 

responses, which not only vary considerably between different positions, but can also be time-varying.  

2) It is easier to get a good correspondence with simulations, because the torsional parts of simulated 

systems are simpler, and affected by fewer resonances than lateral vibrations, so model updating should be 

simpler. 

3) The measurement of GTE at different times during the life of a gearbox, as well as giving a more direct 

measurement of wear, will make possible the inclusion of more accurate versions of this parameter in 

simulation models, including those giving lateral vibrations as outputs. 

The technique does require the mounting of accurate encoders on at least the input and output shafts of 

the gear transmission, but does not necessarily require them to be mounted on all shafts [3], which can be 

difficult for internal components. However, the inclusion of such encoders is already implemented in some 

machines, for operational purposes, and this is likely to increase with the wider implementation of the 

Internet of Things. 
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Abstract
The analysis of the squared envelope spectrum (SES) is one among the most used tools for bearing diagnosis.
It can easily reveals the characteristic frequencies related to the bearing fault [1, 2]. Actually, the envelope is
estimated through a demodulation process in a selected frequency band. The proper choice of the latter is really
challenging in a complex environment [3]. In addition to that, the frequency of the bearing fault is likely to
be masked by deterministic components. This can jeopardize the efficiency of classical techniques [3, 4, 5].
In this paper, a new approach for bearing diagnostic is proposed. It is based on a recently proposed order
tracking technique using the H∞ filter [7]. In details, the method starts by computing the squared envelope
(SE) of the raw signal over the full demodulation band without prior processing. Next, the SE is modeled in a
state space using a trigonometric series expansion. Last, an H∞ estimator is designed to extract the amplitude
of each harmonic related to the bearing fault signature. This estimator is well convenient to track the order
of bearing faults, particularly in the presence of deterministic components (i.e. the noise). Since this noise is
neither white nor Gaussian, the traditional Kalman filter order tracking is compromised [8, 9, 10]. Contrary
to the Kalman filter, the H∞ filter is based on the minimax optimization. The minimax approach leads to the
minimization of the estimation error for the worst possible amplification of the noise signal. More interestingly,
no prior knowledge about the statistical properties of the noise signals is required [11, 12]. The efficiency of
the proposed approach is demonstrated on simulated and real-world vibration signals in nonstationary regimes.

Keywords: H∞ filter, state space modelling, order tracking, squared envelope, bearing diagnosis, vibration
signal, variable speed condition.

1 Introduction

Rolling element bearings are among the most widely used elements in rotating machines. Because of their
common role to carry high loads, bearings are likely to be exposed to sudden failures causing system out-
age. Thus, there has been an increasing interest in developing appropriate techniques for signal denoising and
incipient fault detection. Due to their non-invasive nature and their high reactivity to incipient faults, the devel-
opment of vibration-based techniques has spiked the interest of the scientific community [1]. In this context,
envelope analysis has long been recognized as a powerful bearing diagnosis technique. Typically, it consists
of a bandpass filtering step in a frequency band wherein the impulsive response is amplified, followed by a
demodulation that extracts the signal envelope. The spectrum of the envelope reveals the desired diagnostic in-
formation, including the repetition frequency of the fault as well as possible modulations. It has been shown in
[2] that it is preferable to use the squared envelope instead of the envelope as the latter is likely to introduce ad-
ditional interfering components in the envelope spectrum. Since that time, the envelope spectrum was replaced
by the squared envelope spectrum (SES) which has become the benchmark technique for bearing diagnostics.
A powerful solution to this issue was proposed through the spectral kurtosis [16] (and some derived tools such
as the kurtogram [17], the fast kurtogram [3], etc.) which provides an entirely blind way of identifying the
best demodulation band according to the impulsivity criterion. Despite its remarkable relevance in machine
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signal analysis, the efficiency of the spectral kurtosis is compromised in many situations; for instance, in the
presence of energetic deterministic part or the presence of multiple impulsive sources or strongly in nonstation-
ary conditions. This paper comes in this context aiming at providing a new way to address bearing diagnostic
based on tracking bearing characteristic orders (i.e. fault frequencies referenced to the shaft frequency) in the
squared envelope, without the need of eliminating the deterministic component neither to filter the signal. The
method uses the fact that the SE signal comprises a cyclic patterns related to bearing fault. From this observa-
tion, the SE signal is described in the state space model using a trigonometric series expansion. Then, an H∞
filter is designed to track bearing fault order components. This approach is different from the classical Kalman
filter based order tracking. The latter is a widespread method used to track sinusoidal components [8, 9, 10],
assuming that the exegeneous noises that affect the state model are white and Gaussian with known statistics.
In current situations, those assumptions are not valid. Indeed, the meshing components that mask the bearing
ones are neither white nor Gaussian. To address this issue, an H∞ filter is proposed. The latter minimizes the
estimation error for the worst possible amplification of the noises. This leads to a minimax optimization where
no prior knowledge about the statistical properties of the noises is required [11, 12].
The proposed approach is presented in this paper as follows. In Section 2, the SE of a discrete vibration signal
is described in the state space model using a trigonometric series expansion. In Section 3, the methodology to
design an H∞ filter is exposed. In Section 4, the proposed approach is first applied to a simulated vibration sig-
nal. Then, it is applied to analyze real-life vibration signals acquired from a wind turbine under nonstationary
conditions. Conclusions of this paper are given in Section 5.

2 State space modeling of the squared envelope signal

Condider the discrete measured vibration signal as follows:

y[k] = yr[k]+ yg[k]+b[k] (1)

where yr[k] is the signal related to the bearing vibration, yg[k] is the meshing signal and b[k] is the signal
composed of all the exegeneous vibrations such as the background noise for all k = 1, · · · ,N. N is the number
of signal samples. The meshing signal, in the case of a tooth crack, exhibits amplitude and phase modulations
[6]. The corresponding signal in nonstationary regimes can be written as:

yg[k] = κ(ω[k])∑
m

am[k]e jφm[k]e jθm[k] (2)

in which κ(ω[k]) is a modulation function depending on the machine regime, ω[k] = 2π fr[k] is the shaft
angular speed and fr is the machine rotating frequency, am and φm are respectively the amplitude and phase
modulations, θm is the instantaneous meshing angular displacement and j is the complex number such as
j2 =−1. Concerning the bearing vibration signal, it exhibits a series of impulses which can be modelled as [1]:

yr[k] = κ(ω[k])M[k]
d

∑
i

AiI[k−dTi fse] (3)

in which:

• M[k] is the load distribution function for an inner-race under radial load. In stationary conditions, this
function is periodic at the shaft rotating period [18];

• Ai is the amplitude of the ith impact so that Ai = A+δAi. A is the mean value of the distribution and δAi

is a zero-mean random part with σA its standard deviation;

• Ti is the instant of apparition of the ith impact;

• I is the damping response that depends on the damping factor and the resonance frequency of the bearing
structure;

• d is the number of impacts resulting from the bearing fault;
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• fs is the sampling frequency;

• d·e stands for the integer part of a decimal number.

Since the bearing’s rolling elements are subject to slipping phenomena, the time of occurence from one impact
to another is not constant. This time exhibits a random part and, as mentionned in [1], can be modelled in
stationary conditions as:

Ti = iT +δTi (4)

where T is the time isntant between two consecutive impacts and δTi is a random variable with a Gaussian
distribution. This modelling is no longer valid in nonstationary conditions. In this context, Borghesani et al.
[19] and Abboud et al. [20] have written the instant of impact occurrence as follows:

Ti = t(iθd +δθi) (5)

in which θd is the angular period of the bearing fault and δθi is a zero-mean Gaussian distribution.
The squared envelope of the measured vibration signal, which is of interest in this work and denoted SE, is
given as follows:

SE[k] = E{y[k]ȳ[k]} (6)

= E{(yr[k]+ yg[k]+b[k])(ȳr[k]+ ȳg[k]+ b̄[k])} (7)

where ā is the conjugate of the complex number a and E{·} stands for the expectation symbol.
In this paper, it is assumed that the bearing, the meshing and the noise signals are mutually not correlated.
Hence, the squared envelope becomes:

SE[k] = E{yr[k]ȳr[k]}+E{yg[k]ȳg[k]}+E{b[k]b̄[k]} (8)

= E{yr[k]ȳr[k]}+n[k] (9)

where n[k] = E{yg[k]ȳg[k]}+E{b[k]b̄[k]} is considered as a noise signal. Otherwise, the SE can be expressed
using the autocorrelation function (ACF) denoted by R. The latter, applied to the bearing signal yr in equation
(3), can be written as [20]:

R[k, j]≈ (A2 +σ2
A)κ

2(ω[k])M2[k]
d

∑
i=1

E{g[k−dTi fse, j]} (10)

where g[k, j] = I[k]I[k− j]. By writing this function in the angular domain, one gets:

R[ka, j]≈ (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

E{g̃[ka−dθiNae, j]} (11)

with x̃ the angular transformation of the time variable x, ka the sample index in the angular domain, Na the
angular sampling frequency and θi the angle instant of the ith impact occurrence. Refering to equation (5), the
latter is modelled as θi = iθd +δθi [22]. Thus, the ACF becomes:

R[ka, j]≈ (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

E{g̃[ka− ka,i−δka,i, j]} (12)

where ka,i≈diθdNae is the angular sample of the ith impact occurrence and δka,i≈dδθiNae is a random integer.
The above equation of ACF has been proven by Abboud et al. in [20]. By taking advantage of this equation,
the SE, using the ACF, can be expressed as:

SE[ka] = R[ka, j = 0]+ ñ[ka] (13)

= (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

E{g̃[ka− ka,i−δka,i, j = 0]}+ ñ[ka] (14)

= (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

E{h̃2[ka− ka,i−δka,i]}+ ñ[ka] (15)
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Assume that the random variable ka− ka,i− δka,i has a probability density function f [δka,i] centered at
ka−ka,i with a constant standard deviation. According to the law of the unconscious statistician [15], the above
equation is written as:

SE[ka] = (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

d

∑
i=1

h̃2[ka− ka,i−δka,i] f [δka,i]+ ñ[ka] (16)

= (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

(h̃2 ~ f )[ka− ka,i]+ ñ[ka] (17)

SE[ka] = (A2 +σ2
A)κ̃

2(ω[ka])M̃2[ka]
d

∑
i=1

s[ka− ka,i]+ ñ[ka] (18)

in which ~ stands for the convolution symbol and s[ka] = (h̃2 ~ f )[ka] is the convolution between the function
h̃2 and f . The function M̃2[ka] is deterministic and can be approximated by a Fourier series such as M̃2[ka] =

∑s λs[ka]e jψs[ka]e jsθr[ka] where λs and ψs are respectively the sth variable amplitude and phase of the Fourier
series and θr is the angular period of the shaft. In same way, the sum in the SE formula can also be expressed
by ∑d

i=1 s[ka−ka,i] = ∑z ρz[ka]e jϕz[ka]e jzθd [ka] with ρz and ϕz respectively the zth variable amplitude and phase of
the Fourier series and θd the angular period of bearing fault. This leads to:

SE[ka] = (A2 +σ2
A)κ̃

2(ω[ka])ℜ{∑
s,z

λs[ka]ρz[ka]e j(ψs[ka]+ϕz[ka])e j(zθd [ka]±sθr[ka])}+ ñ[ka] (19)

where ℜ{.} defines the real part of a complex number. In this paper, all the components related to the shaft
angular period are not of interest. Therefore, the SE is written as:

SE[ka] = (A2 +σ2
A)κ̃

2(ω[ka])ℜ{ ∑
s=0,z

λ0[ka]ρz[ka]e j(ψ0[ka]+ϕz[ka])e j(zθd [ka])}+ v[ka] (20)

≈
l

∑
z=1

αz[ka]cos(zθd [ka]+φz[ka])+ v[ka] (21)

in which αz[ka] = (A2 +σ2
A)κ̃2(ω[ka])λ0[ka]ρz[ka], φz[ka] = ψ0[ka] +ϕz[ka] are respectively the zth amplitude

and phase of the Fourier series, v[ka] is the noise comprising the initial noise ñ[ka] and all the components
related to the shaft angular period θr[ka] and l is the higher order of the series. The latter defines the number of
the bearing component of interest in the estimation procedure. In the state modelling approach that is proposed
in this paper, v[ka] is the so-called measurement error or measurement noise.

At this stage, the detection of the bearing fault is reduced to the estimation of the amplitude αz and the phase
φz of the zth order component. This estimation can be done using a linear or a non-linear filtering approach.
However, the non-linear approach are subject to a divergence issue. To obtain a linear model, the SE signal is
presented in the following form:

SE[ka] =
l

∑
z=1

hhhT
z [ka]xxxz[ka]+ v[ka] (22)

where:

• hhhz[ka] =
(

cos(zθd [ka]) sin(zθd [ka])
)T ∈R2×1 is the zth measurement vector. R stands for the ensem-

ble of the real number and (·)T for the transpose symbol. In the rest of this paper, the lowercase symbols
in bold stand for vectors and the uppercase ones in bold stand for matrices;

• xxxz[ka] =
(

αz[ka]cos(φz[ka]) αz[ka]sin(φz[ka])
)T ∈ R2×1 is the zth state variable.

Using equation (22), the estimation of the amplitude and the phase of the Fourier series reduces to the estimation
of the state variable xxxz. In this context, the simultaneous estimation of xxxz leads to write the SE as:

SE[ka] = hhhT [ka]xxx[ka]+ v[ka] (23)
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in which hhh[ka] =
(

hhhT
1 [ka] · · · hhhT

l [ka]
)T ∈ R2l×1 and xxx[ka] =

(
xxx1[ka] · · · xxxl[ka]

)T ∈ R2l×1 are respec-
tively the measurement vector and the state variable. Assuming that the angular period of the bearing fault is
known, the detection of the latter is reduced to the estimation of the state variable xxx[ka]. In this context, it is
proposed to estimate xxx[ka] in a recursive manner using a state space modelling approach.
For this reason, the SE signal is described in a state space. That is to say the dynamic of the state variable has
to be defined. In this paper, all parameters include in the state variable xxx[ka] are supposed to follow, roughly
speaking, a random walk so that:

xxx[ka +1] = xxx[ka]+www[ka] (24)

where www[ka] is a random or deterministic signal with bounded energy. Equations (23) and (24) form the state
space model of the SE signal. From the latter, an H∞ filter is designed in the next section for the state variable
estimation.

3 H∞ filter order tracking

Considering equations (23) and (24), the H∞ filter will be designed to estimate some arbitrary linear com-
bination of the state, say:

ŝ[ka] = hhhT [ka]x̂xx[ka] (25)

where x̂[ka] satisfies the following recursion:

x̂xx[ka] = x̂xx[ka−1]+ggg[ka]
(
SE[ka−1]−hhhT [ka−1]x̂xx[ka−1]

)
(26)

where ggg[ka] is the H∞ gain and x̂xx[ka] is the estimate of xxx[ka]. The state variable is estimated for any v[ka]
and www[ka] of bounded energy.
Let e[ka] = s[ka]− ŝ[ka] be the estimation error, then the H∞ gain is found by minimizing the following cost
function given by [12]:

J =
∑N

ka=1 ‖e[ka]‖2

‖e[1]‖2
PPP[1]−1 +∑N

ka=1

(
‖www[ka]‖2

QQQ−1 +‖v[ka]‖2
R−1

) (27)

where (e[1],www[ka],v[ka]) 6= (0,0,0), e[1] represents the initial error, PPP[1] > 0, QQQ > 0 and R > 0 are positive
definite weighting matrices, N is the number of samples and ‖e[ka]‖SSS = e[ka]

T Se[ka]. This can be interpreted as
the energy gain from the unknown disturbances PPP−1/2[1]e[1] and {QQQ−1/2www[ka],R−1/2v[ka]}N

ka=1 to the estimation
error {e[ka]}N

ka=1. It is quite clear that if the ratio in (27) is small then the estimation is better, and vice versa.
However, this ratio depends on the quantities e[1], www[ka] and v[ka] which are unknown. In this context, the worst
case is considered below:

Sup
e[1],www[ka],v[ka]

J ≤ 1/γ (28)

where ”Sup” stands for the supremum and γ is the performance bound. Otherwise, the goal of the H∞ problem
is to find an estimation {ŝ[ka]}N

ka=1 that minimizes the worst-case energy. This is equivalent to minimize the
following scalar quadratic form:

J f = eT [1]PPP−1[1]e[1]+
N

∑
ka=1

www[ka]
T QQQ−1www[ka]+

N

∑
ka=1

v[ka]
T R−1v[ka]− γ

N

∑
ka=1

e[ka]
T e[ka] (29)

so that J f > 0 for all vectors e[1], for all nonzero signals www[ka] and v[ka] of bounded energy.
Giving the cost function J f , the worst case minimization is reduces to minimize J f in respect to ŝ[ka] and to
maximize J f in respect to e[1], www[ka] and v[ka] for all ka = 1, · · · ,N. This leads to a minmax optimization
formulated in such a way that:

{ŝ[ka]}N
ka=1 = arg (min

ŝ
max

e[1],www,v
(J f )) (30)

This optimization problem can be solved by the well known Lagrange mutliplier approach. The solution to the
above optimization is given by the theorem quoted below [11, 12, 14].
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Theorem 1 Let γ > 0 be the user-specified performance bound. Then, there exists an H∞ estimation for s[ka] if
and only if there exists a symmetric positive definite matrix PPP[ka] ∈ R2l×2l that satisfies the following discrete-
time Riccati equation:

PPP[ka] = PPP[ka−1]ΓΓΓ[ka−1]+QQQ (31)

when
ΓΓΓ[ka] =

(
III2l− γhhhT [ka]hhh[ka]PPP[ka]+hhh[ka]R−1hhhT [ka]PPP[ka]

)−1
(32)

and III2l ∈ R2l×2l is the identity matrix.
Then, the H∞ gain ggg[ka] ∈ R2l×1 is given by:

ggg[ka] = PPP[ka]ΓΓΓ[ka−1]hhh[ka]R−1 (33)

It should be noted that for some weighting matrices PPP[1], QQQ and R the performance criterion in (28) is achieved
if and only if the performance bound γ satisfies the following inequality:

γ < R−1 (34)

Since γ defines the noise level attenuation or the performance bound, it should be as high as possible. And,
it has been shown in a previous paper [7] that when γ is greater than its optimal value, the matrix PPP is not
symmetric positive definite. Otherwise, when γ tends to zero, the H∞ filter is not constrainted. Then, it is
equivalent to the standard Kalman filter for which R and QQQ are defined respectively as the covariance matrix of
the measurement noise and the state noise.

4 Application

4.1 Synthetic signal analysis

Here, a synthetic signal is presented to evaluate the performance of the proposed approach in estimating
bearing order components. The signal is composed of the bearing, the meshing and the noise signal. They
represent respectively 20%, 30% and 50% of the synthetic signal energy. The non-stationary condition is simu-
lated using a non-linear rotating frequency varying between 5 Hz and 30 Hz such as fr[k] = 5+25sin

(
π(k−1)
2(N−1)

)

for 1≤ k ≤ N where N is the number of samples. The time duration of the signal is 5 s.
Concerning the meshing signal, sampled at the frequency fs = 10 kHz, it is computed using equation (2) and
contains five meshing components. The latter is composed of the 45th and 49th shaft order component with
amplitude and phase modulations. The generation of these modulations is presented in details in Appendix A.
About the bearing signal, it is generated using equation (3) in which the resonance frequency and the damping
factor are respectively equal to 4 kHz and 2000.

The rolling bearing considered is subject to a local defect occurring on the outer-race. Its characteristic
order, ball-pass-order on the outer-race denoted BPOO, is equal 8.7 times the rotating frequency with a slight
random variation. Last, the additive noise is generated using a white Gaussian noise modulated by the rotating
frequency.
The different contributions of the signal are displayed in Figure 1. It can be seen in the SES of the raw signal
(Figure 1 (g)) that the bearing fault order is masked by deterministic components. Thus, the proposed approach
is applied to track the order component of the bearing fault. The number of order harmonic of interest l is equal
to 15. Also, the parameters of the filter take the following values: R = 1, QQQ = 0× III2l , γ = 0.9R−1 and the filter
initial values are PPP[1] = III2l and xxx[1] =

[
1 · · · 1

]
∈ R2l×1. The choice of QQQ is motivated by the fact the

coefficients of the trigonometric series expansion are assumed to be constant. This means that the state noise
www[k] is null for all k = 1, · · · ,N.
The result of the estimation provided by the H∞ estimator for the choosen parameters is presented on Figure 2.
There, the number of peaks estimated by the proposed approach correponds to the expected ones, i.e 15 peaks.
Moreover, the deterministic components present in the SES of the raw signal have been greatly attenuated.
Besides of that, some peaks, with lower energy level, appear around the bearing order components. This is due
to the fact that the H∞ filter, like all type of filter, don’t atteanuate uniformely all the frequencies outside the
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1 – Synthetic vibration signal: (a) Rotating frequency, (b) Meshing signal, (c) Bearing signal, (d) Com-
plete vibration signal, (e) Time-frequency representation, (f) SES of the bearing signal and (g) SES of the
complete signal.
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band of interest.
To evaluate the performance of the proposed approach, the signal-to-noise ratio is calculated by the following
formula snr = 10× log10

(
∑N

k=1 s2[k]
∑N

k=1(ŝ[k]−s[k])2

)
where s is the SE related only to the bearing signal and ŝ is its

estimate. When the bearing signal is totally influenced by the meshing and the noise signal, that is the worst
case estimation, the estimation error is ŝ[k]− s[k] = b[k]. In this case, the snr is equal to −6 dB and defines
the lower limit of the performance bound. On this basis, it can be stated that all estimations provided by the
proposed approach should have a snr greater than−6 dB. It follows that a higher snr leads to a better estimation.
For this first simulation, after a 200 Monte-Carlo simulations, the estimation error leads to a snr equal to 1.48
dB. This value is greater than the performance bound and corroborates the quality of the estimation displayed
on Figure 2.

Influence of the fault frequency incertitude

In the results presented above the frequency (or order) of the bearing was exactly known. In real situations,
this frequency is known with uncertainty. This can be due (i) to the fluctuation of the shaft rotating frequency,
(ii) to the imperfection of the speed sensor or (iii) to the sliping phenomena of the bearing rolling’s elements. In
this section, the influence of the uncertainty of the bearing fault order on the estimation quality is investigated.
Thus, the snr is evaluated for different values of uncertainty on the bearing fault order. This uncertainty varies
from 0 % to 5 % of the real value of the order of the bearing fault. The snr obtained in the range of the
uncertainty is displayed on Figure 3. There, the snr remains constant when the uncertainty varies from 0% to
2.5%. This is interesting for the bearing health monitoring since the uncertainty on a potential fault frequency
can reach 2% in real situations as mentionned by Randall and Antoni [1]. Beyond this value, the snr decreases;
thus the quality of the estimation is degraded and the proposed approach is no longer robust to track the bearing
order components.

Figure 2 – Estimation of the SES of the bearing sig-
nal provided by the H∞ filter. Here, the uncertainty
on the bearing fault order is equal to zero.

Figure 3 – Signal-to-noise ratio (snr) evolution
against the uncertainty on the bearing fault order.

4.2 Experimental signal analysis

This subsection deals with signals acquired from a 2 megawatts wind turbine high speed shaft on which a
condition monitoring system is installed. The bearing has an inner race fault which is increasing in severity
across the 50-day period. At the end of the test, the bearing was inspected and a crack has been identified in the
inner race. Acceleration signals were recorded on a daily basis (one signal per day) together with tachometer
signals, over a 6 s duration each with a sampling frequency equal to 97656 Hz. The nominal speed of the
bearing shaft is 1800 rpm (30 Hz). Note that the speed variability has reached 15 % of the nominal speed
in some records; the reason why the regime is considered nonstationary. The theoretical fault frequencies
referenced to the shaft frequency are as follows:

• Ball pass order on outer-race: BPOO = 6.72;

• Ball pass order on inner-race: BPOI = 9.47;
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• Ball spin order: BSO = 1.435;

• Fundamental train order: FTO = 0.42.

More information can be found in [21]. In this section, the proposed approch is applied to track the order
components locolated at i×BPOO, i×BPOI, i×BSO and i×FTO where i = 1,2,3. The parameters of the H∞
filter take the following values: R = 1, QQQ = 0× III3 and γ = 0.95 and the filter initial values are PPP[1] = III3 and
xxx[1] =

[
1 · · · 1

]
∈ R6×1. To monitor the health state of each component of the bearing during the 50-day

periods, the energy of each order component is evaluated. Figure 4 shows the evolution of this energy during

(a) FTO

(b) BSO

(c) BPOO

(d) BPOI

Figure 4 – Evolution of the order component energy for the different type of fault that can occur on the bearing
over the 50 days of measurement: (a) cage fault, (b) Rolling elements fault, (c) Outer-race fault and (d) Inner-
race fault.
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the 50 days. Concerning the order components located at i×FTO and i×BSO with i = 1,2,3, their energy
remains constant till the 49th day where an amplification is observed. This may be related to a degradation
of the bearing train and rolling elements at the end of the test. About the BPOO components, their energy
is almost constant and negligible compare to that of the FTO and BSO. Therefore, the bearing outer-race is
healthy. Otherwise, the energy of the order components located at i×BPOI increases along the days. This
amplification is related to the evolution of the inner-race fault severity. A significant jump in the energy can
be seen from the 30th day. According to the inspection done after the 50th day, a crack in the inner-race has
been noticed at the 50th day. Thus, the proposed order tracking approach is efficient to detect earlier a bearing
fault. Based on the bearing order component estimation provided by the H∞ filter, different indicators can be
designed to monitor bearing health state.

5 Conclusion

In this paper, an order tracking technique was proposed to diagnose a bearing fault under a nonstationary
condition. The proposed method consists of estimating a certain number of bearing order components whitout
removing the deterministic components. The method described the squared envelope signal in the state space
model using a trigonometric series expansion. Then, an H∞ filter is designed to track bearing fault order com-
ponents. Firstly, the theoretical foundation of the proposed approach has been described in details. Secondly, a
synthetic signal has been generated to evaluate the performance of the proposed approach. It has been shown
that the approach was able to track the bearing order components without removing the deterministic compo-
nents. Moreover, the performance of the proposed approach remains stable for an uncertainty error on bearing
orders less than 2.5%. Finally, the efficiency of the proposed approach has been demonstrated with wind turbine
vibration signals under a nonstationary condition. The order components related to the bearing fault has been
estimated by the proposed approach throughout 50-days of measurement. A fault on the bearing inner-race has
been successfully detected earlier at the 30th day. In terms of perspective for this research, the authors will
work on the design of a robust H∞ filter to deal with a large uncertainty on the order of the bearing fault.
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A Synthetic meshing signal generation

The meshing signal is composed of five components and presented as follows:

yg[k] = κ(ω[k])
5

∑
m=1

yg,m[k] (35)

where yg,m is the mth meshing component. The latter is defined by the expression below:

yg,m[k] = Am[k](1+am[k])eomθ [k] (36)

in which:

• am is the amplitude modulation of the mth meshing component;

• Am is the amplitude of the mth meshing component so that it is a random value comprises between 0 and
1 and κ(ω[k]) = ω2[k]/max(ω[:]) is the modulation correponding to the variation of the regime in which
ω is the angular speed of the machine;

• θ [k] = 2πts ∑k
c=1 fr[c] is the instantaneous angular displacement of the shaft rotating at frequency fr. ts is

the sampling period;
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• om corresponds to the mth order of the meshing signal. It takes respectively the following values:45,
2×45, 3×45, 1.089×49 and 2×1.089×49.

It is well known that when a fault appears on a gear tooth, the resonance frequency of the gear structure is
excited by an impulse [6]. The generated impulse signal modify the shape of the amplitude modulation so that
the latter can be described by a series of impulsive. Each impulse is modeled by a narrow bandwidth gausian
function. This function is defined by as below:

ext[k] = ∑
i

e−
1
2

(
(k−1)ts−µi

σ2

)2

(37)

where µi is the center of the Gaussian function determined by the time instant for which the impulse occurs on
the gear tooth and σ defines the width of the Gaussian function. In this simulation σ = 10−3. Since the gear
attenuates the impulse generated by the fault, a transfert function is included in the model so that the amplitude
modulation becomes:

am[k] = ρm× s[k]~ ext[k] (38)

in which s[k] = e−ξ (g)(k−1)ts sin
(

2π f (g)res (k−1)ts
)

is the transfert function of the gear structure and ρm is a

random value comprises between 0 and 1. ξ (g) and f (g)res are respectively the damping factor and the resonance
frequency of the gear structure. They are respectively equal to 5000 and 4000 Hz.
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Abstract
The purpose of this paper is to investigate the possibility of estimating Francis hydroelectric turbine modal
parameters in transient conditions by focusing on resonance regions generated by the interaction of a structural
mode with a frequency-variant harmonic pressure pulsation. Especially when numerous modes are in the
same bandwidth, this method separates them by exciting only matching mode shapes. To extract a specified
harmonic from the signal, the resonance retrieval is done using Order Tracking method. A classical ambient
modal identification algorithm is then used to feature the isolated mode. Furthermore, using the phase-shift
between measured locations, modes can be localized and shape determined.

List of Symbols

i Complex unit
diag[AAA] Diagonal matrix of vector AAA
<AAA|BBB > Complex inner product of AAA,BBB

AAAT Transpose of AAA
AAA∗ Conjugate of AAA
|AAA| Determinant of AAA
δr Kronecker Symbol
NS Number of sensors
N f Number of frequency samples

ΦΦΦ (NS×n) Global modal matrix for a system of n modes
MAC Modal Assurance Criterion

MACthr Threshold MAC in E-FDD
θθθ r (4+NS×1) Parameter vector of mode r
θθθ (4+NS×1) Modal parameter vector as a variable

L (θθθ) Negative Log-Likelyhood Function

ωk Discrete pulsation k ∈ J1,N f K
X̂XXk (NS×1) Estimated frequency response in ωk (C)
XXXk (NS×1) Theoretical frequency response in ωk (C)
hr,k Modal transfer function of mode r in ωk (C)
pk Scaled FFT of modal Excitation in ωk (C)
εεεk (NS×1) Scaled FFT of channel noise in ωk (C)
EEEk (NS×NS) Theoretical density matrix in ωk (C)
s1,k First singular value of Ek

ϕϕϕr (NS×1) Theoretical mode shape of mode r (C in FDD)
ϕ̂ϕϕr (NS×1) Estimated mode shape of mode r
βr Characteristic real scalar value of mode r
ωr Natural pulsation of mode r
ξr Damping Ratio of mode r
Sr Modal force of mode r
Ser PSD Error for mode r

1 Introduction

Design and exploitation of hydroelectric turbines relies on the knowledge of their dynamic behavior. This
enables one to generate and validate models to either get a good assessment of life duration or plan predictive-
based maintenance. Two sources of information are useful to properly characterize the mechanical behavior of
a structure: numerical simulations and experimental data processing. Giving high computing power, the first
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source could give a whole and detailed analysis of the behavior in any expected regime through Computational
Fluid Dynamics (CFD) and Finite Element Analysis (FEA) but needs to be validated by the second to be
reliable. It is a straightforward consequence of the strong assumptions made to reduce computational burden
and model the highly turbulent characteristics of the flow. The second approach relies on in-situ measurements
to extract dynamic features [1].

The increase of computational power over years allows getting more accurate simulations for startup
regimes [2, 3], no-load or part-load configurations [4, 5, 6] and even hydrodynamic damping estimations [7].
However, the results still show discrepancies in structural parameters due to deviations from real operating con-
ditions: rotating machinery [8], fluid-structure interaction added mass, damping and stiffness [9, 10], cavitation
influence [11, 12, 13] or boundary condition sensitivity [14]. On the other hand, experimental characterization
is highly fragmented, but in general closer to reality for a given measured operating condition. The features ob-
tained from experimental data relie on statistical models [15, 16], indirect measurements [17], time-frequency
analysis [18], but can also be obtained by modal parameter identification using Operational Modal Analysis
(OMA) [19] or Experimental Modal Analysis (EMA) [20]. In addition, the experimental hydraulic instabil-
ity study can be used to compare different computational turbulence models [21, 22, 23]. Typically, the two
sources of information (simulations and experiments) are crossed to obtain a hybrid representation of the dy-
namic behavior, which is used to obtain accurate load levels and allow a better prediction of fatigue [24]. Those
predictions are used to assess the runner life duration and reliability of the capacity [25, 26, 27].

One of the problems with experimental analysis is the cost of data acquisition. To reduce financial burden
of measurements, the idea is to extract a maximum of information from transient records instead of several
stationary records, which would make the measurement less time-consuming. Furthermore, the processing
of transient records allows obtaining real structural parameters of highly damaging regimes [23, 28] (what
numerical analysis still struggles to perform, as aforementioned). Our goal is to determine whether a signal
processing methodology is able to extract precise and suitable features from these transient measurements.
For this, a combined methodology using Order Tracking, OMA and Phase-Shift Analysis is implemented and
performed on a case study. The case study data come from a medium-head Francis Turbine in Quebec (Canada).
The paper first presents the theoretical background, including literature and the different OMA tools to be used.
Afterwards, the model is tested on the case study of an operational runner prototype.

2 Resonance Detection Using Phase-Shift Diagrams

Resonances are usually found with the study of experimental correlograms where the amplified regions
are treated as Operating Deflecting Shape (ODS). But there is another alternative to detect resonances with
more confidence: Phase-Shift Analysis (PSA) [29, 30]. Resonance amplitudes are time-dependent and phases
are relative to a reference in experimental data, but the modal phase-shift from one sensor to another is a
theoretical time invariant absolute quantity that is specific to each mode. Especially, when a harmonic (time-
variant pulsation) and a mode (almost constant pulsation) intersect with the same phase-shift, the observed
ODS is very likely the resonance of the only excited mode. This resonance can be extracted and processed with
OBMA through a Single Degree of Freedom (SDoF) formulation (Section 3 & 4). Once the mode has been
detected, it is possible to feature its shape: the mode shape is assumed to be the nodal diameter that fits the best
the modal phase-shift (e.g. [18] in which a self-excited vibration of a hydroelectric runner is studied during
load rejection). It is also possible to determine the shape by identifying the pattern of the exciting harmonic,
particularly if this last comes from a well-known phenomenon (vortex rope [27, 31, 32, 33, 34], Rotor-Stator
Interactions (RSI) [26, 27, 31, 35, 36]).

3 Order Tracking Procedure

Once PSA and resonance mapping is achieved, it is still required to extract accurate damping ratios and
frequencies, and eventually other modal properties (modal force etc.). In order to do this, identification algo-
rithms are implemented to process multi-channel resonance signals. The first pre-processing step is to extract
the resonance component and isolate it from the rest of the signal. This is the purpose of Order Tracking.
This class of method gathers all the tools able to extract one harmonic from the signal by shifting the time
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domain to a harmonic one, called order domain. Orders, measured in times per revolution, are analog to fre-
quencies. Order Tracking is a classical and very used diagnosis tool for rotating machineries. There are four
main techniques that are commonly used: direct method using Fourier Transform of a time series (FS), Angular
Resampled-based Order Tracking (AD), Time-Variant Discrete Fourier Transforms (TVDFT) and Vold-Kalman
filters (VK).

FS extracts the n− th harmonic from a signal by tracking the X̂XX [nω0,k] response with a short-time Fourier
transform at each time step, where ω0,k is the runner angular velocity at time step k. This procedure is highly
biased due to tapering, leakage effects and bandwidth control. In the classical approach with constant time
intervals, low rotating frequencies are less accurate than higher ones. If time intervals are non-constant, some
power spectral density rescaling issues rise and must be taken into account.

Another technique relies on an adaptative Fourier transform with settable kernel [37]: the kernel of the an-
alytic exponential function tracks the frequency of interest. Consequently, a precise targeted order is extracted.
In early works, the kernel orthogonality was lost and a compensation matrix had to be introduced to partly fix
the problem. This issue is now easily fixed by introducing a change of variable in the integration domain, and
gives a Velocity Synchronous Fourier Transform [38]. Vold-Kalman (VK) Bank Filters can extract orders from
a signal with an instantaneous analysis instead of an averaging procedure [39]. Consequently, VK filtering is the
most accurate technique in terms of resolution but entails a heavy computational burden, that is irreconcilable
with industrial applications.

AD is a resampled-based method that avoids any leakage effect and phase issues [40]. The asynchronous
time series are turned into synchronous time series (constant ∆α instead of ∆t) by the means of interpolation
and tachometer record (Computed Order Tracking [41]). Then, a short-time Fourier transform is performed
on the resampled signal, with intervals corresponding to one runner revolution (so that the spectrum resolution
coincides with orders). Intervals are neither overlapped nor windowed. An order spectrum is obtained for each
studied revolution. Each of those revolutions is converted into frequency by averaging the rotational speed
over the lap. It can be noticed that the lower the studied dynamic, the weaker the quasi-static assumption over
a revolution, the higher the response estimation quality. The bias of AD comes from both interpolation and
synchronous interval split. Interpolation bias is due to interpolating method (e.g. linear, quadratic, splines)
and shaft torsion that induces tachometer signal fluctuations. The issue with synchronous interval split is that
each interval must represent exactly one revolution, that is not necessarily the case. Most of those biases can
be reduced if data are recorded with a extensively high sampling frequency compared to the structure natural
frequencies. For the purpose of this paper, the classical COT-based AD will be used, because the data sampling
frequency is far higher than the natural frequencies of studied modes.

4 Operational Modal Analysis

Few has been done in the field of OMA for hydroelectric runner dynamic featuring. Gagnon et al. used this
technique to characterize guide-vane behavior for different operating conditions [19]. The same point is made
for EMA for which the study achieved on a runner obtained results that were in well agreement with simula-
tions, but for experimental setting not representative of actual operating conditions [20]. Moreover, in many
cases EMA cannot be implemented and when it is possible, suffers from major drawbacks like experimental
set-up cost or structural size and complexity. The point of OMA is to extract modal parameters from output-
only measurements containing both unknown excitation and response of the system. When those signals are
extracted with Order Tracking, the procedure is called OBMA (Order Based Modal Analysis) [40, 42, 43, 44].
OMA is of interest for several reasons: it is fast in terms of computing effort and measurement (mere sensors
replace excitation set-up), ambient excitation is appropriate to linearize the dynamic behavior and so on.

OMA techniques are divided into different classes: they can process in the time domain (TD) or frequency
domain (FD), and can be parametric or non-parametric [45]. TD approaches are straightforward, and are
generally parametric. They mainly study the auto-regression degree with (AR)MA-(X) models [46] and Sub-
space Identification technics [47] or the output correlations between channels (Polyreference, LSCE, Subspace
Identification, ERA) [48]. Frequency approaches can be parametric (Polymax or Polyreference) [49] or non-
parametric (Pick- Peaking, (E)-FDD) [50, 51]. Non-parametric methods often rely on Single Degree of Free-
dom (SDoF) theory, so that a pre-processing step is mandatory to separate modal contributions.

In OBMA, Polymax model has typically been implemented as identification support [40, 42]. However,
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Polymax does not seem to be the best candidate for such an identification, because parametric models always
generate spurious modes (due to noise and numerical bias). Furthermore, the model order is always difficult
to define (methods are based on stabilization diagrams or parsimony principle through the minimization of
criteria, e.g. Akaike and Bayesian Information Criterion, AIC or BIC). In order-tracked signals, it is easy
to know in advance the number of excited modes, which allows using non-parametric methods. Thus, the
authors propose to perform the following procedure: different modes are decomposed into SDoF responses and
bandlimited using a partial E-FDD procedure. Then, each mode is identified using a classical ambient SDoF
transfer function with a maximum likelihood estimator.

4.1 SDoF Separation

SDoF separation is performed using a modal coherent criterion applied on the singular vectors of the dis-
crete spectral density matrix. The classical input-output relation of density matrices under the condition of
white-noise input, low damping and uncoupled modes, can be developed according to the Heaviside partial-
fraction expansion theorem in the vicinity of its modal pulsations [52, 53].

EEEk|ωk≈ωr ≈ΦΦΦ∗diag
[

βr

(ξrωr)2 δr

]
ΦΦΦT (1)

Eq. 1 shows that the excitation density matrix is diagonal, and thus the output density matrix E is equivalent
to a diagonal one. The change of basis is done with the modal matrix ΦΦΦ = (ϕϕϕ1, ...ϕϕϕn). The diagonal matrix
contains only one non-zero term expressed as the contribution of the investigated mode through (βr,ξr,ωr),
respectively a characteristic scalar value, the damping ratio and the natural pulsation of mode r. The Kronecker
symbol δr is 1 for the r− th position of the diagonal matrix, else 0. In the vicinity of a natural pulsation, the
associated mode is the only contributor to the global dynamic of the system. The associated mode shape is
ϕϕϕr, r− th column of ΦΦΦ. In other terms, it is shown that the Singular Value Decomposition of the experimental
density matrix in the vicinity of a mode returns only one dominant singular value. The associated singular
vector in ωk = ωr (within the limit of frequency resolution) is the mode shape estimator. The set of the first
singular values {s1,k} is called Complex Modal Identification Function (CMIF) and is a unilateral representation
of the previous spectral density functions. The resonance function of each SDoF is identified from the CMIF
thanks to a discriminating criterion, the Modal Assurance Criterion (MAC) [54]. MAC varies from 0 to 1 as
the modal coherence increases. It compares the degree of agreement of two vectors:

MAC(ϕϕϕ i,ϕϕϕ j) =
<ϕϕϕ i|ϕϕϕ j >

2

<ϕϕϕ i|ϕϕϕ i ><ϕϕϕ j|ϕϕϕ j >
(2)

This criterion is able to separate two uncoupled close modes and discriminate spike noises. Brinker et
al. set the threshold to MACthr = n/

√
NS, where n is an integer so that MACthr is close but lower than 1, and

NS the number of studied sensors [55]. If MAC(ϕ̂ϕϕr,ϕϕϕ j) > MACthr, where ϕ̂ϕϕr is the shape estimator and ϕϕϕ j a
singular vector of the CMIF, then s1[ω j] belongs to the resonance function of the SDoF. This ensures to select
a bandwidth with high modal coherence. Figure 1 shows an example of the use of MAC. The E-FDD theory
shifts back in time domain to make the identification. But this procedure is a bad damping estimator, especially
in the case of short signals [56]. For this reason, the identification support is different and presented in the next
subsection.

A last point can be raised about the E-FDD limits: this procedure is only proper to separate uncoupled
signals. In the case of coupled modes, it is unable to differentiate modal contributions. In future works, a
Frequency-Domain Blind Source Separation developed by Castiglione et al. should be used instead [57]. FD-
BSS is able to separate coupled modes with an impressive accuracy, and relies on a more rigorous mathematical
approach.

4.2 Identification Using Maximum Likelyhood

After being extracted using AD method and bandlimited with MAC, the NS experimental frequency re-
sponses are concatenated into a vector X̂̂X̂Xk and are modelled with the classical SDoF response described in
eq. (3, 4), where XXXk is the theoretical response vector, hr,k is the modal transfer function depending on modal
parameters (ωr,ξr) and pk,εεεk are the normalized Fourier transforms of excitation and noise respectively.
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Figure 1: Modal contributions are framed using MAC, which compares the agreement level between two mode
shapes.

XXXk =ϕϕϕrhr,k pk +εεεk (3)

hr,k =−
1

ω2
k −ω2

r −2iξrωrωk
(4)

The associated Negative Log-Likelihood Function (NLLF) is given in eq. (5), where N f is the number of
point per channel, EEEk[θθθ ] the theoretical SDoF density matrix arising from eq. (3) and |EEEk[θθθ ]| the determinant
of the density matrix ; the analytical determination of both determinant and inverse matrix of EEEk[θθθ ] is far from
being trivial, and described in [58]. θθθ r = (ωr,ξr,Sr,Ser,ϕϕϕr) is the parameter vector, including natural pulsation,
damping ratio, modal force, PSD error and mode shape. θθθ is the parameter variable, used to estimate θθθ r. The
NLLF is minimised using a Nelder-Mead algorithm [59]. A such identification method was chosen because it
shows the best asymptotic properties.

L (θθθ) = NSN f ln(π)+
N f

∑
k=1

ln(|EEEk[θθθ)]|)+
N f

∑
k=1

X̂̂X̂X∗kEEE−1
k [θθθ ]X̂̂X̂Xk (5)

5 Case Study

The studied measurements come from a vertical medium head Francis hydroelectric runner exploited in
Quebec, Canada. This facility was chosen because the turbine was designed and is operated by two partners
of the current project. The measurement data were recorded during a slow transient from no-load overspeed
to stop. Two blades separated with an angle of 111◦ were instrumented with strain gauges. Intrados were
instrumented with three strain gauge rosettes, located in the band junction to blade leading edge and trailing
edge, and in the middle crown-blade weld, as shown in Figure 2. Extrados were instrumented with two uniaxial
gauges, one close to the crown, the other close to the band. The locations are the same from one blade to
another to ensure a redundant signal. Accelerometers and pressure sensors are located in different points
(blade, structure and penstock) and sensors are also installed on the shaft to record torque, flexion and thrust.
The rosette and uniaxial gauges are oriented in agreement with the expected strain flow direction, .e. in the
direction of the principal stresses.

An analysis of experimental correlograms (amplitude of short-time Fourier transforms) and absolute phase-
shift spectra between redundant sensors was made first. Some examples are shown in Figures 3 and 4, related to
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Figure 2: Strain gauge location on the instrumented blades. Circles represent rosette gauges, triangles represent
uni-axial gauges.

both sides of the crown (time and frequency axes are empty for the purpose of clarity). When the windowing is
long enough, correlograms show five ODS. Several modes can be contained inside. A clear resonance of mode 1
is detected on the intrados in the lower part of the diagram (below blade passing frequency signature, abusively
denoted ”RSI”) ; the other resonances are in the upper part. Phase-Shift spectra are amplitude-filtered, and
show only phases associated with a high enough correlogram. They show four single-mode bands and a multi-
mode band, due to multiple phase-shift detection. Resonance of mode 2 is detected on both sides, and mode
3 is vaguely detected on the extrados. Only one mode of the multi-shifted band is excited by a harmonic, thus
leading to a SDoF resonance. Table 1 summarizes all the detected modes in the range [0,100]Hz, and reports
the related resonant harmonic index. Phase-shifts are averaged over the region where the mode is found.

In the studied data, all the time series are recorded with an extensively large sampling frequency, and the
use of AD technique to extract harmonics should be straightforward. The next subsections present typical case
studies based on previous identified modes.

Mode Reference Frequency [Hz] Phase-Shift ×π[rad] Harm. Order
1 18.0 0 13
2 28.0 ±3/4 42
3 50.0 ±1/7 63
4 91.0 ±1/9 /0
5 58.0 ±6/7 61

Table 1: Experimentally Detected Modes

5.1 Identification Example: Shaft Torsion Mode with f0 = 18Hz

The first mode to be studied, mode 1, is excited by the 13− th harmonic of the rotating speed. This
corresponds to the blade passing frequency. Such an excitation can come for instance from the spiral case intake
or the drat tube elbow that can create a stationary disturbance that is seen by the rotating runner each time a blade
passes in front of the intake or the draft tube direction. The investigation of torsion measurements shows that
the studied mode is a natural torsion mode of the shaft line. What is observed on blades is only the propagation
of shaft natural vibrations. Thus, all the runner is excited with the same phase, and the nodal diameter is 0, that
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Figure 3: ODS Analysis of principal direction of intrados crown Rosette gauge. On the left, phase-shift spec-
trum of the redundant gauges. On the right, redundant amplitude spectra.

Figure 4: ODS Analysis of extrados crown Rosette gauge.
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is confirmed by the absence of phase-shift between blades. An axial thrust pulsation is measured on the shaft,
and indicates that the inflow to the runner is not symmetric to the guide vane orientation [31]. Examples of
extracted resonances are shown in Figure 5. The MAC narrows the bandwidth with a threshold MACthr = 0.875,
as depicted in Figure 6. The maximum likelihood estimator raises optimal parameters, shown in Table 2 and
Figure 7.a.

Natural Frequency Damping Ratio Modal Force PSD Error
f0 [Hz] ξ [%] S [ms2/Hz] Se [µ S/Hz]
17.43 1.26 2.22E6 1.73E-2

Table 2: Torque Mode Featuring

The shape relative amplitudes are the same on the two blades, as testifies Figure 7.a.. The mode shape
is in phase opposition from leading edge to crown, and is not spotted neither on trailing edge intrados or on
band extrados signals. That attests a ND−0 ”in umbrella”, as depicted in Figure 7.b. The modal force is very
difficult to extract and is likely very biased. The bias on damping ratio mainly depends on experimental data.
The leakage and tapering bias due to the windowing is avoided thanks to COT-based AD. However, the global
uncertainty level remains likely high because of the unknown excitation.

5.2 Results

Table 3 shows the result of the identification process performed on all detected resonance harmonics. The
information presented is: the exciting harmonic (indexed on the rotating frequency), the most likely nodal
diameter, the Signal-to-Noise Ratio (SNR), the bandwidth and the associated method (MAC or SENS for sensi-
tivity analysis) and the modal parameters. Except for the torsion mode, resonance signals have a low SNR that
renders impossible the use of MAC, because the singular value spectrum is still buried in noise. Instead, a sen-
sitivity analysis was made on modal parameters as a function of the bandwidth. The selected band corresponds
to the parameter convergence. This method gives wider bands (around ten times the width of a MAC selected
bandwidth), where noise has a significant influence. Rather, MAC criterion selects a narrower frequency band
with very few noise. The two methods return quite equivalent results. The experimental data reveals five iso-
lated modes numbered from 1 to 4 in Figure 4, and a multi-mode band. Amongst the 4 well-separated modes,
only the first 3 are excited by a harmonic and then identifiable. Into the multi-mode band, one mode is excited
by a harmonic. It is thus possible to feature it, but the SNR is particularly low. Notice that the first mode of
table 3 is the torsion mode featured in table 2.

6 Conclusion

This paper shows that Francis runner structural modes can be identified from ambient vibration data dur-
ing transient conditions. These modes have been successfully extracted and identified through an enhanced
OBMA technique (E-OBMA). E- OBMA combines three existing techniques and takes benefit from the best
of each: Order Tracking separation quality, MAC bandlimiting rigor and maximum likelihood accuracy. This
work shows that experimental transient data contains accurate frequency information that can be used to assess
numerical model validity. The presented results are the first effort in creating OMA strategy tailored for Francis
runners. The E-OBMA still has to be validated on an analytical case, which is now being developed. The Order
Tracking quality should be evaluated in conjunction with EMA sine-sweep excitation theory. Also, further
improvements will make possible the uncertainty quantification which is a major stake in signal processing.
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Figure 5: On the left, Order Spectra. All the harmonic contents are on the same line. On the right, the related
Bode Diagrams of the harmonic 13.

Figure 6: Resonance function extraction from the first singular values spectra (CMIF).

Figure 7: a) Partial mode shape extracted with maximum likelihood. b) Schematics of the observed mode
shape.
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Identification BandWidth Modal Parameters
Mode Nodal Diameters Bandwidth (Hz) Frequency (Hz) Modal Force (ms2/Hz)

Harm. Index SNR (dB) Method Damping ratio (%) PSD Error (µ s/Hz)

1 0 1.5 17.43 2.22E6
13 7.4 MAC 1.26 1.73E-2

2 1 8 28.71 3.31E5
42 1.8 SENS 3.26 1.18E-3

3 3/5 9 49.84 1.40E6
63 1.9 SENS 1.67 8.00E-4

Multi. 6 12 59.35 4.31E6
61 0.96 SENS 2.30 2.00E-3

Table 3: OBMA Identification Results
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Abstract 
Performing condition monitoring under time-varying operating conditions is challenging. The varying 

operating conditions impede the ability of conventional fault diagnosis methods to detect damage on rotating 

machine components such as bearings and gears. This paper investigates a new method for identifying 

diagnostic rich frequency bands under time-varying operating conditions. This method uses the order-

frequency spectral coherence and a feature, which is dependent on the cyclic order of interest and the 

frequency resolution of the spectral coherence, to decompose the signal into a feature plane. Thereafter, the 

spectral frequency and the spectral frequency resolution that maximise the feature plane are used to design a 

bandpass filter. The bandpass filter extracts a diagnostic rich signal, which can be analysed by using the 

squared envelope spectrum or the synchronous average. The proposed method is compared to the fast 

kurtogram on a numerical gearbox dataset as well as on an experimental gearbox dataset, with very 

promising results obtained. 

 

1 Introduction 

Effective fault diagnosis techniques are important for expensive assets such as wind turbines, because this 

can result in early detection of faults, their characteristics can easily be understood (e.g., which component is 

damaged) and subtle changes in the damage (i.e. deterioration) can be monitored. Many rotating machines 

inherently operate under time-varying operating conditions, which impede effective fault diagnosis. Hence, it 

is important to use condition monitoring techniques that are able to diagnose damaged machine components 

under time-varying operating conditions.  

Damaged rotating machine components such as bearings result in periodical excitations of the structure 

at a rate dependent on the kinematic characteristics of the component (e.g. ball pass order of the outer race, 

shaft rotation). This angle-dependent periodical excitation of the time-invariant structure generates signals 

that can be approximated as angle-time cyclostationary [1]. Abboud et al. [1, 2, 3] extended the suite of 

conventional time and angle cyclostationary techniques to time-varying speed conditions with tools such as 

the Order-Frequency Spectral Coherence (OFSCoh) being one of the most powerful fault diagnosis 

techniques for bearings under varying speed conditions.  



2 

However, in condition monitoring it is usually desired to utilise simple metrics or representations for 

making decisions (e.g. a spectrum is preferred instead of a time-frequency spectrum). Hence, the enhanced 

envelope spectrum and the even more powerful Improved Envelope Spectrum (IES), both calculated from 

the spectral coherence or the spectral corelation, can be used to diagnose the machine. For the IES, it is very 

important to select carefully the integration band to ensure that the IES has an optimal signal-to-noise ratio. 

This means that it is important to be able to identify frequency bands that are rich with diagnostic 

information. Identifying diagnostic rich frequency bands is also important for calculating the synchronous 

average and the squared envelope spectrum [4].  

The spectral kurtosis and the related kurtogram are effective for identifying frequency bands with much 

impulsive information [5, 6]. This is very appropriate for diagnostics, because bearing damage [4, 5] and 

gear damage [7] result in vibration signals containing bandlimited impulses. However, the kurtogram is 

sensitive to transients not related to the condition of the machine and it is not possible to investigate the 

optimal frequency band to detect damage associated with a specific cyclic order. Recently, new methods 

such as the infogram [8] and the IESFOgram [9] have been proposed for identifying frequency bands that are 

rich with diagnostic information by improving the shortcomings of the kurtogram.  

A new method is investigated in this paper that is able to identify a frequency band that contains 

diagnostic information related to a specific machine component under time-varying operating conditions. 

This has a significant advantage over conventional methods, because incipient damage components that are 

normally masked by other dominant signal components and distorted by time-varying operating conditions, 

can be extracted from the signal and used to diagnose the machine. The performance of this method is 

compared to the Fast Kurtogram on numerical gearbox data as well as on experimental gearbox data, both 

acquired under time-varying operating conditions.  

The outline of this paper is as follows: In Section 2, the proposed method is presented, whereafter it is 

investigated on phenomenological gearbox data in Section 3 and experimental gearbox data in Section 4. In 

the last section, Section 5, some conclusions are extracted and some recommendations are made for future 

investigations.  

 

2 Methodology 

2.1 Overview of the methodology 

An overview of the methodology is presented in Figure 1. The measured vibration signal and the 

corresponding rotational speed (or phase) is given as inputs, whereafter an Order-Frequency Spectral 

Coherence (OFSCoh) is calculated for a specific window length. A feature is extracted from each frequency 

band of the calculated OFSCoh. This process is repeated for the set of window lengths under consideration, 

whereafter a feature plane is constructed. The feature plane contains the value of the feature for different 

combinations of centre frequencies and window lengths (or frequency resolutions). Thereafter, the feature 

plane is maximized to obtain the parameters of a bandpass filter. This bandpass filter is used to extract a 

signal that is rich with diagnostic information from the original signal, whereafter the filtered signal can be 

analysed to infer the condition of the machine component. 

 

 
Figure 1: The proposed method for identifying frequency bands that are rich with diagnostic information. 

The subsequent sections give detailed information on each step in the proposed method. 
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2.2 Order-Frequency Spectral Coherence (OFSCoh) 

The impulses generated by components such as bearings are periodic in the angle domain, while they 

manifest in the time-invariant frequency bands. This means that the OFSCoh can be used to identify the 

resonance bands that are excited at specific cyclic orders. The OFSCoh [2] 

 

(1) 

provides a two-dimensional view of the modulating frequencies (i.e. cyclic orders) and their carriers (i.e. 

spectral frequencies) in the signal x(t). The Order-Frequency Spectral Correlation (OFSC) [2] 

 
(2) 

is used to calculate the OFSCoh in Equation (1). The expectation operator is denoted E, the Fourier 

transform is denoted Fw and Φ(W) denotes the phase of the shaft during the measurement time period W. The 

instantaneous phase of the shaft is denoted θ. It is easier to detect non-dominant components by using the 

OFSCoh as opposed to the OFSC.  

Estimators need to be used to calculate the OFSCoh for the measured data, with the Welch estimator as 

proposed in Ref. [2], used in this work. The Welch estimate of the OFSCoh is denoted γxx(α, f ; Δf ), where Δf 

is the frequency resolution that is used to obtain the estimate. 

 

2.3 Frequency Band Identification (FBI) 

It is possible to use a one-dimensional metric such as the kurtosis to identify the frequency band of 

interest. However, one-dimensional metrics do not allow different signal components to be distinguished 

from one another, which may result in a frequency band to be identified that is not necessarily of interest. 

Hence, a more advanced metric is required. 

  

2.3.1 Feature extraction 

Ref. [4] uses a metric to quantify the quality of the Squared Envelope Spectrum (SES). If their metric is 

large, it means that the diagnostic information is dominant with respect to the noise level in the SES, while a 

small metric indicates that it could be difficult to detect the cyclic components in the SES. The authors 

estimated the noise level with the median because the median is robust to outliers generated by the cyclic 

components in the SES.  

We used this metric as inspiration for designing the feature to identify the frequency band of interest, 

with the following feature obtained for the cyclic order set {αf}: 

 
(3) 

The numerator contains the squared magnitude of the spectral coherence for a specific window length Δf. 

The denominator contains the median function, which is calculated for the squared magnitude of the spectral 

coherence and is used to estimate the noise level in the OFSCoh. The following points are important 

considerations when calculating the feature for practical signals: 

1. The analytical cyclic orders may be different from the actual cyclic orders due to slip and therefore 

the maximum of a range of  [0.9αf, 1.1 αf] is calculated to estimate the numerator. 

2. The median of the squared magnitude OFSCoh cannot be calculated at α=αf and therefore it needs to 

be estimated from the discrete OFSCoh data. Hence, the median of the squared magnitude of the 

OFSCoh in the range of [αf -1, αf +1] is used to estimate the denominator. 

This feature also has similarities to the feature used by the IESFOgram [9]. In the latter method the ratio 

of the signal components in the IES are calculated with respect to the mean of the IES in the predefined 

bandwidth.  
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2.3.2 Feature plane construction and maximisation 

The feature is calculated for each frequency band in the OFSCoh. The Welch estimator of the OFSCoh 

depends on a number of parameters, namely, the window length, the window overlap as well as the number 

of points used to calculate the FFT. It is best to use an overlap longer than 75% of the window length, 

however, the window length needs to be determined prior to the analysis. It is also necessary to estimate the 

frequency bandwidth and not only the centre frequency for designing the bandpass filter parameters. Hence, 

the following procedure is used to simultaneously optimise the centre frequency and frequency bandwidth of 

the frequency band of interest: Firstly, the OFSCoh is calculated for a specific window length, whereafter the 

feature is calculated for each spectral frequency band in the OFSCoh. This process is repeated for each 

window length under consideration, whereafter the feature plane is obtained. The frequency band parameters 

are identified by finding the centre frequency and frequency bandwidth that maximise the feature plane. This 

is a very similar procedure to the kurtogram and the infogram, but instead of using the short-time Fourier 

transform, the OFSCoh is used, and instead of maximising a scalar value (e.g. spectral kurtosis), the 

maximisation is done for a set of cyclic orders. This allows the optimal frequency band to be determined to 

detect a set of cyclic orders.  

The identified frequency band parameters can be used to calculate the IES or to extract a bandlimited 

signal. In this work, we used the frequency band parameters to design a bandpass filter, whereafter the 

bandpass filtered signal is interrogated. The bandpass filtered signal can subsequently be analysed with 

techniques such as the Synchronous Average (SA) [10] and the Squared Envelope Spectrum (SES) [3]. 

 

2.4 Computational aspects 

Even though real-time condition monitoring is rarely required in practice, it is still necessary to provide 

answers in a reasonable time. The Welch-based estimator of the OFSCoh has very good bias and variance 

properties, but is very expensive to calculate for large datasets, especially for high rotational speed 

applications. If the cyclic orders of interest are known a priori, it is possible to only estimate the OFSCoh for 

specific cyclic orders; however, even this may be impractical for complex gearboxes found in wind turbines 

and helicopters, which may have many cyclic orders of interest. Fortunately, there has been very exciting 

developments in this field, where fast (and faster) estimators of the spectral correlation are proposed, which 

could make this method significantly faster to be calculated [11, 12].  

 

3 Numerical gearbox data 

In this section, we investigate the method and compare it to the kurtogram on data generated from a 

phenomenological gearbox model. In the next section, an overview is given of the model and the generated 

data, whereafter the Fast Kurtogram (FK) is used on the dataset in Section 3.2. The results of the proposed 

method are presented and discussed in Section 3.3.  

 

3.1 Phenomenological Gearbox Model (PGM) 

The Phenomenological Gearbox Model (PGM) proposed in Ref. [3] is used to generate a casing vibration 

signal. The casing vibration signal 

 (4) 

contains a bearing component xb(t), a random gear component xrg(t) and a broadband noise component xn(t). 

The generalised synchronous average can be used to attenuate the deterministic gear components attributed 

to the meshing of gears as described by Abboud et al. [3] and therefore they are not included in this model. 

The bearing component is generated by bearing damage on the outer race 

 
(5) 

where Tk denotes the time-of-arrival of the kth bearing impulse, which incorporates the varying speed 

conditions and the slip. The amplitude of the kth impulse, denoted Ak, is sampled from a uniform distribution. 

The raw bearing impulses are filtered through the structure, which is assumed to have an impulse response 
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function of a single degree-of-freedom system hb. The modulating function M(ω(t)) = ω2 is used to simulate 

the varying amplitude induced by time-varying operating conditions and is assumed to be the same for all 

signal components for the sake of simplicity.  

The random gear component 

 

(6) 

is attributed to gear damage and contains the random variable ε(t) which is sampled from a zero mean, unit 

variance normal distribution, and Bk and φk are, respectively, the amplitude and the phase of the kth harmonic 

of the component. There are Krg harmonics in the vibration signal. The noise component 

 (7) 

is generated by a zero mean Gaussian distribution with its amplitude dependent on the rotational speed of the 

system. The natural frequency of the impulse response function of the bearing and the gear components are 7 

kHz and 1.3 kHz respectively. The fundamental cyclic order of the distributed gear damage is 1.0 shaft order, 

while the fundamental cyclic order of the outer race bearing damage component is 4.12 shaft orders.  

A single dataset is investigated in this paper with the time-varying speed profile ω(t) and the different 

signal components shown in Figure 2. This system operates under constant load conditions.  

 

  

  

Figure 2: The speed profile, the casing vibration signal and the bearing and random gear components of the 

phenomenological gearbox model are presented. 

 

The varying speed conditions result in the amplitude and the instantaneous frequency of the signal 

components to be dependent of time. The relative magnitudes of the components were chosen so that the 

dominant distributed gear damage component impedes the ability to detect the bearing component. Hence, 

the focus of the subsequent investigations is to highlight how the proposed method can be used to detect 

weak components in the presence of dominant components and to show that it is possible to distinguish 

between the two. In the next section the kurtogram is investigated on the generated dataset. 

 

3.2 Application of the Fast Kurtogram (FK) 

The Fast Kurtogram (FK), developed in Ref. [6], is a faster estimator of the kurtogram than the conventional 

short-time Fourier transform-based estimator and is used in this work. The kurtogram is based on the spectral 

kurtosis [5], a very useful technique to identify frequency bands that contain transient information (as 

typically seen by bearing and gear damage). The FK is applied to the casing vibration signal (see Equation 

(4)) of the PGM with the result shown in Figure 3.  
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The FK is maximum at a frequency band with a centre frequency of 1328.12 Hz. This is the frequency 

band associated with the distributed gear damage component. The frequency band of the bearing damage at 

7.0 kHz can also be seen in Figure 3; however, its magnitude is significantly smaller than the magnitude of 

the gear component.  

 

 
Figure 3: The kurtogram of the PGM’s vibration signal. 

 

The implication of this is that without careful consideration, only the dominant impulsive frequency band 

will be detected by the FK, with a non-dominant frequency band easily missed in the condition interrogation 

process.  

This is corroborated by the results of the Squared Envelope Spectrum (SES) seen in Figure 4. The SES of 

the raw signal (i.e. without bandpass filtering the signal) and the SES of the filtered signal contains the same 

information. The fundamental component of the distributed gear damage at one shaft order and its harmonics 

are clearly seen in both spectra, while the bearing component is not seen.  

 

(a) Raw signal (b) Bandlimited signal 

  

Figure 4: The Squared Envelope Spectrum (SES) of the raw vibration signal and of the bandlimited signal 

obtained with the Fast Kurtogram (FK) for the PGM. 

 

It is important to emphasise that due to the statistical characteristics of the distributed gear damage 

component, it is not possible to remove it using cepstrum pre-whitening or the generalised synchronous 

average [3]. The proposed method is investigated in the next section. 

 

3.3 Application of the proposed method 

The proposed method is applied with the procedure discussed in Section 2, with the bearing and gear 

being monitored for damage. Therefore, the feature, calculated with Equation (3), is calculated for the gear 

with {αf}={1.0, 2.0, 3.0} (denoted α=1.0 in the figures) and for the bearing with {αf}={4.12, 8.24, 12.36} 

(denoted α=4.12 in the figures), which result in two feature planes that are maximised independently. The 

feature plane of the gear and the bearing are shown in Figure 5(a) and Figure 5(b) respectively.  

It is evident that the feature plane is clearly very dependent on the cyclic order that is used. Large values 

are obtained in Figure 5(a) in the region of 1.3 kHz, while large values are obtained in Figure 5(b) in the 
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region of 7 kHz. The optimal value for the gear in Figure 5(b) differs slightly from the analytical value, 

because the gear component is very dominant, which results in the different blocks to have features with very 

similar values, i.e. any of the blocks, could be used for detecting the gear. 

The SES of the raw and bandlimited signals of the two signal components are shown in Figure 6. The 

SES of the bandlimited gear signal, presented in Figure 6(b), does not improve the SES of the raw signal, 

presented in Figure 6(a), because the gear component is already very dominant in the SES.  

 

(a) α = 1.0 (b) α = 4.12 

  

Figure 5: The feature plane obtained with the proposed method for the gear component (a) and the outer race 

bearing component (b) of the PGM. The colour scales are not the same in the two plots. 

 

A significant improvement can be seen for the SES of the bearing component. The bearing component 

cannot be detected in Figure 6(c), but after identifying the appropriate frequency band with the proposed 

method, it is possible to obtain a SES that clearly highlights the damaged bearing component as seen in 

Figure 6(d). 

 

(a) Raw signal (b) Bandlimited signal (α = 1.0) 

  

(c) Raw signal (d) Bandlimited signal (α = 4.12) 

  

Figure 6: The Squared Envelope Spectra (SES) of the raw and bandlimited signals are shown for the gear 

component in (a) and (b) and for the outer race bearing component in (c) and (d) for the PGM. 
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This highlights the benefit of using the proposed method; if the signal component is dominant in the 

spectrum then the kurtogram can lead to similar results (as seen when comparing the results in Figure 4(b) 

and Figure 6(b)). However, the proposed method has sufficient flexibility to identify frequency bands for 

signals with low signal-to-noise ratios as well. 

 

4 Experimental investigation 

In this section, the proposed method is investigated on an experimental dataset. A brief overview of the 

experimental data is given in Section 4.1, whereafter the FK is applied to the dataset in Section 4.2 and the 

proposed method is investigated in Section 4.3. 

 

4.1 Overview of the experimental dataset 

The method is applied and verified in this section on an experimental gearbox dataset that has been 

acquired in the Centre for Asset Integrity Management (C-AIM) laboratory at the University of Pretoria. The 

experimental setup contains three helical gearboxes, an alternator and an electrical motor. The alternator and 

the electrical motor were used to induce the time-varying speed and load conditions shown in Figure 7 on the 

monitored gearbox. One of the helical gearboxes was damaged with the damaged gear shown in Figure 8(a) 

and operated for approximately 20 days whereafter the tooth failed as shown in Figure 8(b). A vibration and 

a tachometer measurement, taken after approximately five days of testing, are used in this paper. The gear 

rotates at 1.0 shaft order, while the pinion rotates at 1.85 shaft order. More information on the experimental 

setup can be found in Ref. [13].  

 

  
Figure 7: The operating conditions during the measurement period. 

 

 

 
Figure 8: The gear of the helical gearbox with the seeded fault before the fatigue experiment (a) and after the 

fatigue experiment was completed (b). 
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4.2 Application of the Fast Kurtogram (FK) 

The FK is applied on the dataset with the decomposition shown in Figure 9. Very large values are seen in 

the higher frequency bands. This is attributed to the presence of bandlimited transients that manifest at the 

frequency band 8-12 kHz at a cyclic order of approximately 5.5 shaft orders.  

  

 
Figure 9: The kurtogram of the experimental gearbox dataset.  

 

The SA is used to interrogate the presence of damage on the gear in Figure 10. The SA of the raw and the 

bandlimited signals are shown in Figure 10(a) and (b). It is not clear from the raw signal in Figure 10(a) what 

the condition of the gear is, but the transients that are retained by the bandpass filtering process dominate the 

synchronous average and make it especially difficult to infer the condition of the machine from the result in 

Figure 10(b). 

 

(a) Raw signal (b) Bandlimited signal 

 
 

(c) Raw signal (d) Bandlimited signal 

  

Figure 10: The Synchronous Average (SA) and the Squared Envelope Spectrum (SES of the raw and the 

bandlimited signals are shown as obtained with the Fast Kurtogram (FK). The damaged gear tooth is located 

at approximately 135 degrees in the SA plots.  

 

The SES of the raw and the bandlimited signals are also investigated in Figure 10. Three peaks are 

observed in the SES of the raw signal; the components at 5.72 and 11.44 shaft orders are attributed to the 
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transients in the signal and the component at 9.12 shaft orders is attributed to the alternator’s shaft being 

slightly unbalanced which resulted in periodical excitations. After, the filtering process, only the transient at 

5.72 shaft orders and its harmonics are retained. Hence, it is evident from the results that the kurtogram fails 

to recognise the important frequency band for diagnosing the gear.  

 

4.3 Application of the proposed method 

The proposed method is applied on the same signal as investigated in the previous section. The gear and 

the pinion are monitored and therefore the decomposition is performed for {αf}={1.0, 2.0, 3.0} shaft orders 

(denoted α=1) and {αf} = {1.85, 3.7, 5.55} shaft orders (denoted α=1.85), respectively. The feature plane is 

shown in Figure 11 for the two monitored components, where it can be seen that the feature planes are 

dependent on the cyclic order of interest, however, the identified frequency bands may not necessarily be 

completely separated. It is completely reasonable that the same cyclic order band is optimal for different 

mechanical components and therefore care should be taken to interpret the statistics (e.g. kurtosis) of the 

bandlimited signals.  

 

(a) α = 1.0 (Gear) (b) α = 1.85 (Pinion) 

  

Figure 11: The feature plane obtained with the proposed method. The feature plane of the gear is shown in 

(a) and the feature plane of the pinion is shown in (b). 

 

The SA in Figure 12 do not clearly reveal damage on either the gear or pinion with only small peaks seen 

at 135deg for the gear. This is attributed to the fact that the damage is still small and that helical gears are 

used with large contact ratios. Hence, the synchronous average is ineffective for detecting the incipient gear 

damage. 

The SES of the raw and bandlimited signals in Figure 13 perform significantly better than the SA for the 

gear and the pinion. It is possible to see that there is a clear 1.0 shaft order component, which is attributed to 

the damaged gear. In contrast, the SES of the healthy pinion does not contain any dominant components at 

1.85 shaft orders, which is indicative that the pinion is healthy. Hence, it is possible to use the proposed 

method and the SES to detect the incipient gear damage in the presence of dominant frequency components 

and time-varying operating conditions. 

 

5 Conclusions 

In this paper, a new method is investigated for identifying frequency bands that are rich with diagnostic 

information. The method uses the spectral coherence and a very carefully designed feature to allow specific 

frequency bands to be detected which can be analysed using the squared envelope spectrum and the 

synchronous average. 

The method is evaluated on two datasets; the first one is a numerical gearbox dataset that simulates 

bearing damage and gear damage under time-varying speed conditions. The results indicate that it is possible 

to identify the appropriate frequency band to identify the cyclic components of interest, while the fast 

kurtogram only identifies the frequency band with the most impulsiveness. Similar results are obtained on 

the experimental dataset where incipient damage was present on the gear of a helical gearbox. The fast 
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kurtogram maximised on frequency bands with strong impulsive content, with the incipient gear damage 

only detected by using the proposed method. It was also found that the synchronous average is not very 

effective for incipient gear damage detection and the squared envelope spectrum performs significantly 

better. 

 

(a) Raw signal (b) Bandlimited signal (α = 1) 

  

(c) Raw signal (d) Bandlimited signal (α = 1.85) 

  

Figure 12: The Synchronous Averages (SA) of the raw and the bandlimited signals, obtained with the 

proposed method, are shown. The result for the gear is shown in (a) and (b), while the result of the pinion is 

shown in (c) and (d). 

 

(a) Raw signal (b) Bandlimited signal (α = 1) 

  

(c) Raw signal (d) Bandlimited signal (α = 1.85) 

  

Figure 13: The Squared Envelope Spectra (SES) of the raw and the bandlimited signals, obtained with the 

proposed method are shown. In (a) and (b) the results for the gear are shown, while the results for the pinion 

are shown in (c) and (d). 

 

In future investigations, the method will be compared to the more recent developments in the informative 

frequency band identification field (e.g. infogram) and the suitability of this method for fault diagnosis under 

time-varying operating conditions will be investigated on more datasets. It is also suggested that the spectral 
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coherence needs to be estimated with the fast or faster spectral correlation instead of the Welch estimator 

used in this work. This would improve the computational efficiency of the proposed method. 
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Abstract 

Despite rarely being made explicit, signal models (and assumptions) for gear vibration have been fundamental 

in the development of both condition monitoring and operational modal analysis techniques. The analysis (for 

condition monitoring) or the removal (for OMA) of the dominant gear-meshing component is in fact dependent 

on the assumption on the number, location and patterns of the corresponding spectral harmonics. This paper 

discusses in detail the common modelling choices and their consequences for condition monitoring and OMA. 

The traditional gearmesh-carrier/shaft-modulated model is analysed and two main limitations of current 

models are highlighted: the additive assumption on the two gear modulating functions and the regularity of 

their effect on different gearmesh harmonics. The paper uses experimental gear signals to prove the validity of 

the newly introduced assumptions and to assess their practical significance. 

 

1 Introduction 

Gearbox condition monitoring has often been based on simple signal models. Empirical signal models are used 

as a first approximation of the vibration signal to justify and guide the development of diagnostic signal 

processing techniques. For this purpose, they are preferred to more detailed physical models (e.g. FEM or 

lumped parameters) due to their generality and ease of implementation. Empirical signal models aim at 

reproducing the overall properties of vibration signals, retaining the main time and frequency features that are 

observed in real signals and can be used for condition monitoring. Despite not requiring the fine-tuning of 

structural and geometric parameters typical of detailed physical models, correct assumptions on the phenomena 

generating the vibration are fundamental in developing appropriate empirical signal models. 

In the case of spur gears, the main source of vibration comes from the time-varying meshing force generated 

at the contact point between the pinion and driven gear teeth. The most widely accepted gear-signal model is 

therefore represented as [1] 

 

 𝑦(𝑡) = ℎ(𝑡) ⊗ 𝑔(𝑡) (1) 

 

where the gear-related component 𝑦(𝑡) of a measured vibration signal results from the convolution 

(symbol ⊗) of the system impulse response ℎ(𝑡) with the gear-meshing forcing function 𝑔(𝑡). As usual in 

rotating machines [2], the true nature of this signal has a hybrid time-angle definition. However, for nominally 

constant speed, the approximation of linearity between time and angular domain is often assumed. In this case, 

the easiest way to represent the signal in the frequency domain is probably to define (with approximation) the 

system transfer function 𝐻(𝑓) = ℱ{ℎ(𝑡)} in an equivalent shaft-order domain, adopting the approximate 

relationship 𝑓 ≈ Ω𝑓1 where 𝑓1 is the average (and almost constant) shaft speed of a reference gear (in this study 

we will always use the pinion/input shaft) and Ω is the order coordinate of the same shaft. In this case we can 

rewrite eq. (1) in the order domain as: 

 

 𝑌(Ω) = 𝐻(Ω𝑓1) ⋅ 𝐺(Ω). (2) 

 

In the case of perfect and healthy teeth, the contact force 𝑔(𝑡) is theoretically expected to show a gearmesh 

fundamental frequency (i.e. for a pinion with 𝑍1 teeth 𝐺(Ω) ≠ 0 only for Ω = 𝑘𝑍1), but in practice even 

imperfections in the manufacturing stage result in tooth-to-tooth variations. These variations are expected to 

be even more accentuated in the case of localised gear faults (e.g. tooth crack) and are modelled as gear-

synchronous modulations of the gearmesh harmonics. 



  
 

 

The excitation 𝑔 is usually modelled in time or in the angular domain 𝜃 of the reference shaft (in this case 

shaft 1) as an amplitude/frequency modulated signal, where the carrier is represented by the dominant 

gearmesh harmonics and the two modulating functions are synchronous with the two shafts. Actual explicit 

mathematical expressions of AM/FM signal models are rare, and many studies focus on the simpler AM case 

only. In this paper we will mainly focus on the implications that arise for condition monitoring and OMA in 

considering an AM/FM model. A full analytical discussion will be provided for AM-only models, including 

limitations of common assumptions and further issues encountered when dealing with actual signals. However, 

considerations on FM and AM/FM models will be provided, without the explicit formulation of full AM/FM 

signal models (due to their cumbersome expression), but keeping in mind all the major and minor spectral 

components arising from the combination of all modulating functions. 

 

2 Secondary sidebands 

The simplest model of the gear force (often implicitly considered in many condition monitoring studies) 

includes two purely amplitude modulation components: 

 

 𝑔(𝜃) = 𝑐(𝜃) ⋅ {𝑎(𝜃) + 𝑏(𝜃)} (3) 

 

where: 

 𝑐(𝜃) is the gearmesh-periodic dominant effect of the tooth-meshing 

 

 𝑐(𝜃) = ∑ 𝐶ℎ𝑒𝑗ℎ𝑍1𝜃

ℎ

 (4) 

with 𝑍1 representing the number of teeth of the gear on shaft 1, 

 

 𝑎(𝜃) and 𝑏(𝜃) are a shaft-periodic amplitude modulation functions due to irregularities among the 

teeth of shaft 1 and 2 respectively (and/or geometric/misalignment issues on the same shaft) 

 

 𝑎(𝜃) = ∑ 𝐴𝑘𝑒𝑗𝑘𝜃

𝑘

    and     𝑏(𝜃) = ∑ 𝐵𝑘𝑒𝑗𝑘𝜏𝜃

𝑘

 (5) 

where 𝜏 = 𝑍1 𝑍2⁄  is the gear ratio. 

Such AM signal is usually represented as: 

 

 𝑔(𝜃) = ∑ ∑ 𝐶ℎ𝐴𝑘𝑒𝑗(ℎ𝑍1+𝑘)𝜃

𝑘ℎ

+ ∑ ∑ 𝐶ℎ𝐵𝑘𝑒𝑗(ℎ𝑍2+𝑘)𝜏𝜃

𝑘ℎ

. (6) 

 

This formulation shows the main feature of AM gear models: the presence of sidebands around the 

gearmesh harmonics at orders ℎ𝑍1 + 𝑘 (effect of shaft 1) and ℎ𝑍1 + 𝜏𝑘 (effect of shaft 2). 

Such a simplified model already poses risks for OMA. In fact, the removal of these harmonics is often 

considered straightforward by means of established synchronous averaging techniques, using encoders 

installed on both shafts (or at least on a reference shaft). In most cases, shaft-1 and shaft-2 sidebands are thus 

removed separately by synchronous averaging over the respective periods. Even in a number of highly rigorous 

approaches, only one or a few combined periods of the two gears are used for these synchronous averaging 

operations. This “grand-period” is defined as the interval between the meshing of the same tooth pair, and 

equivalent to 𝑍2 periods of shaft 1 or 𝑍1 periods of shaft 2. 

However, considering the physical nature of the AM functions 𝑎(𝜃) and 𝑏(𝜃), a multiplicative model is 

much more justified, i.e. there is no reason why carrier and modulations should be treated differently and a 

three-term multiplication is more appropriate. This results in the modification of eq. (3) into the following: 

 



  
 

 

 𝑔(𝜃) = 𝑐(𝜃) ⋅ 𝑎(𝜃) ⋅ 𝑏(𝜃) (7) 

 

with a consequent proliferation of sidebands: 

 

 𝑔(𝜃) = ∑ ∑ ∑ 𝐶ℎ𝐴𝑘𝐵ℓ𝑒𝑗(ℎ𝑍1+𝑘+𝜏ℓ)𝜃

ℓ𝑘ℎ

. (8) 

 

Under this modelling assumption – and actually also for model (3) –, the fundamental period of the signal 

is the “grand-period”. However, differently from model (3) the signal shows a vast number of secondary 

sidebands ℎ𝑍1 + 𝑘 + 𝜏ℓ, with 𝑘, ℓ ≠ 0 (in addition to the ℓ = 0 and 𝑘 = 0 primary sidebands present also in 

the previous model). These secondary sidebands are expected to have (in the spectrum of the excitation) a 

lower amplitude (as the zero-frequency component of the modulation signals must be dominant to ensure 

positive-only modulating functions), but they could still significantly compromise OMA attempts based on the 

assumption that noise dominates the spectrum of the vibration signal, once the primary sidebands are removed. 

An experimental test to verify the extent of this effect has been carried out on the UNSW spur-gear test-

rig. The test-rig is composed of a speed-reducing spur gear pair (𝑍1 = 27 and 𝑍2 = 44) powered by an electric 

drive and connected to a magnetic particle brake. The set of gears (module 2 with 5 mm face width) are built 

in mild steel, and surface hardened. A gear crack was simulated by means of an artificial slot on the pinion 

starting at the base of the tooth and reaching the centreline with an angle of 45°. The test rig was operated with 

constant speed and load (10 Hz /10 Nm on the input shaft) and a vibration signal was measured by means of a 

B&K4396 accelerometer, installed on the top of the casing in proximity of the DE input-shaft bearing. The 

signal was sampled at a rate of 100 kSamples/s for a duration of 101 s, sufficient to ensure the observation of 

22 “grand-periods”. In addition, a phase-reference signal was obtained synchronously to the vibration signal, 

thanks to an encoder with 1000 pulses/rev installed on the NDE of the pinion shaft. 

The vibration signal was order-tracked ensuring that an integer number of samples 𝑁𝐺𝑀 was taken within 

a gearmesh period, thus also ensuring integer numbers of samples 𝑍1𝑁𝐺𝑀 in a revolution of shaft 1 and 𝑍2𝑁𝐺𝑀 

in a revolution of shaft 2. Residuals were obtained following two synchronous averaging (SA) procedures: the 

first was the traditional approach which removed all harmonics of shaft 1 and shaft 2 (primary sidebands of 

the gearmesh harmonics), whereas the second used the entire grand-period as reference for the synchronous 

averaging, thus removing all primary and secondary sidebands. 

The results are shown in Figure 1. The raw order-tracked spectrum clearly shows a significant amount of 

gearmesh harmonics and sidebands, which are only partly removed by the traditional SA approach. Whereas 

the low-frequency range (up to 10-15 gearmesh harmonics) seems mostly unaffected by the presence of 

secondary sidebands, in the range from 15 to 30 gearmesh harmonics the removal of the primary harmonics 

still leaves a large quantity of discrete components, which are identified as secondary sidebands. 

 



  
 

 

(a) 

 
(b) 

 
Figure 1. Result of the removal of primary-only (red) and primary + secondary (blue) sidebands from a 

gear vibration signal (black): (a) frequency range 0-30 gearmesh harmonics, (b) zoom of the most affected 

area. 

Adding frequency modulation to the model, the considerations made so far become even more relevant. 

Even taking pure frequency modulation, the signal consists of 

 

 𝑔(𝜃) = 𝑐(𝜃 + 𝜙(𝜃) + 𝜓(𝜃)) (9) 

 

where 𝜙(𝜃) and 𝜓(𝜃) are the phase modulations introduced by shaft 1 and 2, respectively: 

 

 𝜙(𝜃) = ∑ Φ𝑘𝑒𝑗𝑘𝜃

𝑘

       and       𝜓(𝜃) = ∑ Ψ𝑘𝑒
𝑗𝑘

𝑍1
𝑍2

𝜃

𝑘

 (10) 

 

This signal can be expressed as a Fourier Series as: 

 

 𝑔(𝜃) = ∑ 𝐶ℎ𝑒𝑗ℎ𝑍1(𝜃+𝜙(𝜃)+𝜓(𝜃))

ℎ

= ∑ 𝐶ℎ𝑒
𝑗ℎ𝑍1(𝜃+∑ Φ𝑘𝑒𝑘𝜃

𝑘 +∑ Ψ𝑘𝑒
𝑗𝑘

𝑍1
𝑍2

𝜃
𝑘 )

ℎ

 (11) 

 

The Bessel expansion of such signal (too cumbersome to report in this paper and whose details are of little 

significance) is composed of a large series of harmonics, at all the multiples of the fundamental frequency 

obtained from the “grand period”. Moreover, whereas the bandwidth of AM sidebands is expected to keep 

constant for each carrier harmonic, the bandwidth of FM sidebands grows proportionally to the harmonic order 

of the carrier [3], potentially amplifying this phenomenon at high orders. 

A detailed analysis of the motivation (AM, FM or mixed) of the high-frequency location observed for 

strong secondary side-bands is outside the scope of this paper, but a preliminary sensitivity analysis (varying 

shaft speed) indicates that the phenomenon has a stable location in the frequency domain (independent of 



  
 

 

speed), rather than in the order domain. This suggests that the relevance of the secondary harmonics is linked 

to a dynamic amplification due to the system transfer function, rather than an FM bandwidth problem. 

 

3 Irregularity of the sideband patterns 

According to the AM model of eq. (3), each sideband-pattern should repeat identically at each carrier 

harmonic. This is simply explained by the convolutive nature of the spectrum of an amplitude modulated 

signal. For instance, simply dividing each set of sidebands 𝐺(ℎ𝑍1 + 𝑘) = 𝐶ℎ𝐴𝑘 by the corresponding carrier 

harmonic 𝐶ℎ, the following equivalence should be obtained: 

 

 
𝐺(ℎ𝑍1 + 𝑘)

𝐶ℎ
=

𝐺(ℎ′𝑍1 + 𝑘)

𝐶ℎ′
 ∀ℎ, ℎ′ ∈ ℤ (12) 

 

This ideal property is explicitly at the basis of Ref. [4], which proposed a multi-carrier demodulation 

method, but partially and implicitly adopted by most studies which arbitrarily use the first or second harmonic 

for demodulation. 

This concept is challenged in this section using a vibration signal measured on the same gearbox as 

discussed in the previous section, albeit with healthy 20 mm face width gears and a transmission ratio of 19/52. 

The test was operated at 20 Hz with a load of 20 Nm (all measured on the pinion/input shaft). The sampling 

frequency was set at 100 kHz for a total duration of the acquisition of 10 s.  

The order-tracked signal was split into frequency bands corresponding to the neighbourhood of the first 4 

gearmesh harmonics and the different sidebands patterns were shifted to overlap with each other. All sideband 

amplitude coefficients were divided by the corresponding gearmesh harmonics amplitude coefficient, in order 

to compute an amplitude ratio. The amplitude ratio of those patterns is reported in Figure 2. 

 

 
Figure 2. Sideband amplitude patterns of the first 4 gearmesh harmonics. 20 Nm - 20 Hz test. 

This result shows how the patterns are massively different even disregarding their phase, which should 

also coincide after normalisation by the carrier harmonics. Two possible explanations for such behaviour were 

suggested: amplifications due to the system transfer function, or dominant frequency-modulation effects. 



  
 

 

The first option was further investigated trying to remove the transfer function effect by means of cepstral 

liftering [5], [6]. An exponential lifter was applied, with a cut-off angular quefrency of 0,7 radians,to the 

original spectrum and the result was used to remove the short-quefrency transfer function effects. The result 

of the liftering operation and the “normalised” spectrum are shown in Figure 3 (a-b) respectively. 

 

(a

) 

 
(b

) 

 
Figure 3. Removal of the TF effect: (a) short-pass liftering operation, (b) normalised spectrum. 

 

Despite the good result in terms of spectral liftering, the problems observed in Figure 2 continue to be as 

severe in the normalised spectrum harmonics reported in Figure 4. 

 



  
 

 

 
Figure 4. Sideband amplitude patterns of the first 4 gearmesh harmonics after cepstral liftering. ~1.5 Nm 

- 20 Hz test. 

As the shape of the FM patterns of a multi-carrier modulated signal do not seem to match with the ones 

observed in Figure 2 and Figure 4, the authors are of the opinion that, despite possibly contributing to the 

difference among the sideband patterns, other phenomena (unmodelled in the current approach) must be 

influencing the vibration signal. FM multi-carrier modulation in fact usually results in sideband patterns 

showing a similar “shape”, yet with a bandwidth proportional to the carrier harmonic order. 

A possible explanation of the differences in the sideband patterns could be found in the different roles 

played by two different root-cause mechanisms resulting in gear vibration: geometric and static transmission 

error (each potentially resulting in a separate AM/FM modulated signal, with different carrier and modulation). 

The first is due to profile irregularities, whereas the second is due to the angular dependence of the gear-

meshing compliance under load. An additional test was therefore executed at very low load (~1.5 Nm, just 

enough to maintain contact between the gear teeth) and speed (2 Hz), where geometric transmission errors 

were expected to dominate. Since under these operating conditions significant electrical noise was present in 

the lowest frequency range, in this case harmonics 2-5 were analysed.  

 



  
 

 

 
Figure 5. Sideband amplitude patterns of the first 4 gearmesh harmonics. Low load – low speed test. 

 

The patterns shown in Figure 5 are much more consistent, even if discrepancies are still present, thus 

supporting the idea of a potential two-mechanism root-cause of the observed pattern inconsistency. 

 

In order to investigate more deeply the origin of the pattern inconsistencies observed in the vibration signal, 

the sideband distribution of the transmission error signal is also studied, in a low-speed and low-load test. As 

illustrated in Figure 6, the pattern distributions have been plotted for the two cases of a heathy and a faulty 

gear. The transmission error is computed as the relative difference between the rotation of the input and output 

shafts. The pattern shown for the sidebands of the healthy gear is almost as consistent as that obtained with the 

vibration signal, although differences persist in the amplitudes of the sidebands. However, in the case of the 

faulty gear, the distribution of the sidebands is quite similar for all the sidebands of every gearmesh harmonic. 



  
 

 

 

Figure 6: Sideband amplitude patterns of the first 4 gearmesh harmonics of the TE signal. Low load – 

low speed test. 

 

4 Conclusions 

This study has highlighted two major limitations in the current modelling (and assumptions) of gear 

vibration signals. Neglecting secondary sidebands has been shown to be not always reasonable, and strong 

discrete components were still observed in the spectrum of a gear signal after removing the primary sidebands 

by means of traditional synchronous averaging procedures. This problem, which could bias the identification 

of system transfer functions with OMA approaches, is easily solved if it is possible to observe a sufficient 

number of “grand-periods”. In practice this could be possible for a series of machines operating at reasonably 

constant speed, but might be impractical for complex transmissions with more than one stage or planetary 

arrangements (very long grand-period). 

Experimental evidence also casts doubts on the validity of AM and even AM/FM models of gear vibration 

signals, and suggests the possibility of multiple forcing functions (with different spectral distribution) acting 

simultaneously to create complex modulations. In particular, the geometric vs static transmission error 

components seem to be potential candidates for future investigations. 

Significant investigative efforts are required to clarify these issues and give rise to more reliable models, 

in turn enabling new and more effective condition monitoring and OMA approaches. 
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Abstract: 

The dynamic response of gear transmissions holds essential information for the recognition of an incipient 

fault and its propagation. A realistic and validated dynamic model is used to predict the vibration regime of 

gear transmissions [1]-[2]. This model was validated experimentally for both healthy and damaged 

conditions [1]. A great virtue of a model is the ability to examine each phenomenon separately and to isolate 

its contribution to the dynamic response. The model considers the nonlinear behavior of the gear mesh 

stiffness, integrating the geometric profile errors of the gears. The scattering in the data, which is generated 

by the random factor of the simulated surface roughness, simulates the reality better than data of an ideal 

profile. The ability to determine what is possible to monitor for each surface roughness is not trivial and 

cannot be achieved experimentally, due to the immense span of cases to consider.  

 

This work presents an analysis of spur gears transmissions that can be separated into two integral but still 

different studies. The first study examines the effect of the operating conditions, including speed load and 

surface roughness, on the vibration signature of a healthy gearbox. The two main evidences from this study 

are related to the levels of the gear mesh frequencies (GMF) and to the sidebands (SB’s) in the spectra, which 

are caused by the frequency modulation (FM) of the rotational speed. It was found that there is a strong 

dependency of the energy at the gear mesh frequency on the applied load. Figure 1.a presents the total 

GMF’s energy for different rotational speeds (R1 is the lowest speed, R3 is the highest speed) under different 

loads (L1 is the lowest load, L4 is the heaviest load). It is noticeable that under the same rotational speed, the 

total GMF’s energy sharply rises as load increases. On the other hand, it was found that the total spectral 

energy of the FM sidebands sharply rises as speed increases, but is not affected by load. Figure 1.b shows 

the spectral energy of the FM SB’s for different speeds under different loads around the first six harmonics 

of the GMF. As for the influence of the surface roughness [3], it was found that a coarser surface roughness 

tends to obscure the effects of load and speed on the signature due to the gears profile error. Furthermore, 

the energy level of the FM sidebands sharply rose as the surface roughness got coarser, while the energy 

level of the GMF’s barely changed due to the surface roughness. 

  



 

The second study examines the expression of local tooth faults in the vibrations signature. Load effects and 

other AM phenomena including eccentricity and misalignment may obscure the expression of local tooth 

faults. The comprehensive study of the effects of the operating conditions on the signature was necessary in 

order to fit a robust and sensitive monitoring process for the local faults detection capability. The optimal 

process should reflect the expression of the fault in the signature, while extinguishing the effects of the 

operating conditions, which are not related to the fault itself. The difference signal removes from the 

synchronized vibrations signal the GMF’s components that are strongly affected by load, and components 

which are related to AM phenomena. Hence, the difference signal let us focus on the fault expression while 

diminishing the effects of the operating conditions. Figure 2.a shows the RMS level against kurtosis, both of 

the difference signal, for five different fault severities (where “Fault 1” is the least severe fault and “Fault 5” 

is the most severe fault). It can be seen that a separation of the faulty conditions from the healthy condition 

can be achieved for most faults severity levels, due to the significant differences in their locations on the 

graph. Besides the analysis of the difference signal, we can also utilize the total spectral energy of the FM 

sidebands. For each random signature, the total energy of the FM sidebands can be calculated and be 

compared to the healthy condition by statistical distances. The statistical distance may determine whether 

the examined signature can be attributed to the healthy population or not, meaning that a separation of the 

faulty condition from the healthy condition may be achieved. It was found that the detection capability is 

clearer when examining the spectral energy of the FM sidebands around the gear mesh frequencies 

overlapping the natural frequencies of the gearbox. Figure 2.b presents the Mahalanobis statistical distances 

( ) of the total FM sidebands energy around the GMF harmony which was found to be the most affected by 

the natural frequencies of the gearbox, against the level of the fault severity level. A Mahalanobis distance of 

     was determined to be the threshold for excluding a signature from the healthy population [4]. It can 

be seen that a separation of most of the local faults was achieved, as well as ranking of the three most severe 

faults. 

        

Figure 1: total energy against rotational speed and load of the  a  GMF’s (b) FM sidebands around the first six GMF’s 
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Figure 2: (a) RMS Vs. Kurtosis of the difference signal (b) Statistical distance of FM sidebands around the harmony of the GMF 

which was found to be the most affected by natural frequencies 



Towards a better understanding of helical gears vibrations – 

dynamic model validated experimentally 

Silverman, N; Dadon, I; Bortman, J; Klein, R 

In order to simulate the vibration signature of gears, an accurate calculation of the gear mesh 

stiffness (GMS) is required. The time varying GMS, which is the main excitation that determines 

the dynamic response of transmissions’ vibrations, is well understood for spur gears, but that of 

helical gears was less investigated. Although there is work dedicated to helical gears vibrations, a 

comprehensive analysis of their GMS compared to spur gears and their time and spectral domains 

have yet to be made. This paper deals with the dissimilarities and provides a better understanding 

of helical gears behavior, as they are a key component in many complicated and costly machines. 

With this new knowledge a more educated approach to diagnostics might be achieved. 

The main difference between spur and helical gears is in the contact line pattern. In spur gears the 

contact line is parallel to the tooth’s base and so calculating the GMS in any given moment is 

rather easy. Helical gears on the other hand have a diagonal line of contact which makes the 

moment applied by the meshing gear in respect to the tooth’s base change along the tooth’s width. 

To overcome this challenge a ‘multi slice’ method is utilized [1-4], in which the helical tooth is 

divided into many infinitesimally narrow slices which are treated each as a spur tooth. The total 

helical tooth stiffness is the sum of all those spur slices. 

For the purpose of simulating the vibrations of helical gears a fourteen degree of freedom spur-

teeth dynamic model [5] was upgraded to include helical gears a well. The dynamic equations and 

stiffness calculation were not changed and thus are discussed only briefly. The focus is dedicated 

to the modeling of the contact line using the multi slice method and other adjustments made to the 

model. 

The challenge with the slice method is determining how many slices are in mesh at every given 

time, along with determining their mesh “height” (distance from the tooth’s base). The solutions 

found in the literature are rather complicated and require knowing niche data about the gears, such 

as the transverse operating pressure angle, which are often not provided by the manufacturer. In 

contrast, the method suggested in this work is based on only a few common parameters such as 

the gears module, number of teeth and the involute profile. 

The model was validated by an experiment conducted on a helical gearbox and recorded with a 

tri-axial accelerometer. The signals were compared in terms of their load and RPM dependency 

and exhibited a similar behavior, as can be seen in Figure 1. After obtaining a healthy baseline, a 

broken tooth case with three severity levels was studied. The fault severities were removal of 25% 

of the tooth’s width in a diagonal line, removal of 50% and a missing tooth (Figure 1). This kind 

of diagonal material removal was chosen because when helical teeth breaks it happens in a pattern 

parallel to the contact line. The light and medium fault were challenging, but the missing tooth 



was seen clearly, mainly in the Kurtosis and Crest Factor of the difference signal. The statistical 

distances of the SA spectrum around the first and fifth GM harmony proved to provide better 

sensitivity, and showed clear detection of various fault severities, mainly in the tangential 

direction. A calculation of the Z-score index around the first GM even showed capability of 

ranking by fault severity (Figure 2). 

 

 
Figure 1: Three level of fault severity. Left to right: removal of 25% of the tooth’s width, removal of 50%, and a missing tooth. 

 
Figure 2: The Z-Score index for each GM harmony. Notice the first harmony which shows fault ranking and the fifth, which shows 

detection even at the smallest fault. 

 

Keywords: Helical gears, Dynamic model, Multi-slice method, Broken tooth. 
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Abstract
The sudden growth of damages can cause catastrophic failure of structures or mechanisms that lead to un-
planned shutdowns of machines and production lines. If a damage remains undetected and reaches a critical
size, sudden collapses and failures can happen. To overcome these problems, it is essential to detect these
damages before they reach their critical state. The presence of damages can alter the structure which reduces
the bending stiffness and modify the modal parameters and the natural frequencies. One of the most suitable
monitoring methods to define the presence of damage and assess the structure is vibration based structure health
monitoring (VBSHM). The objective of the work is to localize and quantify the damages with the considera-
tion of eigenfrequencies of healthy and tested structures. Hence, a methodology for damage identification in
structure using frequency shift coefficient (FSC) is presented. Numerical finite element models (2D and 3D)
are performed and correlated to obtain a damage library for the cantilever beam structure. Based on the cost
function, Young’s modulus of 2D and 3D models are iteratively updated to closely match the frequencies of
the reference beam. The approach also quantified geometry damage with vibration measurements on cantilever
beams, which is related to an equivalent bending stiffness reduction by the use of FSC. The effect of severity
of the damage is considered. Finally, the result is validated numerically through the identification of geometry
damage.

1 Introduction

Damages or cracks are inevitable in aerospace, aeronautical, mechanical and civil structures during their
service life. Any changes in the structures such as material, physical or geometrical properties which affects
their performance are considered as damages. The study of damages is an important perspective in order
to ensure safety or to avoid any serious losses. Sudden occurrence of damages in the structure can cause
catastrophic failure and reduction in load carrying capacity. However, it is necessary to improve the durability
and reliability of structure as expressed in the design and maintenance specifications. The presence of the
damage makes local stiffness vary in the structure and it also affects the mechanical behavior and performance
of the structure. However, preventing the formation of damages is almost impossible as they propagate along
the structure due to fluctuating stress or fatigue conditions. If these cracks remain undetected and reach a
critical size sudden collapse can happen. Indeed, damage identification has significant life safety implications.

Structure Health Monitoring (SHM) is an efficient way for the diagnosis of the constituent’s materials or
structures. SHM involves the integration of sensors, data transmission, computational techniques, and pro-
cessing ability to respond the behavior of a structure. Consequently, it aims to provide maintenance services
throughout the life of the structure. Nowadays, structural damages are identified by Non-Destructive Testing
(radiographic, ultrasonic testing, X-ray, eddy-current etc.) [1]. Vibration based structural health monitoring
(VBSHM) is one of these categories based on the fact that a loss of stiffness caused by damages affects the
dynamic response of the structure. VBSHM consists of five levels (existence, location, type, extent and prog-
nosis) [2] which are efficient and widely accepted because of their ability to monitor and detect damage from
global testing of the structure.

Many researchers from the last few decades, natural frequencies of a damaged structure are found as an
identification parameter for both damage location and size. The first study developed by Cawley and Adams
[3] depends on the shift of more than one frequency that could yield the location of the damage. In a review
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of the literature, Salawu [4] found that the natural frequencies are a sensitive indicator to detect the damage
in the structure. The important technique is analyzing the changes (shifts) in natural frequencies in a structure
with and without damage. Hilmy et al. [5] have presented frequency shifting as a function of damage evolution
for a plate structure. The method proves shifting of the natural frequency is greater at higher frequency values
and determines the location of the void damage. Messina et al. has proposed Damage Location Assurance
Criterion (DLAC) [6] and after extended to Multiple Damage Location Assurance Criterion (MDLAC) [7] to
measure the frequency variation due to damage between experimental and numerical values correlation. More
recently, a method proposed by Serra et al. [8] demonstrates a correlation of 2D and 3D FE models to identify
the typical damages (like hole, crack, notch) based on numerical and experimental study. Masoumi and Ashory
[9] presented numerical and experimental studies to localize cracks.

In this paper, an approach for damage identification by using the frequency-shift coefficient is proposed.
This method was first introduced by Silva and Gomes [10] for solving the damage detection problem. The
method requires numerical models as a function of damage position and size for the frequency shift. First,
vibration based strategy is used with detection, localization and classification (Size/Severity/Geometry) of
damages. The study is followed by simulating a beam in commercial software (COMSOL, MATLAB) as a
numerical case and 2D and 3D FE models are correlated to obtain geometry damage properties (size, location
and severity...). Finally, numerical example is validated in order to localize and quantify geometry damage.

2 Cantilever beam bending vibration background

The eigenvalue problems and the analytic formulas concerning the modal parameters of a cantilever beam
were described by the partial differential equation of the linear model with viscous damping as:

M(x)
∂ 2v(x, t)

∂ t2 +C(x)
∂v(x, t)

∂ t
+

∂ 2

∂x2

(
EI(x)

∂ 2v(x, t)
∂x2

)
= F(x, t) (1)

where v(x, t) is the transverse deflection, M(x) is the mass per unit length, C(x) is the damping coefficient,
EI(x) is the bending stiffness and F(x, t) is the external force per unit length of the beam. The equation of the
motion for dynamic systems are easily obtained from Newton’s second law. This gives an equation for each
degree of freedom within the system. When discretized, the equation of the motion may take the following
matrix form:

[M]{Ẍ}+[C]{Ẋ}+[K]{X}= {F} (2)

where [M] is the mass matrix for the system, [C] is the damping matrix and [K] is stiffness matrix, {Ẍ}, {Ẋ},
{X} are vectors containing acceleration, velocity and displacement in all degree of freedom of the model; and
{F} contains external forces actuating in the system. If we assume free motion and negligible damping, one
possible solution for the equation is:

{x}i = {y}i sin(ωit−θi) (3)

yi are the amplitudes for each mode shape, ωi are the natural pulsations (in rad.s−1) of vibration for each
mode shape and θi are phase angles. The natural frequencies (in Hz) are given by fi =

ωi
2π . The following

equation is obtained for the healthy case:

([K]−ω2
i [M])yi = 0 (4)

Damage to the structure changes its dynamic response. Therefore, natural frequencies and natural modes
are changed. The equation of a damaged case can be expressed as:

([K]− (ω2
i )
∗[M])y∗i = 0 (5)

2.1 2D Finite element model

The studied model is a cantilever beam, which has two degrees of freedom, a vertical translation y and a
rotation θz. As can be seen in (Figure 1) this beam is divided into equal size of N elements and N +1 nodes.
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Height	(H)

Figure 1 – Cantilever beam model. (a) 2D Finite element model; (b) element properties

In 2D FE Model, the damage is represented by an elemental stiffness reduction coefficient αi which is the
ratio of the stiffness reduction to the initial stiffness. The stiffness matrix of damaged beam is defined as a sum
of elemental matrices multiplied by reduction coefficient by the following equation:

[Kd ] =
N

∑
i=1

(1−αi)[Ki] (6)

where Kd is global stiffness matrix for damaged beam, Ki is elemental stiffness matrix, N is number of
elements, and αi is a reduction coefficient , which varies from 0 to 1 for the damaged structure. The value of αi

= 0 indicates a healthy structure.

2.2 3D Finite element model

Simulation of damaged beam structure is performed using COMSOL multiphysics software. The damage
model is built and the mesh is 3D tetrahedron element. The number of mesh is controlled by the software and
depends on the shape of the structure, thus it changes with the size of the crack. A high meshing density is
applied near the damaged area mainly to have the behavior correctly modeled.

Figure 2 – 3D finite element mesh of the beam with damage

Geometry case (rectangular) is studied in order to quantify the severity of the damage. Figure 2 shows the
meshed beam zoomed near the damaged area and width of the crack is set to 0.5 mm while the height is a
parameter. The sensitivity of the 3D model is determined by mesh size. As the mesh is finer the model is more
sensitive but computing cost is higher.

3 Frequency shift coefficient based strategy

The first type of modal method for damage detection relied on changes in dynamic properties of the structure
and particularly natural frequencies. Any changes in the properties of the structure, such as reduction in stiffness
will cause changes in the natural frequencies. One of the important advantages of natural frequency is that it can
be quickly and easily conducted when measurements required. Classical measurements procedure can be used
for the determination of experimental resonant frequencies. In this context, the frequency shift criterion is first
presented by Silva and Gomes [10] for damage identification problems. The technique requires experimental
measurements or numerical solution for the frequency shifts as a function of size and position of damage The
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frequency shift coefficient (FSC) is defined as:

FSC = argmin

(√
1
m
|

m

∑
i=1

(
(Ri)X − (Ri)A

(Ri)X

)
|
)

and Ri =
f u
i

f h
i
, (7)

where m is the total number of modes, X refers to the tested case, A refers to the reference case, f u
i is the

unknown beam frequencies, f h
i is healthy beam frequencies and i is denotes modes indices.

It is well known that the presence of damages modifies dynamic parameters and behavior of the structure.
The location, classification and size of damages in the structure are identified by changes in the vibration
parameters. At first, a set of reference state frequencies are identified. Numerical correlation of 2D and 3D
FE models is performed to fit the frequencies with the references. Then, in the 3D FE model, the damage was
materialized as a geometrical discontinuity of rectangular considering the position, type, size, geometry of the
damage. At the same time, the damage was materialized as a local reduction of bending stiffness in an element
for the 2D FE model. Finally, numerical correlation result will specify the position, size, depth and geometry
of the damage from the damage library.

4 Numerical rectangular geometry damage identification

The numerical simulation test is performed to verify the efficiency of the proposed VBSHM strategy. A
cantilever steel beam was taken into consideration for the numerical test and beam properties are given below
in Table 1. A beam 2D FE model was divided into equal size of 100 elements and each element size is 10 mm.

Beam Properties Value
Length (L) 1000 mm
Width (W) 24.9 mm
Height(H) 5.3 mm

Young’s modulus (E) 210 GPa
Mass density (ρ) 7850 kg/m3

Poisson’s ratio (v) 0.33
Table 1 – Beam dimensions and properties

However, 2D-3D model correlation is done for the damage geometry (rectangular) by using software COM-
SOL with MATLAB. The modal responses of the structure were generated using FE models before and after
the damaged case. The first seven modes are retained. The criterion is employed as a tool for identification of
the damage by measuring frequencies. The final goal of correlation is to localize and quantify the severity of
geometry damage that can link to the percentage reduction in stiffness of a beam structure.

Ld	=	350	mm
L	=	1000	mm

X

Hd	=	3	mm

A

A

A	-	A

W	=	24.9	mmWd	=	1	mm

Figure 3 – 2-D clamped free beam plan with rectangular damage

A detailed 2D beam view as shown in Figure 3. The damage case is tested for position 350 mm with width
(Wd) and the height (Hd) of damage are 1 mm and 3 mm respectively. Meanwhile, the FSC is computed for
every position and severity, in order to illustrate its variations.

In Figure 4, the FSC is shown as a function of tested position and severity where color levels represent the
FSC values. The minimum value (coordinates and value of the minimum) allows the identification of given
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Figure 4 – FSC as a function of tested position and severity. The red circle indicates the severity and position identified
by the algorithm.

damage in 2D clamped free beam. In this case, a defect of 68% severity localized at 350 mm is found : the
position is thus well identified by the FSC and the identified severity corresponds to the parameters chosen for
the rectangular damage. These values relate to the other damages properties and information about the size and
type. In addition, Table 2 shows the identified damage properties for this particular case of rectangular damage.
This is one item of the damaga library the presented strategy is intended to build.

Type Rectangular
Position 350 mm
Width 24.9 mm
Length 1 mm
Height 3 mm

Severity 68 %
Table 2 – Geometry damage properties

5 Conclusion

This paper presents a method to identify damage in structure by using natural frequencies. The formulation
of the method based on stiffness reduction has been validated with the localization and quantification of the
rectangular geometry damage in beam like structure. The simulation correlation with COMSOL and MATLAB
are presented and the robustness of the present method is examined. A numerical example with 3D geometry
damage case is identified. Based on natural frequency, the damage localization and quantification is accurate
because of the sensitivity of the frequency shifts to the damage states. Both 2D and 3D models of the beam were
used to link the size of damage to the reduction in stiffness. Geometrical damage properties were successfully
accomplished by linking FE models. In the future, more experiments and simulations should be investigated in
order to validate the methodology in real cases.
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Abstract 

Using a flexible manipulator for grinding process in situ has become a cost effective engineering service in the 
recent years, especially for repair and refurbish of mechanical systems and components. In comparison with 
traditional rigid robot manipulators, the flexible manipulator has proved its efficiency in terms of accuracy and 
facility. However, because of its compact and flexible structure, concerns arise regarding its dynamic behavior 
during a grinding process. This paper proposes a method using an ARX (autoregressive with exogenous 
excitation) model for experimentally analyzing the vibrations of a flexible robot during a grinding operation in 
different cases: Single Input–Single Output (SISO) and Multi Input–Multi Output (MIMO). Simultaneously, a 
dynamometer allows for triaxial input force measurement while three accelerometers mounted at the end effector 
record the vibration outputs. Due to the Operational Modal Analysis (OMA), the dynamical properties of the 
robot can be identified directly during operation. The results have shown that the ARX model is efficient for 
analyzing the operational vibration in complex systems with multi degrees of freedom and multi directions. The 
determination of modal parameters and identified Frequency Response Functions (FRFs) enable to predict the 
dynamical behavior of the system and to simulate the vibration in real working conditions. Further studies on 
inverse problem are promising for estimating the excitation forces while these later are not available and not 
practically measured in industrial applications. 

Keywords: Operational modal analysis, flexible manipulator, grinding process, ARX model, transfer functions, 
force identification. 

 

1. Introduction 

Nowadays robots sufficiently conduct manifold manipulation works with a high degree of autonomy and 
rigorousness. Portable manipulator systems are regarded as an effective and profitable solution for the 
automation maintenance tasks on large hydroelectric equipment. The SCOMPI (Super COMPact robot Ireq) was 
developed at IREQ (Hydro Quebec’s research institute) and is particularly designed with flexible links and 
flexible joints for working in the hard-to-reach areas or confined spaces of hydraulic turbines in a hostile 
environment [1]. Because of its flexible structure, vibration problems of Scompi become crucial since producing 
chatter and bad surface finish. A numerical simulation [2] has been constructed in MSC/Adams in different 
configurations included impact force, sinusoidal and operational forces.  There is a great number of researches 
that focus on identifying the modal parameters of the system in order to understand the dynamical behavior of 
robot [3-7], and estimate the operational forces from the actual accelerations measured on the robot [8]. 
Knowing a system’s frequency response function is a key to many system analysis and control synthesis 
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methods [9]. The main problems are due to the fact that these modal parameters are changing with the robot 
motion and position and thus a time-varying method is proposed for studying this kind of non-stationary 
structure [10, 11]. Researchers are particularly interesting to identification of continuous-time system by using 
discrete data [12]. 

This paper presents a technique to identify the modal parameters as well as the transfer function of Scompi robot 
by applying the Autoregressive with eXogenous input (ARX) model [12-14]. This method reveals a convenient 
and advantageous for Operational Modal Analysis of structures (OMA), which allows for determining 
operational modal model excited by ambient noise and vibration. The modal parameters are estimated and 
identified by applying straightforward method such as Ordinary Least Squares (OLS) [12], [15]. The results are 
validated by another approach based on updated Auto Regressive (AR) model in [4] and shown a great accuracy 
of identified modal parameters. This study enables us to predict the dynamical behavior of Scompi for 
identifying excitation forces during operations of grinding and consequently improve the quality of the surface 
finish. 

2. Auto Regressive Exogenous Excitation model (ARX) 

The ARX model [12-15] is a primary choice because of its simplicity. It has been applied to numerous practical 
applications especially in control systems. However, critical motivation for choosing the ARX model, is its 
correlation to the state space model [16-19] which can be implemented for inverse problem with the aim of 
reconstructing the excitation forces acting on vibrating structures [8], which is impossible to obtain from direct 
measurement in the real systems. The ARX model is a convenient model to obtain the general relation between 
input and output signals for different cases, such as Single Input – Single Output (SISO) or Multiple Input – 
Multiple Output (MIMO), which can reliably represent the dynamic properties of the system. Figure 1 illustrates 
the block diagram of ARX model. 

 

Figure 1. Block diagram of ARX model 

This model has a simple structure and strong robustness. It is very efficient when the noise is low. However, 
when the noise is large, the order of the model must increase to compensate the impact to system identification 
precision from noise [18]. 

Examine a c dimensional vector input u(t) and a d dimensional vector output y(t) of a Multiple Input and 
Multiple Output (MIMO) system. 

The ARX model can be described as a linear difference equation: 

a b1 n 0 1 n( ) ( ) ... ( -  )  ( ) ( ) ... ( -  ) ( )a bt t - 1 t n t t - 1 t n t+ + + = + + + +y A y A y B u B u B u e                     (1) 

where: 

Ai – are d x d matrices and 

Bi – are d x c matrices. 
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The general ARX model can be rewritten in the polynomial form: 

( ) ( ) ( ) ( ) ( )q t q t t= +A y B u e              (2)   

where: 
--1 -2

1 2( )   ... a

a

n
nq q q q= + + + +A I A A A                         (3)

 
--1 -2

0 1 2( )  ... b

b

n
nq q q q= + + + +B B B B B                         (4) 

The model (2) is an ARX model where AR refer to the Autoregressive part A(q)y(t) and X refer to the extra 
input B(q)u(t) called the exogenous input. y(t) is considered as the output of the model while u(t) is the input to 
the model and e(t) is innovation term at the time t. A(q) and B(q) are polynomials in the delay operator q-1 and 
na, nb are the model order of A(q) and B(q) respectively. A(q) is a matrix whose elements are polynomials in q-1.  

This results in Matrix Fraction Description (MFD).  

Defining the parameter matrix: 

1 2 0 1[ ... ... ]
a b

T
n nθ = A A A B B B                         (5) 

We may rewrite (2) as a linear regression: 

( ) ( ) ( )Ty t t e tθ φ= +                            (6) 

If we consider N consecutive values of the responses from y(k) to y(k+N-1), the model parameters can be 
obviously estimated by least square method [15] by minimizing the norm of e(t): 

1 1 221 1arg min ( ) arg min y( ) ( )
k N k N

T

t k t k

e t t t
N N

θ φ
+ − + −

= =

   Φ = = −   
   

∑ ∑                       (7) 

After obtaining the measured force and acceleration signals on all channels, the model ARX can be used to fit 
the data. The ARX model creates a regressive connection between the input vector u(t) and the output vector y(t) 
through a residual vector e(t). By applying the least square method, the modal parameters matrices A and B can 
be estimated. In vibration measurement application, it can be seen that force (input) and acceleration (output) are 
normally synchronized, thus the two parts may be modeled with the same order na = nb. 

Once the model parameters of the system are identified, the state matrix can be determined as in the form of 
autoregressive parameters: 

1 2 3

( )

...

0 0 ... 0
0 0 ... 0
... ... ... ... ...
0 0 0 0

p

naxnb

A A A A
I

A I

I

− − − − 
 
 
 =
 
 
 
 

                         (8) 

There is a remarkable coincidence that the poles of model are also the roots of characteristic polynomial of the 
state matrix. Consequently, the continuous eigenvalues, system natural frequencies and damping rates of the 
structure can be calculated for each pole by using the subsequent standard equations: 

Eigenvalues:    [ , ] ( )V eig Aλ =                            (9) 
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Frequencies:    
2 2Re ( ) Im ( )

2
i i

if
λ λ

π
+

=            (10) 

Damping rates:   Re( )
2

i
i

if
λ

ξ
π

= −              (11) 

When the modal parameters are estimated, we can construct the transfer function which is regarded as the 
frequency response function of the system. All the system can be described by linear constant coefficients and 
represented by transfer functions that are “rational polynomial in q”. 

--1 -2
1 2

--1 -2
1 2

 ... ( )( )
( )  ... 

b

bk

a

a

n
nn

n
n

q q qqq q
q q q q

- + + +
= =

+ + + +

B B BBG
A I A A A

                     (12) 

with nk is the transport delay. 

 

3. Application to a flexible manipulator during grinding process 

3.1 Brief introduction of the SCOMPI robot 

The proposed approach is now implemented to the portable robot Scompi. Figure 2 presents the structure of 
Scompi, which is used for repair tasks in Hydro Quebec power plants, particularly for grinding or welding jobs 
[1]. Because of its compact and flexible structure, the question is raised up from its dynamical behavior under 
operating conditions. Hence, the flexibility of the joints and links needs to be taken into consideration, which 
might affect the stabilization of robot at the end effector during operational process [4]. The aim of Scompi is to 
achieve both a high Material Removal Rate (MMR) and a polished surface finish with great precision. However, 
because of the portable and lightweight design, undesired chatter vibrations can appear during machining 
process which produces an undesirable waviness surface. Therefore, the monitoring of its modal parameters as 
well as the transfer functions of the structure in the grinding operation are necessary for minimizing vibration at 
the end effector while controlling chatter phenomenon and improve the quality of grinding surface. 

 

Figure 2. Scompi robot 

 

3.2. Presentation of the Experimental setup 

As can be seen from figure 3, a Scompi robot is tested under real grinding operation. Due to the interest in 
typical dynamic behavior of the robot at the end effector, the Scompi is set to its home configuration. Three 
accelerometers are mounted at the end effector in triaxial directions X, Y and Z. Meanwhile, a Kistler table 
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dynamometer CH8408 is placed under the work-piece for measuring the forces. The power is set up at 1500 W 
and grinding motor is rotated at a constant speed of 3225 (rpm) for conducting each single grinding pass within 
12 seconds. A multi-component dynamometer is used for measuring the grinding forces in three directions at the 
tool piece contact point. After obtaining the measured signals from dynamometer and accelerometers, we 
acquired them to the frequency rate of 512 (Hz) (Figure 4, 5). 

  

Figure 3. Overall configuration of the experimental setup 

 

Figure 4. Measured acceleration signals during grinding process. 

 

Figure 5. Measured force signals during grinding process. 

Taking three measured acceleration signals in X, Y and Z directions, by applied Fast Fourier Transform (FFT) 
analysis, we can easily see the measured signals in both time and frequency domain as shown in Figure 6. As 
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indicated, there are some significant frequencies in frequency domain such as 53.9 (Hz) - the first harmonic; 93.7 
(Hz); 106.2 (Hz) - the second harmonic; 146.8 (Hz) and 200.8 (Hz). 

 

Figure 6. Time domain and frequency domain of the acceleration signals in three directions. 

 

4. Results and discussion 
Operating in a tridimensional space, the ARX model is applied on Scompi structure to fit the measured signals 
on each direction (S1 – Fx); (S2 – Fy); (S3 – Fz) for constructing frequency stabilization in different cases: Single 
Input – Single Output (SISO) and Multi Input – Multi Output (MIMO). The figures 7–10 demonstrated the 
frequency stabilization diagrams up to 250 (Hz) with a model order up to 100 where all the interesting 
frequencies may be observed. The model order is chosen at 100 for computation of the modal parameters with 
low uncertainties. In addition, another stabilization given in figure 11 is computed by MODALAR based on 
updated AR model [4] with an aim of validation between two approaches. The 53.75 (Hz) electric frequency of 
grinding and its harmonics are clearly revealed in the stabilization diagrams. 
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Figure 7. Frequency stabilization diagram on X direction 

 
Figure 8. Frequency stabilization diagram on Y direction 

 
Figure 9. Frequency stabilization diagram on Z direction 
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Figure 10. Frequency stabilization diagram in MIMO case (three inputs and three outputs) 

 

Synthetically, the natural frequencies and damping ratios are estimated directly from the frequency stabilization 
diagram of MIMO case, where all the excited frequencies can observed clearly in multi directions. Figure 12 
illustrated the stabilization diagrams of damping ratio with 95% uncertainties. The natural and harmonic 
frequencies identified by two methods with their damping ratio are given in the table 1. The harmonic 
frequencies are identified with their damping rates close to zero. 

 

 
Figure 11. Frequency stabilization diagram by MODALAR 

 

Figures 13-21 present the transfer functions identified by ARX model at the order 100. The identified transfer 
function from the working condition is crucial for the assessment of the robot dynamics and for further 
simulations under different loadings. 
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Figure 12. Damping ratio stabilization diagrams 

 

 
Figure 13. Identified Transfer Function FRFxx 
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Figure 14. Identified Transfer Function FRFxy 

 

 
Figure 15. Identified Transfer Function FRFxz 

 

 
Figure 16. Identified Transfer Function FRFyx 
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Figure 17. Identified Transfer Function FRFyy 

 

 
Figure 18. Identified Transfer Function FRFyz 

 

 
Figure 19. Identified Transfer Function FRFzx 
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Figure 20. Identified Transfer Function FRFzy 

 

 
Figure 21. Identified Transfer Function FRFzz 
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Frequencies (Hz) - ARX 14.2 24.4 28.2 53.3 61.2 66.2 94 101.5 

Frequencies (Hz) - AR 12.7 24.6 28.2 54.2 60.1 66.2 93.9 101.3 

Damping (%) - ARX 11.5 3.7 3.3 0 3.4 2.7 0.2 1.5 

Mode 2nd harm M 8 M 9 M 10 3rd harm M 11 4th harm M 12 

Frequencies (Hz) - ARX 106.3 111.7 147.5 149.2 159.5 200.4 212.6 224.6 

Frequencies (Hz) - AR 106.3 113.5 147.3 149.1 159.5 201.3 213.8 225.1 

Damping (%) - ARX 0 0.6 0.2 0.2 0 0.2 0 0.7 

Table 1. Identified frequencies and damping ratios 

 
By comparison to the identified frequencies by MODALAR based on updated AR model [4] shown in table 1, 
the approach reveals high accuracy identified natural and harmonic frequencies with their damping ratios. 
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Moreover, frequency response function is directly identified from grinding operation based on ARX model. The 
results are better observed on the X and Y directions, this can be explained by the configuration of Scompi when 
working in horizontal surface to perform the grinding task. 
 

5. Conclusion 
This work is a part of an ongoing research program on investigating vibration problems of flexible manipulator.  
The frequencies, damping ratios and operational FRFs can be constructed and most excited modes are revealed 
during the grinding process. In this paper, operational FRFs of a structure are identified directly from measured 
signals via an ARX model. The results illustrated the sensibility of the acceleration in the X and Y directions 
while the contrary is proved in the Z direction with low magnitudes of the FRFs. Furthermore, as damping of the 
grinding process and equivalent stiffness are in command of cutting stability, so their identification is crucial to 
predict and avoid detrimental chatter occurrence. In the ongoing research, the inverse of ARX model will be 
applied in order to estimate the excitation force in the working conditions, with the integration of phase and 
coupling between directions. The interest lies in the reconstruction of excitation forces that gave rise to measured 
response signals based on ARX model. This approach is expected to serve for monitoring and vibration control 
design of the robot during machining operation. 
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Abstract 
In this paper, a methodology is presented to obtain average representative forces exerted by the load inside a 
tumbling mill on the different faces of the lifters and liners, which are directly related to its power consumption. 
The methodology is based on the use of virtual sensors included in DEM simulations combined with signal 
processing and allows obtaining the magnitude of the forces based on the angular position of the lifters as the 
mill rotates. The methodology is validated by comparing numerical and experimental results obtained from a 
test bench mill. The variables considered are the power, movement of the load inside the mill, and average 
forces. The latter are experimentally measured using instrumented lifters specially designed for this task. The 
results obtained show differences in the magnitude of the average forces in specific angular positions, 
depending on the operating conditions of the mill. These differences explain the behavior of power 
consumption with respect to operating conditions reported in the literature. 

 
1 Introduction 

Tumbling mills are critical machines of the mining industry. They are used to reduce the size of mineral 
particles, and their operation has associated high economic costs. The grinding of minerals requires high energy 
consumption and represents the most expensive stage in the production of metals. The economies of scale and 
the decrease in the grade of the ores, has led to the development of large grinding mills that currently reach 
throughput of 80,000 - 100,000 ton/day with powers of up to 28 [MW] [1][2]. 

The main component of the mill is the horizontal hollow cylinder called drum, inside which the ore is 
grinded (Figure 1a). The drum rotates on its axis and is delimited at its sides by two ends through which occurs 
the entry and exit of the material, respectively. Fixed to the inner wall of the drum are the coatings, composed 
by liners and lifters. The liners protect the drum from wear due to contact with the particles, while the lifters 
transmit the energy associated with the rotation of the mill to the load, producing its movement inside the mill. 
The comminution of the mineral occurs due to the contact forces that are generated between different particles 
and between particles and the internal surfaces of the drum. 

The liners and lifters wear out over time as a result of the continuous contact with the particles inside the 
mill. The replacement of these elements constitute the primary maintenance operations and generate high costs 
associated not only with the purchase of replacement parts and labor but also with production losses during 

   
Figure 1: Tumbling mill. (a) General view of the drum. (b) View of the load inside the drum. 

a) b) 
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maintenance works. In addition, the continuous wear of the coatings produces changes in the power 
consumption and throughput of the mills. 

While rotating, the drum lifts the grinding load along one side of the mill until reaching the point called 
shoulder of the load, as shown in Figure 1b. In this position, the particles located near the lifters begin to move 
independently of the movement of the drum and then fall describing free fall movements called cascade type 
or cataract type. The particles that describe cascade movements from the shoulder characterize by falling 
continuously, while those that describe cataract movements do so in the form of waves driven by the lifters. In 
the movement that describes the load inside the mill, a set of relevant angular positions, measured with respect 
to its axis of rotation, are identified: the position of the shoulder ( S ), the position of the point of impact ( E ) 
and the position of the toe ( T ). The point of impact corresponds to the highest position at which the particles 
fall from the shoulder on the opposite end of the mill ring. The position of the toe is where the lifters begin to 
lift the load after it falls from the shoulder. 

Figure 1b presents an example of the disposition of the particles inside the mills, showing the shape and 
trajectory of the load, the position of the toe, of the shoulder, and the point of impact. The shape of the load 
corresponds to the shape adopted by the set of particles that do not fall in free fall (cascading or cataracting) 
while the mill rotates, which commonly compares to the shape of a kidney bounded at its ends by the toe and 
the shoulder. Most of the particles fall from the areas near the shoulder on the internal surface of the shape of 
the kidney, describing a cascade-type movement, as can be seen in Figure 1. The lifters lift a portion of the 
particles in the shoulder to higher positions and then fall on the toe or the coatings of the drum near the toe 
describing a cataract movement. The lifters that leave the position of the shoulder drag small portions of 
particles that become independent from it gradually, forming waves of particles that are thrown into the free 
space inside the drum. The formation of these waves then depends on the passage of the lifters out of the shape 
of the load and, therefore, the impacts of the particles that describe a cataract movement on the area near the 
toe are not continuous, but linked to the movement of lifters. The trajectory of the load corresponds to the free 
fall movement that describes the particle that reaches the point of impact.  

The Discrete Elements Method (DEM) is a numerical methodology that describes the behavior of granular 
materials. It allows simulating the movement of each of the particles forming the grinding load inside the mill 
by modeling the interactions between the different particles and between particles and surfaces, and solving 
the equations of motion of each particle. DEM has been used by multiple researchers to study tumbling mills 
focused on, for example, the analysis of the load movement [2][3][4][5][6][7][8][9][10][11][12][13][14][15] 
[16][21][23][26][27][28][32][33][34][45], the study of wear of coatings [2][14][15][30][43][44] and the 
modeling of the comminution process [16][5][8][17][18][19][20][22][31][35][37][38][39][40][41][42]. This 
paper focuses on analyzing the power requirements of the mills, a topic that has also been discussed in the 
literature [13][14][45][49][21][24][25][26][29][33]. Different from other researches, this is done by 
determining the average forces exerted by the particles on the lifters and liners as a function of the angular 
position in which they are located. Some studies relate globally the behavior of the load with the contact forces 
by using different methods [47][48][49][50][51][52][54][55][56]. The correlation between the average forces 
and the power obtained in this work allows identifying the physical phenomena that explain the observed 
power variations as a function of the operating conditions. 

 

2 Test bench: SetupD100 

The analyses are carried out based on a laboratory scale mill, called SetupD100, shown in Figure 2a. This 
mill consists of three main components: the ring, a back cover, and a front cover. The ring is a hollow cylinder 
representing the drum of the mill with lifters mounted on its inside. The ring and lifters are made of technyl. 
The ring has an internal diameter of 945 [mm], an internal length of 60 [mm] and is delimited at its ends by 
the back and front cover, respectively. Both covers are made of acrylic. The back cover is gray, while the front 
is transparent, which allows observing the movement of the load while the mill runs. The mill is connected to 
the electric drive by a drive shaft in a cantilever arrangement. The drive includes a frequency converter that 
allows controlling the speed of rotation. 

 

2.1 Lifter geometry 

The internal geometry of the mills is one of the main aspects to analyze in order to understand the behavior 
of the load inside the mill. It is defined mainly by the number of lifters ( lftN ) and their geometry. Figure 2a 

shows the dimensions of the lifters installed in the test bench mill. 
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2.2 Operating conditions 

The rotating speed and fill level of the mill define its operating condition. The numerical and experimental 
analyses presented in this paper consider 81 different combinations of speed and fill levels presented in Table 
1.  

The rotation speed of the mill is defined as a fraction of its critical speed (N ). The critical speed of a mill 
( cN ) corresponds to the speed of rotation from which the load begins to centrifuge, adhering to the internal 
surfaces of the drum. It is calculated as [47]: 

 

 
42.3

c
M

N
D

  (1)

 
The critical speed of the SetupD100 is 4.556 [rad/s], and the 9 speeds analyzed vary from 55% to 95% of 

it. 
The fill level ( cJ ) is the fraction of the internal volume of the mill that is occupied by the grinding load. 

The SetupD100 has an internal volume of 0.0396 [m3] and is filled with 11 [mm] diameter steel balls. The 9 
fill levels analyzed range from 25% to 45% of the mill’s internal volume, with 2.5% jumps 

 

3 Numerical modeling of the SetupD100 

The numerical model of the test bench consists of two main components: a geometric model and a contact 
model. The geometric model represents the surfaces of the mill with which the particles come into contact, 
while the contact model describes the interactions between the particles located inside the mill and the 
components of the geometric model, and between different particles. 

 

3.1 Geometric model of the SetupD100 

The geometric model used in this investigation is composed of 3 elements: the ring and the two covers. In 
the geometric model, the ring and the lifters are considered as a single element. Figure 3a shows the three 
components of the geometric model, and Figure 3b shows a view of the load inside the mill together with the 
cartesian system used as a reference for the analyses. 

 

Fraction of the 
critical speed 

Rotation speed, 
[rad/s] 

 Fill level Mass, [kg] 

55% 2.506  25% 46.25 
60% 2.734  27.5% 50.87 
65% 2.961  30% 55.49 
70% 3.190  32.5% 60.12 
75% 3.418  35% 64.74 
80% 3.645  37.5% 69.37 
85% 3.874  40% 73.99 
90% 4.101  42.5% 78.61 
95% 4.329  45% 83.24 

Table 1: Operating conditions. 

   
Figure 2: (a) View of the Setup D100. (b) Dimensions of the lifters. 

a) b) 
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3.2 Contact model 

The particles inside the mill can contact other particles, the covers, or the ring. This means the existence 
of three different contact types: steel-steel contact between the steel balls, steel-acrylic contact between the 
steel balls and the acrylic covers, and steel-technyl contact between the steel balls and the ring. The contact 
models used in DEM allow calculating the forces associated with the contacts to which all the particles are 
subject, but for this, it is necessary to define the physical parameters that characterize all possible contacts. 
These parameters are the static friction coefficient, the dynamic friction coefficient, the coefficient of 
restitution, and the coefficient of rolling resistance. Table 2 shows the values of the contact parameters used 
in the DEM simulations. 

 

3.3 Power due to the movement of the load inside the mill 

Considering the SetupD100 operating as shown in Figure 3b, it can be noted that in any instant of time, 
not all particles are in contact with the internal surfaces of the mill. It is also noted that a particle can be in 
contact with the internal surfaces of the mill in more than one point (maximum three) and that there is a given 
number of contacts (n) between particles and internal surfaces of the mill. 

Now, consider a particle that is in contact with one of the internal surfaces of the mill, and that this contact 
i occurs in a position ir


 with respect to the axis of rotation of the mill. Let iF


 be the force exerted by the particle 

on the point of contact i, as shown in Figure 4a: 
 

 , ,i x i y ir r i r j 
    (2)

 , ,i x i y iF F i F j 
    (3)

 
The torque exerted by the particle on the surface at contact i is, thus, given by: 
 

 i i iT r F 
 

 (4) 
 
Finally, taking into account the n existing contacts between particles and internal surfaces of the mill during 

a time instant, the torque associated with the movement of the particles inside the mill is given by: 
 

 
1

n

Mill i
i

T T


 
 

 (5) 

 
The torque allows to calculate the power due to the operation of the mill at speed  : 

Contact 
Coefficient of 

rolling 
resistance ( r ) 

Static friction 
coefficient  

( s ) 

Dynamic 
friction 

coefficient ( k ) 

Coefficient of 
restitution 

( Rc ) 

 0.01 - - - 
Steel–Steel - 0.43 0.36 0.91 

Steel–Acrylic - 0.42 0.38 0.44 
Steel – Technyl - 0.23 0.22 0.69 

Table 2: Contact parameters used in the DEM simulations. 

   
Figure 3: (a) Components of the geometric model. (b) Cartesian reference system. 

b) a) 
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 Mill MillP T   (6) 
 
Thus, the power associated with the movement of the mill originates from the contact between the particles 

and their internal surfaces. The contacts between the particles contribute to the power indirectly by 
action/reaction forces, and the Discrete Element Method (DEM) is based on calculating the forces associated 
with the contacts between particles and between particles and surfaces. 

 
3.3.1 Forces acting on the ring and covers 

Figure 4b shows the components of the nodal forces acting on the ring at a given time instant, with a close 
view of a section of the ring. The blue arrows represent the components of the forces on the x-axis; the red 
arrows represent the components of the forces on the y-axis. There are also small purple arrows representing 
the force components on the z-axis. The size of the arrows is scaled based on the magnitude of the forces they 
represent. As observed, the components of the forces on the z-axis are much smaller than the other two 
components, being so small that they are not recognizable in Figure 4b. The latter, added to the fact that these 
forces do not contribute to the power, allows treating the analysis of the forces as bidimensional. 

Consider the disposition of particles during a given time instant shown in Figure 5a and the forces excerted 
by these particles on the ring, shown in Figure 5b. It can be seen that the magnitude of the forces exerted by 
the particles impacting the ring before the toe has a low magnitude and that the amplitude of the forces grows 
as they come into contact with the ring in the zone between the toe and the shoulder. Also, it is possible to 
notice that the vertical components of the nodal forces act mainly in the negative direction while the forces in 
the horizontal direction are positive or negative depending on the face of the lifter in which they act. The sense 
of the horizontal forces determines the sense of the torque they generate. 

Figure 6 shows the forces of Figure 5 decomposed in the ring tangential direction. These components are 
those that contribute to the torque associated with the movement of the particles. It can be seen that the forces 
acting on the back face of the lifters (purple arrows) generate torque in the same direction as the rotation of the 

 

Figure 4: (a) Contact forces of a single particle in contact with the ring. (b) All contact forces acting on 
the ring with a close view of the contact forces. 

b) a) 

 
Figure 5: (a) Disposition of particles at a given time instant. (b) Forces excerted by the particles on the 

lifters and liners at a given instant of time. 

a) b) 



6 

mill, while the forces acting on the front face of the lifters (green arrows) generate torque in the opposite 
direction. It is also possible to notice that the components of the forces that contribute to the torque and that 
act on the liners or the top faces of the lifters are of very low amplitude when compared with the components 
that act on the front and back faces. Finally, it can be seen that the magnitude of the tangential forces varies 
significantly with the angular position. In this work, the power associated with the forces exerted by the 
particles on the ring and obtained using DEM is called ,DEM RingP . 

The main consequence of this analysis is that, depending on the face of the lifter in which the forces act, 
they can contribute or oppose the total torque exerted by the load, which determines the required driving torque. 
The evolution of these forces, depending on the internal geometry of the mill and the operating conditions, 
have a significant influence on the power consumption associated with its operation. 

Figure 7a shows the components of the forces in x-axis and y-axis acting due to friction on one of the 
acrylic covers of the mill. Figure 7b shows the tangential decomposition of these forces, where the size of the 
arrows is according to their magnitude. As observed, the forces on the covers that generate torques are of 
similar magnitude to those acting on the ring. The magnitude of the power associated with the back cover and 
front cover is similar and, therefore, both covers are treated indistinctly in this work. 

The power associated with the movement of both covers is defined as ,DEM CoversP  and is calculated by adding 

the powers associated with each cover. 
 

3.3.2 Total power due to the movement of the load inside the mill 

The total power associated with the operation of the mill obtained by modeling the SetupD100 using DEM 
corresponds to the sum of the powers associated with each of its components: 

 
 , , , 1 , 2DEM Mill DEM Ring DEM Cover DEM CoverP P P P    (7) 
 
Most of the power associated with the movement of particles inside industrial scale mills comes from the 

contact forces acting on the liners and lifters. In the case of the power associated with the operation of the 
SetupD100, both the power associated with the ring and the covers are of similar magnitude because the length 
of the ring is too short for its diameter.  

 

 
Figure 6: Decomposition of forces in tangential direction. 

    
Figure 7: Forces acting on one cover (a) in x and y direction. (b) Tangential decomposition of the forces. 

a) b) 
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4 Model of forces acting on the lifters 

As explained in section 3.3.1, the magnitude of the forces exerted by the particles on the ring when the 
mill rotates depends on the angular position of the liners and lifters, and on the lifter face on which they act. 
Motivated by this, a force model is developed, based on DEM simulation results. The model allows obtaining 
the magnitude of the average forces acting on the different faces of the lifters and liners as a function of its 
angular position   while the mill operates. This model groups the contact forces exerted by the particles on the 
liners and each face of the lifters of the mill. The internal geometry of the mill divides into four faces: the front 
face (FF), the back face (BF), the top face (TF) and the adjacent liner (AL). The forces acting on the ring are 
divided into 8 forces that act normal and tangential to each face, as shown in Figure 8. 

 

4.1 Modification of the geometric model: implementation of virtual sensors 

To obtain the magnitude of the average forces exerted by the particles on the 3 faces of the lifters and 
adjacent liners as a function of their angular position, a set of three virtual sensors is incorporated in the 
geometrical model of the DEM model of the SetupD100, as shown in Figure 9a. The virtual sensors (VS) 
consist of 4 independent sheets (one for each face of the lifter plus the adjacent liner) fixed to the lifters they 
cover. The fact that the sheets are independent geometries allows obtaining the resultant force exerted by the 
particles on each sheet as a function of time separately. 

Figure 9b shows an example of the forces acting on one of the sheets covering the front face (FF) of the 
lifter of one of the virtual sensors, as directly obtained from the DEM software, that is, in terms of the xy-
coordinates. Since there are 3 virtual sensors with their respective 4 sheets, a total of 12 x and y force signals 
as a function of time is obtained from each simulation. 

 
Figure 8: Normal and parallel forces acting on the 3 faces of the lifter and adyacent liner. 

         

 
Figure 9: (a) Set of virtual sensors included in the geometric model. (b) Example of time history of force 

signal in xy coordinate for the front face of one lifter. 

b) 

a) 
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4.2 Transformation of forces into local coordinates 

The first step in the processing of the forces is to transform the forces captured by the virtual sensors, based 
on the global xy coordinates (Figure 9b), in terms of the local coordinates defined for each face according to 
Figure 8. The global coordinates are fixed in space so that the mill rotates with respect to the xy plane. On the 
other hand, the virtual sensors move with the lifters on which they are mounted and, consequently, rotate with 
the mill. Because of this, all local coordinates, defined for each of the faces of the VS, also rotate with the mill. 
Hence, to transform the forces from global to local coordinates, it is necessary to know the location of each of 
the faces of the VS as a function of time, based on the rotation of the mill. 

 
4.2.1 Angular displacement equations of virtual sensor faces 

In order to know the location of the different faces of the virtual sensors with respect to the axis of the mill, 
the equations describing the angular displacement of the centers of the 3 lifter faces and adjacent liner are 
considered. Figure 10a shows the starting position of the three virtual sensors (VS), where the back face of 

VS1 is located at 90° with respect to the horizontal, that is, 0,1 2
  . The back face of the VS2 and VS3 are 

located at 120° and 240° from the back face of the SV1, respectively. The angular position of the centers of 
the other faces is defined relative to the back face of the respective virtual sensor, as shown in Figure 10b. The 
angles shown in the figure are defined according to the geometry of the lifters and the ring. Due to how the 
lifters are installed in the ring (Figure 10c) it is convenient to define a projected width of the lifter ,0bw , which 

represents the width of the base of the lifter if the curvature of the ring did not exist. Doing so allows defining 
the angles between the centers of the faces with respect to the back face of the lifter as: 

 

 
 1 ,0 tan

tan
2

b

M

w h
D h


   
  

 
 (8) 

 
 1 ,02 tan

tan b

M

w h
D h


   
  

 
 (9) 

  2     (10) 

 2lftN
 

    (11) 

 
For the geometry and number of lifters of the SetupD100, the angles are 1.836  , 4.762  , 5.853   

y 8.927  . After locating the different faces of the VS with respect to their corresponding back faces, it is 
possible to describe the movement of each of the faces of the 3 VS as a function of time, based on the rotation 
speed of the mill as follows: 

 
  , 0,BF i it t     (12) 

  , ,TF i BF it     (13) 

  , ,FF i BF it     (14) 

  , ,AL i BF it     (15) 
 

  

 

Figure 10: a) Starting position of the virtual lifters. b) Angles used to define the center position of the 
lifter faces and adjacent liner. c) Projected width of lifter. 

 

a) b) c) 
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Where  is the rotation speed of the mill, t  corresponds to time, the index 1,2,3i   refers to the virtual 
sensor and 0,i  represents the initial position of the back face of the virtual sensor i. 

 
4.2.2 Transformation of forces into local coordinates 

Once the location of the 4 faces of the 3 virtual sensors is known as a function of time, it is possible to 
transform the forces obtained from the virtual sensors from global xy coordinates into local coordinates (normal 
and parallel) by using the following equations: 

 
For forces acting on the front face: 
 

            , , , , , , , ,sin cosN FF i x FF i FF i y FF i FF iF t F t t F t t        (16) 

            , , , , , , , ,cos sinP FF i x FF i FF i y FF i FF iF t F t t F t t        (17) 

 
For forces acting on the adjacent liner: 
 

            , , , , , , , ,cos sinN AL i x AL i AL i y AL i AL iF t F t t F t t    (18) 

            , , , , , , , ,sin cosP AL i x AL i AL i y AL i AL iF t F t t F t t    (19) 

 
For forces acting on the back face: 
 

            , , , , , , , ,sin cosN BF i x BF i BF i y BF i BF iF t F t t F t t     (20) 

            , , , , , , , ,cos sinP BF i x BF i BF i y BF i BF iF t F t t F t t    (21) 

 
For forces acting on the top face: 
 

            , , , , , , , ,cos sinN TF i x TF i TF i y TF i TF iF t F t t F t t    (22) 

            , , , , , , , ,sin cosP TF i x TF i TF i y TF i TF iF t F t t F t t    (23) 

 
Figure 11a shows the forces of Figure 9b, acting on the front face of one of the virtual sensors, after the 

change of coordinates. After the change of coordinates, it is possible to notice that the magnitude of the normal 
forces acting on the faces of the lifters is significantly larger than that of the parallel forces. 

 

4.1 Separation in force pulses 

As observed in Figure 11a, the magnitude of the forces changes from zero to non-zero in consecutive time 
intervals, a situation that repeats with every rotation of the mill. This is because the VS is not in contact with 
the particles when it is located between the shoulder and the toe or the point of impact (whatever occurs first) 
and, therefore, is not subjected to forces during this time interval. Contrary, when the VS is in contact with 
particles, the force is non-zero. This process of loading and unloading the VSs is approximately periodic so 
that lifters and liners are subject to similar forces as they pass through the same angular position. 

Based on the above, the forces are subjected to a process of pulse separation. A pulse corresponds to a set 
of the 8 forces (two for each face, normal and parallel) exerted by the particles on one of the virtual sensors 

  
Figure 11: (a) Forces acting on the front face of a SV. Dotted lines mark the beginning and end of the force 

pulses. (b) Path followed by a SV for pulse separation with reference position of 135°. 

b) a) 
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for a complete revolution of the mill around its axis of rotation. The pulse separation allows relating the 
magnitude of the forces exerted by the particles on the virtual sensors as a function of the angular position 
instead of time. 

The pulse separation is carried out using an algorithm that defines a reference position ( ref ) and identifies 

the instants of time where the front face of the VS pass through said position. Figure 11b shows the path 
followed by a VS during which one pulse is obtained, with respect to the reference position (135° in this case). 
Thus, the pulses correspond to the set of forces exerted by the particles during one rotational period of the mill 
based on a reference position. In Figure 11a, the vertical dotted lines represent the initial and final time instants 
of the different pulses. The first pulse is not considered representative because the movement of the load 
develops only after the first seconds of the simulation. 

 

4.2 Averaging process of pulse forces 

Once separated into pulses, the forces are subjected to a process of averaging for deterministic/random 
separation. The process consists of averaging the magnitude of the pulse forces of the respective faces of the 
SV when they are in corresponding angular positions. The result of the process is the set of 8 average pulse 
forces that act on each of the faces of the lifters as a function of the angular position: ,N FFF , ,P FFF , ,N ALF , ,P ALF , 

,N BFF , ,P BFF , ,N TFF  y ,P TFF . Figure 12a and Figure 12b show, respectively, the average pulse forces ,N FFF  and ,T FFF  

superimposed on the individual pulses from which they are calculated. Figure 13 shows the forces of Figure 
11 (in blue), along with the average force pulses (in red) and the random part of the forces (in yellow). In 
general, the magnitude of the random part of the forces is low compared to the magnitude of the average forces, 
especially for normal forces. The average forces represent the stationary forces acting on any of the lifters as 

   
Figure 12: Averaged (red) and individual (black) pulse forces acting on the front face of the lifter. (a) 

Normal force. (b) Parallel force. 

a) b) 

 

 
Figure 13: Average/random decomposition of the forces acting on the front face of the lifter. a) Normal 

force. b) Parallel force. 

b) 

a) 
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a function of the angular position, being the random part responsible for deviating the magnitude of the average 
forces until reaching the magnitude of the individual pulses. 

 

4.3 Calculation of torques and power from the forces acting on the virtual sensors 

4.3.1 Time delay of virtual sensor forces 

The ring of the mill is composed of a set of liners and lifters, of identical geometry, located in different 
angular positions. As the VS collect the forces that act on the 3 faces of a lifter and its adjacent liner, it is 
possible to calculate the power associated with the movement of the ring from the forces they register, 
assuming that the average forces acting on a lifter i is equal to the forces acting on the reference lifter, when 
its located in the same angular position. 

It is considered that the stationary force acting on each face of a lifter i is equal to the force of the respective 
face of the reference lifter, including the time delay according to the difference between their angular positions. 
That is: 

 

     , 1, 1i j j lftF t F t i T  
 (24) 

 
Where: 
 

 
2

lft
lft

T
N





 
(25) 

 

lftN  is the number of lifters, j represents the force (i.e., face, normal or parallel), i represents the lifter for 

which the force is being expressed based on the reference lifter on which the stationary force 1, jF  acts, t  is time 

and lftT  is the lifter pass period. Figure 14 illustrates the time delay process, where the forces acting on the rest 

of the lifters are determined from the forces acting on the lifter 1. Figure 14a shows the result of the phase shift 
process for 3 lifters. Figure 14b shows the forces acting on all lifters at a given instant, calculated from the 
average forces acting on the reference lifter. 

 
4.3.2 Calculation of the driving torque and power 

Of the eight forces shown in Figure 8, five of them have tangential components and, therefore, exert torques 
in the direction of rotation of the mill. This set of forces is determinant in the driving torque and, thus, in the 

 

 
Figure 14: Illustration of the time delay process for determining the forces acting on all lifters and liners. 

(a) Time delay for three lifters. (b) Time delay for all lifters. (c) Global representation of the forces. 

b) 

a) c) 
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power consumption. Of these five forces, four exert resistant torques, as shown in Figure 6. The force ,N BFF , 

acting on the back face of the lifter, exerts torque in the rotation direction, thus favoring the mill’s movement 
and diminishing the required driving torque. As the forces are treated separately for each face, it is possible to 
obtain the torque associated with the front face, top face, back face, and adjacent liner independently. These 
torques consider the total number of lifters, due to the time delay process explained in the previous section. 

The torques exerted by the different forces acting on any face of a single lifter are given by: 
 

 , ,i j j i jT r F 
 

 (26) 

 
Where ,i jT  is the torque exerted by force ,i jF  acting on the face j of the lifter i, and jr is the arm of this force. 

Hence, the torques associated with the different forces acting on each of the faces of a lifter i are given by: 
For normal and tangential forces acting on the front face of the lifter (FF): 
 

         , , , , ,cos sin 0.25 1 cosFF i N FF i P FF i MT F F D h     
 (27) 

 
For the tangential force acting on the adjacent lifter (AL): 
 
 , , ,0.5AL i P AL i MT F D  (28) 
 
For the normal force acting on the back face of the lifter (BF): 
 
  , , ,0.5BF i N BF i MT F D h    (29) 
 
For the tangential force acting on the top face of the lifter (TF): 
 
  , , , 0.5TF i P TF i MT F D h   (30) 
 
And the total torque contribution per face is obtained by considering the respective torques of all lftN  lifters: 

 

 ,
1

lftN

FF FF i
i

T T


 ; ,
1

lftN

AL AL i
i

T T


 ; ,
1

lftN

BF BF i
i

T T


 ; ,
1

lftN

TF TF i
i

T T


  (31) 

 
The total torque per face of the lifter and adjacent liner includes the effect of the magnitude change of the 

forces and its varying angular position as the mill rotates. The total torques associated with each face, obtained 
from the set of forces acting on the ring, are shown in Figure 15 as a function of time. The figure also indicates 
the average values. 

Finally, the total power due to the movement of the load inside the mill is given by the sum of the average 
torques associated to each face: 

 

  Forces FF AL BF TFP T T T T     
 (32) 

 

 
 

Figure 15: (a) Illustration of the components of the total torque per face of the lifter and adjacent liner. (b) 
Results of total torque per face as a function of time (average values indicated). 

a) b) 
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4.3.3 Comparison between the power calculated from the forces and the power obtained from 
DEM 

In order to validate the methodology, the power ForcesP  is compared to the power ,DEM RingP , which is obtained 

directly from the DEM model of the SetupD100. 
Figure 16a shows the difference between the two powers calculated as: 
 

 
,

,
,

Forces DEM Ring
Forces DEM

DEM Ring

P P
diff

P




 
(33) 

 
As observed, the differences between the power obtained directly from the DEM software and the power 

calculated from the forces are small (maximum 2.69%), thus validating the method to obtain the set of 8 forces 
as a function of the angular position using the virtual sensors. 

 

5 Instrumentation used in SetupD100 

The instrumentation used in SetupD100 focuses on analyzing the movement of the load inside the mill, 
analyzing the interaction between the lifters and the particles, and the experimental measurement of the power 
associated with the operation of the mill. 

 

5.1 High-speed camera 

One of the main features of the SetupD100 is that it is possible to observe the movement of the particles 
inside while operating, thanks to its transparent front cover. A high-speed camera (200 fps) is used to record 
the movement of the load inside the mill. Figure 16b shows an example of the images captured by the camera. 

 

5.2 Driving torque 

The measurement of the driving torque is made by using strain gages in full-bridge configuration installed 
on the mill shaft, between the mill and the bearing, Figure 16c. 

The strain measurement in this position allows determining the torque due to the movement of the particles 
only, eliminating the need to estimate losses in other elements of the powertrain such as couplings and gear 
transmission. By multiplying the motor torque by the angular speed of the mill, the experimental power 
associated with the movement of the mill ExpP  is obtained, which is equivalent to the power ,DEM MillP . 

 

5.3 Instrumented lifter and tachometer 

In order to validate the average forces obtained numerically, instrumented lifters resembling the virtual 
sensors are built. The instrumented lifters are capable of sensing the interaction between the particles and two 
of the lifter faces: front face (FF) and back face (BF). 

 

Figure 16: (a) Power differences for different operating conditions. (b) Front view of the mill while 
operating. (c) Strain gage for experimental measurement of driving torque. 

a) b) c) 
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The instrumented lifters are composed of two parts: a base block and a thin sensing plate. The sensing plate 
is made of steel and is fixed to the base block using 4 bolts at its side ends, as shown in Figure 17a. When the 
instrumented lifter contacts the particles, the sensing plates deflect. The deflection is measured by a pair of bi-
axial strain gauges in half bridge configuration installed in the back of the plate. Figure 17 shows the assembly 
of the instrumented lifter for the measurement of front face interactions (LI-FF); whereas Figure 18 shows the 
same for measurement of back face interactions (LI-BF). 

Figure 19 shows the results of the measurements with the two instrumented lifters for a rotation speed of 
75% of the critical speed and a fill level of 30%. As in the case of the forces measured with the VS, the strain 
measured by the instrumented lifters are separated in pulses. The angular position of the instrumented lifters 
is determined from the reference signal provided by a photo-tachometer. Subsequently, the experimental pulses 
(EP) are averaged to obtain an estimator of the stationary component of the pulse forces, Figure 20. 

   
Figure 17: Instrumented lifter for measurement of front face interactions (LI FF). (a) and (b) Assembly. 

(c) Actual lifter. 

   
Figure 18: Instrumented lifter for measurement of back face interactions (LI FF). (a) and (b) Assembly. 

(c) Actual lifter. 

a) b) c) 

a) c) b) 

 

 
Figure 19: Strain waveform measured by the instrumented lifters. (a) Front face (LI-FF). (b) Back face 

(LI-BF).  

a) 

b) 
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6 Results and discussion 

The presented methodology allows a detailed analysis of the behavior of the load inside the mill, which in 
turn defines the overall behavior of the machine. Of particular interest is the behavior of the power 
consumption depending on the operating conditions. This behavior has been described in the literature based 
on the observation of the phenomenon, but a physical explanation has not yet been presented. 

This section presents experimental results that validate the proposed methodology. Afterwards, the 
methodology is used to provide the physical explanation mentioned. 

The average forces associated to each face as a function of the angular position, and the corresponding 
torques they exert, allows analyzing the behavior of the power associated with the movement of the ring from 
the viewpoint of the interaction of the particles with its internal surfaces. 

 

6.1 Average forces 

Figure 21 shows the average forces obtained after processing the forces from the virtual sensors included 
in the DEM model of the SetupD100, for the mill operating at 75% of its critical speed and a fill level of 30%. 
As can be observed, the magnitude of the parallel forces is much smaller than the magnitude of the normal 
forces. Five of the forces acting on the lifter faces are tangential to the ring. From these, the normal forces 
acting on the front face (FF) and back face (BF) are the most significant in the total torque associated with the 
rotation of the ring. The 3 remaining forces are parallel forces of magnitude considerably lower than that of 
normal forces. Based on this, the torque components FFT  and BFT  are the most relevant in the total torque and 

thus in the power consumption.  

    
Figure 20: Experimental average pulses obtained with the instrumented lifters. (a) Front face (LI-FF). (b) 

Back face (LI-BF). 

a) b) 

   

   
Figure 21: Normal and parallel average forces from the virtual sensors. (a) Front face. (b) Adjacent lifter. 

(c) Back face. (d) Top face. 

a) b) 

c) d) 
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6.2 Experimental validation 

The numerical model of the SetupD100 is validated by comparing the numerical results obtained by 
processing the data extracted from the DEM simulations against their experimental equivalents obtained using 
the instrumentation of the test bench. The comparison is made first in terms of the power associated with the 
movement of the mill obtained by DEM ( ,DEM MillP ) and the power obtained experimentally by the strain gauge 

installed on the drive shaft of the mill ( ExpP ). As a second approach, the average forces obtained from the virtual 

sensors and the average experimental pulses obtained with the instrumented lifters are considered. Finally, the 
disposition of the particles inside the mill obtained by DEM and by the high-speed camera are contrasted. 

Figure 22 shows the difference between ExpP  and ,DEM MillP , calculated as: 

 

 
,

,
DEm Mill Exp

Exp DEM
Exp

P P
diff

P




 
(34) 

 
The maximum difference is 10.5% for the mill operating at 95% of its critical speed and 42.5% fill level. 

In mining industries, grinding mills typically operate with speeds ranging between 55% to 80% of the critical 
speed and fill levels between 25% to 40% of the internal volume. Within this range of operating conditions, 
the difference between the numerical and experimental power is less than 5%. 

Figure 23 shows the comparison between the forces ,N FFF  and ,N BFF , and the experimental average pulses 

obtained with the LI-FF and the LI-BF, for different operating conditions. The differences observed are due to 
the fact that the instrumented lifters do not measure the contact forces directly, but the strain caused by these 
forces. Even though the strain is a consequence of these forces, there is no direct relation to the resultant force 
magnitude, because the force distribution has an influence too. It can also be seen that the magnitude of the 
measurements made with the LI-BF is much lower than those obtained with the LI-FF. Despite this, there is a 
clear agreement between the angular intervals in which the forces and the average experimental pulses are 
non-zero. Also, the fact that the average experimental pulse obtained with LI-BF is mostly positive confirms 
that the forces exerted by the particles on the BF compress it, generating torques in the sense of rotation of the 
mill. 

Figure 24 compares the disposition of particles inside the mill obtained numerically and experimentally 
for 3 different operating conditions, showing good correlation. 

Based on the similarities observed between the numerical and experimental results, it is reasonable to 
assume that the numerical model of the SetupD100 and the proposed methodology are valid.  

 

6.3 Effect of rotating speed on the power, torque, and forces 

Figure 25a shows the behavior of the power ,DEM RingP  as a function of the speed, for the mill operating with 

different fill levels. Figure 25b shows the same for the torque , ,DEM Ring DEM RingT P  . This torque is equivalent 

to the sum of the torques FFT , ALT , BFT  and TFT . It can be seen that the power increases steadily, for all fill levels,  

 
Figure 22: Difference between ExpP  and ,DEM MillP  for each of the conditions analyzed. 
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Figure 23: Comparison of numerical and experimental average pulses for the front face and back face, and 

different operating conditions. 
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Figure 24: Disposition of particles inside the mill (a),(c),(e) Numerical results. (b),(d),(f) Expermiental 

results. 

a) b) 

c) d) 

e) f) 

a) 

b) 

c) 

d) 

e) 

f) 
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from 55% to 80% of the critical speed. For higher speeds, the power decreases at a rate that becomes more 
pronounced as the fill level increases. The torque ,DEM RingT  increases up to 70% of the critical speed. From this 

point on, it begins to decrease. This behavior has been reported in the literature [13][14][21][57], and in order 
to explain it, the torques and the average forces associated with the different faces of the lifters are further 
analyzed.  

Figure 25c and Figure 25d show the behavior of the torques FFT  and BFT  as a function of the speed. It can 

be seen that in the range between 55% and 70% of the critical speed, the increase rate in the magnitude of FFT   

is slightly higher than the increase rate in the magnitude of BFT , which explains the increase in the magnitude 

of ,DEM RingT  within this speed range. For speeds above 70% of the critical speed, it can be noted that the 

magnitude of BFT  increases at a higher rate than the magnitude of FFT , and that this is more pronounced for 

higher fill levels. This indicates that the drop in the torque ,DEM RingT  for speeds higher than 70% of the critical 

speed observed in Figure 25b originates because the magnitude of the force ,N BFF  increases more significantly 

than the magnitude of the force ,N FFF  as the rotating speed increases. 

Figure 25e and Figure 25f show, respectively, the magnitude of the forces ,N FFF  and ,N BFF  as a function of 

the angular position for the mill operating at 35% of fill level and speed from 55% to 95% of the critical speed 
with 10% jumps. It can be noted that the magnitude of ,N FFF  and the angular interval where this force is non-

zero increase slightly as a function of the speed of rotation, which produces the slight and sustained increase 
in the magnitude of FFT  observed in Figure 25c. On the other hand, the force ,N BFF  remains approximately 

constant between 55% and 65% of the critical speed but begins to increase in the angular range   between 
135° and 250° for fill levels above 75%. This behavior originates the increase suffered by the magnitude of 

    

    

    
Figure 25: (a) Power  as a function of speed. (b) Torque  as a function of speed. (c) Torque 

 as a function of speed. (d) Torque  as a function of speed. (e) Force  as a function of the 

angular position. (f) Force  as a function of the angular position. 

a) b) 

c) d) 

e) f) 
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BFT  between 70% and 95% of the critical speed, and that causes the decrease of ,DEM RingT  in this speed range. 

The physical phenomenon that gives rise to the forces exerted by the particles in the angular interval between 
135° and 250°, for speeds higher than 70% of the critical speed—and that is accentuated with speed--, 
corresponds to the impact of the particles describing cataract movements and that fall over the toe position, as 
shown in Figure 26. The particles impacting the internal surface of the mill over the position of the toe exert 
forces on the back face of the lifters and not on the front face, due to their orientation relative to the path of 
the particles. These forces exert torques in the sense of rotation of the mill, thus diminishing the total torque 
requirement. This phenomenon becomes more significant as the rotation speed increases, because both the 
number and speed of the particles falling on the back face of the lifters above the toe position, increase. 

 

6.4 Conclusions  

A methodology is proposed to obtain the magnitude of the average forces exerted by the particles inside 
the mill on the different faces of the lifters and liners of the ring as a function of their angular position, and the 
torques associated with each of these faces for the complete set of lifters in the ring. The results obtained from 
the numerical modeling are in agreement with the corresponding experimental measurements obtained in the 
test bench, thus validating the methodology. 

The forces and torques provide a useful tool to understand the behavior of the power consumed by the mill 
depending on its geometry and operating conditions. These variables provide the link between the behavior of 
the load inside the drum and the resulting behavior of the power consumption of the mill. This is especially 
relevant considering that the energy costs associated with the operation of tumbling mills and the evolution of 
their internal geometry due to wear, represent a significant fraction of the costs associated with the refinement 
of minerals. 

The results of the analyses carried out in this work show that the decrease in power consumption observed 
when the speed of the mill increases is due to the impacts of the particles falling on the zone of the ring above 
the toe of the load. These impacts exert forces on the back face of the lifters, thus increasing the torque 
component associated with this face, which acts in the sense of rotation. At the same time, as the speed 
increases, the torque associated with the front face of the lifters also increase, but its magnitude grows at a 
lower rate. This difference in the growth rates of both torques provides the physical explanation of the power 
consumption drop at higher speeds. 

The methodology seems to be a promising tool in view of gaining further insight about the behavior of 
tumbling mills and could be useful, for example, to develop strategies to reduce O&M costs and increase 
efficiency.  

 
  

  
 .   

    
Figure 26: Disposition of particles inside the mill operating with 35% fill level and rotating speed of (a) 65%, 

(b) 75%, (c) 85% and (d) 95% of the critical speed. 

a) b) c) d) 
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Abstract: 

Condition based monitoring by vibration sensors is a widely spread technique for 

monitoring the status and condition ("health") of rotating machines. In most cases, the 

monitoring is based on the ability to isolate specific elements of the vibration signals, 

generated by the different rotating components. 

The generated signals are propagating through various transmissions paths of the 

machine, that distort the original signals, hence affect the assessment of the machine's 

condition. While these effects are usually ignored by most vibration analysis 

techniques, first steps towards mitigating this problem have been taken place during 

the last years. These techniques used pre-whitening methods, which usually served to 

separate the signal from its background, as well as to reduce the transmission path 

effects. 

In this study, we aim to go a step further in transmission path restoring through 

deepening our understanding of their effects on the vibration signals. We start by 

reviewing three main pre-whitening methods: liftering low quefrencies at the 

Cepstrum (Cepstrum-liftering), adaptive clutter separation (ACS), and pre-whitening 

using auto-regressive (AR) models. 

We first show that signal's pre-whitening by the AR model has large errors and 

therefore is less adequate for transmission path restoration processes. Through several 

simulations, we show that the AR model succeeds in extracting the background 

spectrum only where the noise is significantly larger than any other component in the 

PSD. For all other cases, there are large inaccuracies at the restoring background 

process. We propose a theoretical explanation for this phenomenon, and then 

strengthen our argument that AR in its current use is less adequate for this purpose. 



We then propose a theoretical approach to adjust parameters for ACS and Cepstrum-

liftering techniques and examine them and their sensitivity through quantitative 

methods. By tying the theoretical adequate windows parameters of Cepstrum-liftering 

and ACS, we show that it is possible to predict the sizes of these two adequate 

windows. Furthermore, we suggest an adaptive algorithm that is based on the 

theoretical calculation to reach more accurate values for the parameters of the window 

in real cases.  

After adjustment of the parameters, we compare ACS and Cepstrum-liftering through 

a variety of simulations and receive slightly different quantities results of the 

transmission path estimation using ACS and Cepstrum liftering than the former paper 

[1]. 

A new technique to restore the transmission path background and its phase is 

proposed (Figure 1). The restoration of the phase is an important feature due to its 

deep implications on the ability to correctly restore the original signal in the time 

domain. The new technique is based on AR model and artificial noise colorization to 

restore both the background spectrum and its phase. Furthermore, it also improves the 

magnitude of the restored background, compared to ACS and Cepstrum-liftering 

techniques.  

 

Figure 1 – restored Transmission-Path phase and amplitude 

We also suggest exploiting the advantage of the new technique to restore the 

background in the frequency domain by converting the signal to the order domain and 

restore it there. The technique is highly beneficial in cases where the signal is smeared 

in the frequency domain but is sharp in the order domain, cases which the system 

rotating speed varies during the time. 
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Abstract 
 

In the study of random vibration problems, Gaussian vibration and non-Gaussian vibrations are 

usually classified according to the excitation signal. The skewness and kurtosis are usually used 

to distinguish. Here we discuss a non-strict Gaussian signal, which is the error that exists in 

skewness and kurtosis and usually unavoidable in actual experiments or signals analysis. 

Through experiments and simulation calculations, the influence of this error on the traditional 

fatigue calculation method is discussed. The PSD approach will be discussed primarily, and 

time domain signals based on the rain-flow counting method will be recorded and verified. 

Total nine calculation model studied in this process. Finally, through a threshold, the range of 

skewness and kurtosis is indicated, that within this range, Gaussian signal-based calculations 

can be continued. By comparing the performance of different methods, a better method for 

signal adaptability can be obtained.  

 

 

Keywords: Random vibration fatigue, Damage cumulative calculation and Gaussian random 

vibration.  

 

1. Introduction 

For many mechanical components, the working load is in the form of random vibrations. In the 

fatigue design project, the load cycle of the structure is usually obtained by the rain flow 

counting method according to the conventional time domain signal, with the material property, 

the damage of the structure could be obtained by using the Miner‘s Law, and then prediction 

the life of the structure. But the acquisition of time domain signals relies on a large number of 

experimental records, which obviously sounds expensive. Later, according to the stochastic 

theoretical method, the power spectral density was used to characterize the random vibration 

characteristics, and the method of inferring the rain flow counting result of response stress was 

proposed.[1][2] This theory generally assumes that the load is subject to a Gaussian distribution. 

The more successful method is the narrow-band approximation method proposed by Bendat in 

1968.[3] Later, due to the efforts of more scholars, the broadband approximation method was 



also proposed. At the same time, various improvement schemes were proposed to improve the 

accuracy of the approximate results. [4][5][6] 

However, since most of the actual loads are non-Gaussian distributions, it is obvious. Therefore, 

when the load is a non-Gaussian signal, the original Gaussian-based frequency domain damage 

analysis method may be used, which may cause poor deviation. Therefore, it is necessary to 

further discuss the influence of signal non-Gaussian on stress distribution. The research method 

based on the frequency domain signal discusses the overall distribution of signals in the 

frequency domain, and the non-Gaussian signal that satisfies this condition is not unique. This 

leads to the use of frequency domain method to study the distribution of non-Gaussian signals. 

Large deviations, when calculating damage using this distribution result, pose a significant risk 

to product design and life estimation. 

In this paper, a reference based on kurtosis judgment will be proposed to select the method of 

fatigue damage calculation. The rain-flow count analysis is performed on the response stress of 

non-Gaussian load, and the difference between the Gaussian signal and the non-Gaussian signal 

at the same level is obtained, and an allowable value is obtained, that is, in this range, even if it 

is not a Gaussian signal, the PSD method also could be used. The fatigue damage results 

obtained by the method are still within error tolerance. Beyond this range, the non-Gaussian 

signals must be considered with the special method. 

 

2. Non-Gaussian signal and Kurtosis control 

Generally, a signal whose probability density distribution obeys a Gaussian distribution is 

called a Gaussian signal and is mainly judged by the skewness and kurtosis of the signal. This 

indicator indicates the distribution of data within the data range. The skewness refers to the zero 

offsets of the centre, which is represented by S. The kurtosis can be understood as the specific 

gravity in the central region, denoted by K. The greater the kurtosis, the greater the 

accumulation of data in the centre. Usually, the Gaussian distribution has a kurtosis of 3 and 

skewness of 0. 

  

 

Figure 1 Gaussian signal and probability density distribution 

 

Thus σ is the standard deviation, μ𝑛 is the nth central moment 



S =
𝜇3

𝜎3                              (1) 

K =
𝜇4

𝜎4                              (2) 

When the kurtosis or skewness has a condition that does not satisfy the Gaussian distribution, 

the signal is called a non-Gaussian distribution. At the same time, according to the index, when 

K>3, it is called leptokurtic, and when k<3, it is called platykurtic. According to the probability 

density distribution of the non-Gaussian signal, it can be found that the kurtosis reflects the 

distribution of acceleration in the middle region.[7] 

In order to obtain an acceleration signal of a non-Gaussian distribution, it is usually obtained 

by Gaussian signal transformation. There are many methods used, Hermit polynomial, 

Gaussian mixture model, Phase selection method, Power-law model, Exponential method, Non-

parametric method. In this paper, Steinwolf's phase selection method is used to modulate non-

Gaussian signals with specific skewness and kurtosis.[8] 

3. Phase selection method 

By fast Fourier transform, an acceleration time domain signal can be described as a 

superposition of harmonics in the frequency range. 

x(t) = ∑ 𝐴𝑛cos (2𝜋𝑛∆𝑓𝑡 + 𝜑𝑛)𝑁
𝑛=1             (3) 

The amplitudes of the harmonics are obtained 

𝐴𝑛 = √2∆𝑓𝑆(𝑛∆𝑓)                       (4) 

Then the nth centre moment could be obtained  

𝑀𝑧 = lim
𝑇→∞

1

𝑇
∫ {𝑥(𝑡)}𝑧𝑑𝑡

𝑇

0
=

1

𝑇
∫ {𝑥(𝑡)}𝑧𝑑𝑡

𝑇

0
,   z > 2      (5) 

After the kurtosis formula could be written as 

K =
𝑀4

𝑀2
2 = 3 −

3

2
(

∑ 𝐴𝑛
4𝑁

𝑛=1

(∑ 𝐴𝑛
2 )𝑁

𝑛=1
2) + (

1

2
∑ 𝐴𝑛

2𝑁
𝑛=1 )

−2
{

3

2
∑ 𝐴𝑖𝐴𝑗

2𝐴𝑘 cos(𝜑𝑖 + 2𝜑𝑗 − 𝜑𝑘) +𝑖+2𝑗=𝑘
𝑖≠𝑗

3

2
∑ 𝐴𝑖𝐴𝑘

2𝐴𝑗 cos(𝜑𝑖 + 𝜑𝑗 − 2𝜑𝑘) + 3 ∑ 𝐴𝑖𝐴𝑗𝐴𝑘𝐴𝑚 cos(𝜑𝑖 + 𝜑𝑗 − 𝜑𝑘 −𝑖+𝑗=𝑘+𝑚
𝑖<𝑗,𝑘<𝑚,𝑖<𝑘

𝑖+𝑗=2𝑘
𝑖<𝑗

𝜑𝑚) + 3 ∑ 𝐴𝑖𝐴𝑗𝐴𝑘𝐴𝑚 cos(𝜑𝑖 + 𝜑𝑗 + 𝜑𝑘 − 𝜑𝑚) +
1

2
𝑖+𝑗+𝑘=𝑚
𝑖<𝑗<𝑘<𝑚

∑ 𝐴𝑖𝐴𝑗
3 cos(𝜑𝑖 − 3𝜑𝑗)𝑖=3𝑗 }                                 

(6) 

In the case of ensuring that the mean and RMS of the non-Gaussian signal are not changed, 

only the distribution is changed. So to make the K fitted for the experiment by modulating the 

specific φ. The resulting non-Gaussian distribution acceleration time series with specific K 

could be found. It should be noted that as the bandwidth increases，the amount of calculation 

becomes very large and also affecting the amount is the sampling frequency and data length. In 

general, the required non-Gaussian data is obtained in a combination of several methods. 



4. Rain-flow count and damage calculation 

The rain-flow counting method was proposed in the 1950s by two British engineers, M. 

Matsuishi and T. Endo.[9] The main function of this counting method is to simplify the measured 

load history into several load cycles for fatigue life estimation and fatigue test load spectrum. 

It is based on the two-parameter method and considers two variables of dynamic strength 

(magnitude) and static strength (mean). The rain flow counting method is mainly used in the 

engineering field, and is widely used in the calculation of fatigue life. 

Through the rain flow counting method, the response stress is cyclically counted, and the stress 

amplitude-cycle number curve is obtained, which is the p(s) curve required for the fatigue 

damage calculation. The ultimate goal of the frequency domain based PSD method is also to 

approximate the fitting through various frequency models through the frequency domain 

information, and finally obtain the probability density curve p(s) of the stress response. 

The S-N curve of the material expresses the number of life cycles of the material under different 

stresses. Usually expressed in the Basquin model.[10] 

𝑆𝑚𝑁 = 𝐶                              (7) 

And then according Miner’s Law[11], calculation formula of damage in unit time could be 

written  

𝐷 = 𝑣𝑝𝐶−1𝑡0 ∫ 𝑆𝑚𝑝(𝑠)𝑑𝑠
∞

0
                     (8) 

Then the prediction life could be obtained by D 

𝑇 =
1

𝐷
× 𝑡0                               (9) 

5. Case study 

In order to study the influence of the probability distribution of the response stress on the 

structural damage calculation, using the same frequency range, the 0 mean, the RMS is the 

same, the skewness is 0, and the different time series with the kurtosis between 2.9-10 are 

applied to the same double notched specimen, the effect of kurtosis on the damage calculation 

is obtained by comparing the damage conditions.  



 

Figure 2 Two notch specimen & excitation 

To meet the requirement, 10s time series of acceleration which allow non-Gaussian distribution 

were generated with different kurtosis. The bandwidth selection is based on the modal analysis 

result of the specimen, the second-order bending mode is 51.2 Hz, and 15-95 Hz is selected as 

the frequency range of the excitation signal. The sampling ratio is 1024Hz according to the 

band width.  

Frequency PSD (g2/Hz) (m2/s4)/Hz 

15 0.25 12.03 

95 0.25 12.03 

RMS 4.472136g 31.02m/s2 

Table 1 Frequency domain information (g=9.81 m/s2) 

The simulation part is finished by Abaqus. Before taken simulation, the modal analysis was 

used to check FE model to do verify and validation according mode frequency and stress 

distribution. Though the modal dynamic, the response stress of different times series could be 

obtained.  

No. 1 2 3 4 5 6 7 8 

RMS(m/s2) 31.44 31.32 31.27 31.31 31.10 30.84 31.54 31.44 

Kurtosis 3.01 3.50 4.01 4.53 5.02 8.04 10.24 2.85 

No. 9 10 11 12 13 14 15 16 

RMS(m/s2) 31.44 31.44 31.44 31.44 31.44 31.44 31.40 31.52 

Kurtosis 2.92 2.80 3.06 2.96 3.12 2.90 3.15 3.21 

Table 2 The RMS and Kurtosis of acceleration 

After, the response stress result was show that the specimen is not linear structure, the time 

series of response stress was as below. The direction opposite to the gravitational acceleration 

is the Z-axis forward direction, and the nodal stress at the left side of the upper surface of the 

model is selected as the research object. 

The overall research strategy is shown below. The focus is on the difference in stress cycling 

and damage values after rain flow counting. In general, the infinite fatigue stress of the material 



is selected as the threshold value of the rain flow count, that is, in this stress cycle and below, 

the material has an infinite life. However, in order to compare the results of the data, this 

threshold is set to zero. 

6. Results  

According the result of response stress, it could be found that the kurtosis were influence by 

structure. Moreover, as the acceleration kurtosis increases, the kurtosis of the response stress 

decays more significantly. 

 

 

 

 

 

 

 

 

Table  3 The RMS and Kurtosis of response stress 

By comparing the results of time-domain and frequency-domain methods with different 

kurtosis, it can be found that as the kurtosis increases, the stress distribution is more 

concentrated in the low-stress region, but the maximum value of the stress amplitude is 

significantly increased. The key to damage deviation. Moreover, there is a possibility that the 

maximum value of the stress amplitude is greater than the allowable stress directly causing 

structural failure.  

 

 

Figure 3 Rain flow counting result 

No. 1 2 3 4 5 6 7 8 

RMS(MPa) 28.89 29.00 28.88 29.74 29.39 30.21 31.77 29.07 

Kurtosis 3.07 3.30 3.52 3.92 3.70 6.11 6.49 2.85 

No. 9 10 11 12 13 14 15 16 

RMS(MPa) 28.89 29.09 29.17 28.34 28.89 28.45 29.00 28.93 

Kurtosis 3.02 2.78 2.90 3.07 3.88 3.14 3.04 3.18 



The DIRLIK method is selected to obtain the stress expectation based on the Gaussian 

distribution of the frequency domain method, which is used as a reference object and compared 

with the results under the time domain signal. 

 

Figure 4 Rain flow counting of K=3.07 

 

 

Figure 5 Rain flow counting of K=3.52 



 

Figure 6 Rain flow counting of K=3.70 

 

 

Figure 7 Rain flow counting of K=6.11 



 

Figure 8 Rain flow counting of K=6.49 

Though Miner’s Law, the linear cumulative damager could be calculation,  

𝐷 =
𝑛

𝑁
                               (10) 

For the different kurtosis time series data, the error control 𝛾 could be written ,   

𝛾 = 1 −
𝐷𝐾

𝐷𝑃𝑆𝐷
=

∑ ∙𝑁𝑘(𝑠)∙𝑠𝑚𝑆𝑚𝑎𝑥
0

𝑣𝑝 ∫ 𝑆𝑚𝑝(𝑠)𝑑𝑠
∞

0

                    (11)  

When 𝛾 ≤ 30%, this can accept the results of using a PSD-based Gaussian signal for non-strict 

Gaussian vibration signals. Beyond this range, fatigue calculation methods based on non-

Gaussian vibration signals must be used. Generally, when the kurtosis is less than 3.5, the result 

is within an acceptable range. Of course the accuracy of this result is limited by the length of 

the data. The longer the data, the more obvious the distribution. Smaller samples are relatively 

more affected by randomness. 

7. Conclusion 

Based on the analysis results, it can be found that the data difference is affected by the material 

property m. At the same time, due to the structural relationship, the actual excitation kurtosis is 

greater than the threshold, but the response stress after attenuation can be calculated according 

to the Gaussian distribution.  

Because of the high kurtosis, the response stress exceeds the limit of material strength, and 

should be avoided in industrial design. For response stresses with high kurtosis, there is a 

possibility that the maximum value exceeds the strength limit. This should be taken seriously. 
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Abstract 
 

Deterministic-random separation is crucial in machine signal processing. The synchronous average is a 

widely used tool that separates the deterministic contribution from the random one.  This tool consists on 

averaging the cycles of the vibration signal. In fact, it uses the fact that, for a given location in the cycle, 

the associated samples have a constant mean. This makes possible to estimate the signal mean through 

synchronous averaging, i.e. by averaging the samples associated with each position in the cycle. However, 

in many practical applications, the cycle-to-cycle statistics can change according to many factors such as 

the speed, torque, load, etc. The resulting signal is widely referred in the literature as cyclo-non-stationary. 

This means that the mean signal is not periodic anymore, thus jeopardizing the synchronous average 

technique. This paper addresses this issue by proposing a new generalization of the synchronous average. 

The proposed method takes advantage of the smoothness of the statistics (in particular the mean) variation 

with respect to cycles. Instead of computing the average of the samples located at a given angular location, 

the time-varying mean is computed by optimally fitting the data with an appropriate curve. This defines 

the synchronous fitting idea, being a mean estimator of cyclo-non-stationary signals. Two solutions are 

proposed to solve the fitting problem. Whereas the first seeks for a global solution, the second adopts a 

local solution inspired from Savitzky–Golay filter. These two approaches are tested and compared on 

numerical and real signals captured from a helicopter engine operating under a runup regime. Overall, the 

results have asserted the superiority of the local approach over the global one. 

 

1. Introduction 

The theory of cyclostationary processes has proven to be effective in describing and processing rotating 

machine signals [Antoni 2009]. The vibration components generated by mechanical sources can be mainly 

classified into first and second (or higher) order cyclostationary classes. First order cyclostationary 

components are those deterministic, principally consisting of a set of sinusoids corrupted with stationary 

noises. Those are described by the (quasi-) periodicity of their mean. Examples of first-order phenomena 

can include gear meshing vibrations, shaft unbalance and misalignment, fan rotations and others. Second-

order cyclostationary components are random in nature, meaning that their mean equals zero or, 

equivalently, their spectrum does not exhibit clean harmonics. The periodicity of these components is 

hidden and can be revealed through the instantaneous power or, more generally, the auto-covariance 

function. In practice, those components are generated by different kind of mechanical phenomena 

subjected to some randomness. A typical example is the vibrations generated by a local fault in a rolling 

element bearing wherein the randomness is due to the presence of a slippage in the motion of the rolling 

elements [Ho 2000]. For this reason, the cyclostationary analysis offers an efficient way to detect and 

characterize the presence of clear or hidden periodicities in the signals through a thorough differential 

diagnosis. Obviously, the separation of first and second-order components is crucial for an accurate 

analysis of the signal. Nowadays, the corresponding state of the art comprises a set of supervised and 
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unsupervised signal processing tools that deal with this issue. Among these methods, one of the most 

widely used is the synchronous average (SA) [Braun 1975]. The latter simply consists of cutting the signal 

into slices of the same length, being equal to the fundamental period of the extracted component and 

averaging them together. As it will be shown later, this paper deals with its generalization. 

The cyclostationary modelling assumes the (hidden-) periodicity to be stable in time, which in turn requires 

a constant speed. Such a condition is however hard to obtain as the speed often undergoes some 

fluctuations. This jeopardizes the effectiveness of the SA even if the magnitude of the speed fluctuations 

is low. Since repetitive patterns in rotating machines are intrinsically locked to specific angular positions, 

it totally makes sense to rather process the signal in the angular domain. In this case, the cyclostationary 

property holds in the angle domain and, consequently, the SA is applied on the angular signal, either 

obtained by angular sampling or resampling [Antoni 2004]. 

In the case of large speed fluctuations, signals are subjected to significant distortions that jeopardize the 

effectiveness of the SA. These distortions are basically introduced by (i) variations of the machine power 

intake and (ii) the effect of linear time-invariant (LTI) transfers. Whereas the former essentially results in 

amplitude modulation, the latter also induces phase modulation. Non-periodic modulations obviously 

invalidate the (angle-) CS assumption and call for a more general description of nonstationary signals. 

Accordingly, the principle of cyclo-non-stationarity was proposed to formalize this specific type of signals. 

The consideration of cyclo-non-stationary signals requires the extension of the cyclostationary signals. 

This paper is particularly concerned in extending the synchronous average. Many previous works have 

addressed this issue. Reference [Coats 2009] proposed the improved synchronous average, being based on 

resampling the signal with a virtual tachometer signal synthesized via the demodulated phase. Another 

attempt to generalize the SA was proposed in Ref. [Daher 2010] through a parametric approach. In details, 

the authors used the Hilbert space representation of the deterministic component in which they 

decomposed the deterministic components onto a set of periodic functions multiplied by speed-dependent 

functions apt to capture long-term evolution over consecutive cycles.  In ref. [Abboud 2016], the authors 

proposed a non-parametric approach based on averaging the signal cycles that belong to a given regime, 

defined by its central speed and a pre-defined width. 

This paper proposes a different approach to generalize the SA based on a synchronous curve fitting of the 

data. The theoretical backgrounds of the proposed technique is exposed in section 2, while its performances 

are evaluated through numerical simulations in section 3. In section 4, the efficiency of the technique is 

tested on real vibration signals recorded under a varying speed condition. 

 

2. Description of the synchronous fitting technique 

In this section, the fundamentals of the proposed method are provided. First, a mathematical model for 

CNS signals is reviewed. Then, a global solution for the first order CNS estimation, which corresponds to 

the one proposed in [Daher 2009], is presented. Finally, the newly proposed technique based on a local 

solution is introduced. 

 

2.1. General 

Let 𝑥[𝑛] be a first-order CNS signal with a characteristic period 𝑁 (i.e. cycle and 1/𝑁 the normalized 

frequency) and a length 𝐿.  One can model such a signal as follows: 

∀𝑛 ∈ {1, … , 𝐿 }     𝑥[𝑛] = 𝑑[𝑛] + 𝑤[𝑛] = ∑ 𝑑𝑘[𝑛]𝑒
𝑗2𝜋𝑘𝑛

𝑁 
𝑘 + 𝑤[𝑛]      (1) 

 

where 𝑘 is an integer, 𝑑𝑘[𝑛] ∈ ℂ are deterministic smooth functions (whose real and imaginary part are 

continuous and differentiable) and whose bandwidths, noted 𝐵𝑘, are much smaller than the half the 

fundamental frequency i.e. : ∀𝑘, 𝐵𝑘 
≪ 1/2𝑁 and 𝑤[𝑛] is a random noise. The discrete-time Fourier 

transform (DTFT) of (1) reads: 

 

∀𝑓 ∈] − 1/2; 1/2]      𝑋[𝑓] = ∑ 𝐷𝑘[𝑓] ∗ 𝛿(𝑓 − 𝑘/𝑁) 
𝑘 + 𝑊[𝑓]           (2) 
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where  𝐷𝑘[𝑓] and 𝑊[𝑓] are respectively  the DTFTs of 𝑑𝑘[𝑛] and 𝑤[𝑛]. Since  𝑑𝑘[𝑛] are deterministic smooth 

functions, and according to the Weirstrass theorem, they can be approximated through a 𝑃-order polynomial 

function, i.e.:  

 

∀𝑘   𝑑𝑘[𝑛] ≈ ∑ 𝑑𝑘
𝑝

𝑛𝑝𝑃 
𝑝=0          (3) 

 

where 𝑑𝑘
𝑝

∈ ℂ. By inserting Eq. (3) into the expression of 𝑑[𝑛], one obtains: 

 

∀𝑛 ∈ {1, … , 𝐿 }    𝑑[𝑛] = ∑ 𝑐𝑝[𝑛]𝑛𝑝 𝑃
𝑝=0       (4) 

 

where 𝑐𝑝(𝑛) = ∑ 𝑑𝑘
𝑝

𝑒𝑗2𝜋𝑘𝑛/𝑁 
𝑘  is a periodic function of period 𝑁. Equation (4) indicates that the deterministic 

component can be approximated by a sum of periodic functions multiplied with the polynomial basis: it is 

actually a polynomial with periodic coefficients. 

 

Let’s first define 𝑛̅ = ⌊(𝑛 − 1)/𝑁⌋ + 1 as the sample location within the period N (⌊𝑎/𝑏⌋ denotes the 

remainder of the division of 𝑎 by 𝑏) . Since 𝑐𝑝(𝑛) is periodic with period 𝑁, we have 𝑐𝑝[𝑛̅] =

𝑐𝑝[𝑛̅ + (𝑞 − 1)𝑁] for all integer 𝑞 = 1, … , 𝑄 (𝑄 is the number of cycles). Thus,  Eq. (4) can be equivalently 

written as follows: 

 

       ∀𝑞 ∈ {1, … , 𝑄 }  ∀𝑛̅ ∈ {1, … , 𝑁 }    𝑑[𝑛̅ + (𝑞 − 1)𝑁] = ∑ 𝑐𝑝[𝑛̅](𝑛̅ + (𝑞 − 1)𝑁)𝑝 𝑃
𝑝=0               (5) 

 

Using the binomial theorem ( (𝑛̅ + (𝑞 − 1). 𝑁)𝑝 = ∑ 𝐶𝑖
𝑝

𝑁𝑖  (𝑛̅ − 𝑁)𝑝−𝑖𝑞𝑖 
𝑝
𝑖=0   where 𝐶𝑖

𝑝
is the binomial 

coefficient), one can deduce from Eq. (5)  that the samples associated with the same location 𝑛̅ in the period, 

𝑠𝑞[𝑛̅] = 𝑑[𝑛̅ + (𝑞 − 1). 𝑁] for all integer 𝑞 ∈ {1, … , 𝑄}, defines a polynomial of order 𝑃 with constant 

coefficient, i.e.: 

 

∀𝑞 ∈ {1, … , 𝑄 } ∀𝑛̅ ∈ {1, … , 𝑁 }    𝑠𝑞[𝑛̅] = ∑ 𝑏𝑝[𝑛̅]𝑞𝑝 𝑃
𝑝=0         (6) 

 

where 𝑏𝑝[𝑛̅] = 𝑁𝑝 ∑ 𝐶𝑝
𝑗
 (𝑛̅ − 𝑁)𝑗−𝑝𝑐𝑗[𝑛̅].  𝑃

𝑗=𝑝 Note that 𝑏𝑝[𝑛̅] is parametrized by 𝑛̅.  

 

 

2.2. A global LMS solution 

In the case of a noisy signal 𝑥[𝑛], a good estimate of the deterministic component 𝑑[𝑛] is then to find the 

best fit of the curve 𝒔[𝑛̅] = [𝑠1[𝑛̅], … , 𝑠𝑄[𝑛̅]]
𝑇

   for each 𝑛̅ ∈ {1, … , 𝑁} which reduces to find an estimate 

of 𝒃[𝑛̅] = [𝑏1[𝑛̅], … , 𝑏𝑃[𝑛̅]]
𝑇
for each 𝑛̅ ∈ {1, … , 𝑁} for a given polynomial of order 𝑃. A common way to 

do this is to find the curve which minimizes the least mean square error, i.e.:  

 

 ∀𝑛̅ ∈ {1, … , 𝑁}    𝒃̂[𝑛̅] = argmin(∑ 𝑤[𝑛̅ + (𝑞 − 1)𝑁]2𝑄
𝑞=1 )

 = argmin (∑ (𝑑[𝑛̅ + (𝑞 − 1)𝑁] − 𝑥𝑞[𝑛̅])
2 𝑄

𝑞=1 )

 = argmin (∑ (∑ 𝑏𝑝[𝑛̅]𝑞𝑝 𝑃
𝑝=0 − 𝑥𝑞[𝑛̅])

𝑄
𝑞=1

2
)

                       (7) 

 

where 𝑥𝑞[𝑛̅] = 𝑥[𝑛̅ + (𝑞 − 1)𝑁]. Let’s define the 𝑄 × (𝑃 + 1) matrix  𝚽 such that   𝚽𝑞,𝑝 = 𝑞𝑝−1 (with 

𝑞 ∈ {1, … , 𝑄} and 𝑝 ∈ {1, … , 𝑃 + 1}, and  𝒙[𝑛̅] = [𝑥1[𝑛̅], … , 𝑥𝑄[𝑛̅]]
𝑇

. One can rewrite the  Eq. (7) as: 

 

  ∀𝑛̅ ∈ {1, … , 𝑁}  𝒃̂[𝑛̅] = argmin‖𝚽𝒃[𝑛̅] − 𝒙[𝑛̅]‖2     (8) 

 

whose solution expresses as follows: 

 

  ∀𝑛̅ ∈ {1, … , 𝑁}  𝒃̂[𝑛̅] =  (𝚽𝐓𝚽 )
−1

𝚽𝐓 𝒙[𝑛̅]  (9) 
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Once the coefficients are calculated, one can find the estimated deterministic component located at 𝑛̅ in 

the form: 

 

  ∀𝑛̅ ∈ {1, … , 𝑁}  𝒔̂[𝑛̅] = 𝚽𝒃̂[𝑛̅] = 𝚽(𝚽𝐓𝚽 )
−1

𝚽𝐓 𝒙[𝑛̅]   (10) 

 

The deterministic signal can then be deduced as follows: 

 

 ∀𝑛 ∈ {1, … , 𝐿 }   𝑑[𝑛] = 𝑠𝑞[𝑛̅]   where   𝑛̅ = ⌊(𝑛 − 1)/𝑁⌋ + 1  and  𝑞 = 1 +   (𝑛 − 𝑛̅)/𝑁 (11) 

 

 

2.3. A local LMS solution 

This subsection describes the proposed method. The basic idea is excerpted from the “Savitzky-Golay 

filter” which is a widely known method to smooth or fit the data based on the least mean square solution 

of local polynomial fitting [Savitzky 1964]. Precisely, for every 𝑞 ∈ {1, … , 𝑄 }, let’s consider the data set 

𝑥𝑞[𝑛̅] being a function of 𝑞 and parametrized by 𝑛̅; we try to find the best LMS polynomial fit, with a 

fixed order 𝑃 at the point 𝑛̅, from the 2𝑀 + 1 subset centered at 𝑞, i.e. {𝑥𝑞−𝑀[𝑛̅], … , 𝑥𝑞+𝑀[𝑛̅]}. That being 

said, this problem can be stated in a similar way as the previous subsection, i.e.: 

 

 ∀ 𝑞 ∈ {1, … , 𝑄} ∀𝑛̅ ∈ {1, … , 𝑁}    𝒃̂(𝒒)[𝑛̅] = argmin‖𝐉 𝒃(𝒒)[𝑛̅] − 𝒙(𝑞)[𝑛̅]‖
2
  (12) 

 

where  𝒙(𝑞)[𝑛̅] = [𝑥𝑞−𝑀[𝑛̅], … , 𝑥𝑞−𝑀[𝑛̅]]
⊤

represents the 𝑞th subset, 𝒃(𝒒)[𝑛̅] = [𝑏0
(𝒒)

[𝑛̅], … 𝑏𝑃
(𝒒)

[𝑛̅]]
⊤

 are 

the 𝑃 + 1 polynomial coefficients associated with the 𝑞th subset, and 𝐉  the (2𝑀 + 1) × (𝑝 + 1) matrix  

such that ∀𝑚 ∈ {1, … ,2𝑀 + 1 } ∀𝑝 ∈ {1, … , 𝑃 + 1 }  𝐉𝑚,𝑝 = (𝑚 − 𝑀 + 1)𝑝−1 . The (2𝑀 + 1)-length 

curve that best fits the 𝑞th subset writes: 

 

 𝑠𝑚
(𝑞)[𝑛̅] = ∑ 𝑏𝑝

(𝑞)[𝑛̅]𝑃
𝑝=0 . (𝑚 − 𝑀 + 1)𝑝   (13) 

 

The Savitzky-Golay method suggests to estimate the deterministic component at the 𝑞𝑡ℎ data point by 

retaining the value of the polynomial at the central point i.e. at 𝑚 = 𝑀 + 1: 

 

  ∀ 𝑞 ∈ {1, … , 𝑄} ∀𝑛̅ ∈ {1, … , 𝑁}   𝑑̂[𝑛̅ + (𝑞 − 1). 𝑁] = 𝑠̂𝑀+1
(𝑞) [𝑛̅] = 𝑏𝑀+1

(𝑞) [𝑛̅]       (14) 

   

Following the same lines as for Eq (9), one can show that the coefficients of the polynomial write: 

 

     ∀ 𝑞 ∈ {1, … , 𝑄} ∀𝑛̅ ∈ {1, … , 𝑁}     𝐛̂(𝒒)[𝑛̅] =  𝑯 𝒙(𝑞)[𝑛̅]                                                  (15)
        

   

with 𝑯 = (𝐉𝐓𝐉 )
−1

𝐉𝐓 a matrix of size (𝑃 + 1) × (2𝑀 + 1) whose elements are independent of 𝑛̅ and 𝑞 . 

The (𝑀 + 1)𝑡ℎ element of the above vector namely 𝑏̂𝑀+1
(𝑞) [𝑛̅] is actually a linear combination of 𝒙(𝑞)[𝑛̅] 

with the 2𝑀 + 1 elements of the (𝑀 + 1)𝑡ℎ row, 𝒉𝑻 = [ℎ−𝑀 , … ℎ𝑀], of 𝑯 being independent of 𝑞 and 𝑛̅: 

 

 𝑏̂𝑀+1
(𝑞)

[𝑛̅] = 𝒉𝑻𝒙(𝑞)[𝑛̅]       (16) 

 

Considering equations (14) and (15), one can write the estimate of the deterministic component 

 

𝑑̂[𝑛̅ + (𝑞 − 1). 𝑁] = ∑ 𝑥𝑞−𝑚[𝑛̅] 𝑀
𝑚=−𝑀 ℎ𝑚

 = ∑ 𝑥[𝑛̅ + (𝑞 − 1). 𝑁 − 𝑚. 𝑁] ℎ𝑚
 𝑀
𝑚=−𝑀

 = ∑ 𝑥[𝑛̅ + (𝑞 − 1). 𝑁 − 𝑖] 𝑀𝑁
𝑖=−𝑀𝑁 ℎ̃𝑖

   

       (17) 
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where 𝒉̃𝑻 = [ℎ̃−𝑀𝑁, … , ℎ̃𝑀𝑁   ] is obtained by zero-padding  𝒉 as follows: 

 

{
ℎ̃𝑖 = ℎ𝑚          𝑖𝑓  𝑖 = 𝑚𝑁, ∀ − 𝑀 ≤ 𝑚 ≤ 𝑀

ℎ̃𝑖 = 0                                               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
    (18) 

 

It becomes obvious that the estimated deterministic component turns to a LTI filtering of the original signal 

𝑥[𝑛] with the  (2𝑀𝑁 + 1)-length filter 𝒉̃𝑖: 

 

𝑑̂[𝑛] = ∑ 𝑥[𝑛 − 𝑖] 𝑀𝑁
𝑖=−𝑀𝑁 ℎ̃𝑖          (19) 

 

 

 

3. Numerical evaluation 

In this section, the performance of the synchronous fitting techniques are tested and compared on a 

synthetic signal. The deterministic signal is modelled as a sum of four speed-varying sinusoids whose 

envelopes and phases are functions of the cyclo-non-stationary λ[𝑛] (which can be in practice the torque, 

load, speed, etc.): 

 

 𝑑[𝑛] = ∑ 𝐴𝑘[𝑛] sin(2𝜋𝑘𝑛/𝑁 + 𝛷𝑘[𝑛]) 4
𝑘=1        (20) 

 

Where: 

 𝐴𝑘[𝑛] and 𝛷𝑘[𝑛] are functions of  𝜆[𝑛] (see Fig. 1); 

 𝑁 = 100 is the fundamental period; 

 𝐿 = 15000 is the signal length. 

 

The deterministic signal is exposed in Fig 2 together with its noisy version constituted by adding a white 

Gaussian noise such that the initial signal to noise ratio is equal to -3 dB.  

 

 

In the following, the global and local approaches are applied to the noisy signal with respect to the cycle 

𝑁 with the aim of recovering the deterministic component, being here the signal of interest. For the global 

approach, the degree of polynomial was set to 30, knowing that the results were stable for higher 

polynomial degrees. For the local approach, the window length was set to 49 (i.e. 𝑀 = 24) and the 
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Figure 1: The plot of the cyclo-non-stationary agent λ[𝑛] (top), the 4 amplitudes 𝐴𝑘[𝑛] (middle) 

and the 4 phase modulations Φ𝑘[𝑛] (bottom) associated with the sinusoids of the synthetic signal. 
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polynomial order to 3. The obtained results are exposed in Fig. 3 together with the error signal obtained 

by subtracting the estimated signal from the actual one. Both approaches tend to estimate with good 

accuracy the deterministic signal, with a clear superiority of the newly proposed local approach over the 

global one: the estimation error of the latter is almost twice larger than the former. 

Eventually, the performance of these methods are compared for different signal-to-noise ratios (SNR). For 

this purpose, the relative error defined as the energy of the error normalized by the signal energy: 

 

 𝜖𝑛[𝑛] = 10log10 (∑ (𝑑[𝑛] − 𝑑̂[𝑛]) N
𝑛=1

2
/ ∑ 𝑑[𝑛]2 N

𝑛=1 ).       (21) 

 

The obtained results are exposed in Fig. 4. The SA returns poor and consistent results as this latter only 

estimates the average periodic component existing in the signal. The reason is that the number of average 

is big so it was slightly affected by the SNR: the average periodic part was almost the same for all SNR. 

When it comes to the synchronous fitting techniques, the local approach evidences better estimation 

performances. In fact, the local approach returns an estimation error less than -6 dB when the SNR greater 

than -6 dB, while the global approach needs a SNR greater than 10 dB to get this accuracy. The results 

highlight the effectiveness of the local approach as compared with the global one. The reason is that the 

local approach assumes that the mean is locally smooth which is a more accurate assumption. 

 

Figure 2: The deterministic component (top plot) and the noisy signal (bottom plot) constituted by adding 

a white Gaussian noise whose standard deviation equals twice of the former. 

 

Figure 3: The deterministic component (top plot) and the noisy signal (bottom plot) constituted by adding a 

white Gaussian noise whose standard deviation equals twice of the former. 
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4. Application: a helicopter engine 

In this section, the proposed approach is applied on real vibration signals captured from the gas generator 

of a helicopter engine. The aim is to extract the component related to the centrifugal compressor while the 

engine speed operates under a runup regime. An encoder is also present to measure the shaft location and 

to provide an accurate estimation of the engine speed. The encoder signal is used to resample the signal in 

the angular domain and the synchronous fitting techniques are both applied with respect to the blade pass 

period of the centrifugal compressor. It is worth noting that the blade pass period equals the shaft period 

divided by the compressor blade number. The blade number as well as the signals magnitude are not given 

for confidentiality reason. Figure 5 exposes the raw acceleration signal, the synchronous fitting estimations 

via the global and local approach. It is obvious that the signal associated with the local approach is much 

more accurate presenting a clear resonance starting at 10s. The related spectrograms are exposed in Figure 

6 wherein the speed-varying harmonics of the centrifugal compressor are clearly shown. Though the 

extraction seems good in both techniques, it was hard to compare the performance of the extraction 

techniques. The order spectrum of the signals are computed by the Welch estimator applied to the angular 

resampled signals. The obtained spectra are exposed in Fig. 6 for comparison. Whereas the latter show 

better noise rejection in the global solution case especially for the noise floor, the close-ups clearly 

evidence the superiority of the local approach in accurately estimating the peaks. The global approach 

tends to loose accuracy as the frequency (order) gets high, this is because the global interpolation tends to 

confuse high frequency sinusoids with high frequency noises. Overall, the newly proposed local approach 

evidences better performances than the global one. 

 

 

 

Figure 4: Performance of the SA, the synchronous fitting with the global and the local approach. 
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Figure 5: The raw acceleration signal (top), the synchronous fitting with the global approach (middle) and 

local approach (bottom). 
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Figure 6: Spectrograms of the raw acceleration signal (top), the synchronous fitting with the global 

approach (middle) and local approach (bottom). 

 

 

Figure 7: Order spectra of the raw acceleration signal (blue continuous line), the synchronous fitting with the 

global approach (red dotted line) and local approach (green dotted line). 
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5. Conclusion 

This paper proposes a new technique for the extraction of a deterministic component in variable regimes. 

It can be seen as an extension of the classical synchronous averaging. In fact, instead of computing the 

cyclic mean via the synchronous average, the latter is computed via a synchronous fitting. This leads to 

two ways to tackle the issue. The first way seeks a global solution and compute the mean, for the data 

associated with a given position in the cycle, by finding the best polynomial that minimizes the least mean 

square error. It turns out that the solution of this problem was previously proposed in a previous 

publication. However, the second way is original and addresses differently the same problem by seeking 

a local solution based on the Savitzky-Golay filter. Numerical simulations are conducted showing a clear 

superiority of the newly proposed local approach over the global one. In fact, the local approach returns 

an estimation error less than -6 dB when the SNR greater than -6 dB, while the global approach needs an 

SNR greater than 10 dB to get this accuracy. The results highlights the effectiveness of the local approach 

as compared with the global one. An additional advantage of the local approach over the global one is the 

computational cost. As the first turns to a linear-time-invariant convolution, its implementation is much 

easier than solving a global least mean square problem which requires a matrix inversion. Eventually, both 

techniques are successfully tested on a real vibration signal measured on a helicopter engine under a runup 

condition with the aim of extracting the vibratory component emitted by the centrifugal compressor of the 

gas generator. Both techniques were able to extract the component of interest, yet the local approach 

evidences much better extraction than the global one. 
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Abstract
This paper adapts the super-heterodyne method from telecommunication field to speed estimation
based on optical encoder signal.
This method uses an analog frequency shifting before sampling of the signal. Therefore, the required
sampling frequency is reduced and linked with the speed fluctuation frequency. Spectrum of optical
encoder signal is analysed and used to explain how to set up the frequency shift and limitations.
Finally, a comparison is made with elapsed time.

1 Introduction

Many vibration monitoring methods use an accelerometer sensor in order to diagnose the systems.
Instantaneous Angular Speed (IAS) has appeared to provide a new source of information on the
rotating machine and it is commonly used to diagnose faults such as bearing faults[1], gearboxes [2],
...

Classically, IAS use an optical encoder as a speed sensor. This sensor is available in many rotating
machines (especially for speed and position control). It provides a square / sine wave with a frequency
proportional to the rotation speed. Thus, this signal is frequency modulated by the system speed
variations. There are two major methods for recording IAS signal: timer / counter technic [3], and
ADC- based methods [4]. The latter is limited by the capability of the ADC-board to collect the data
(sampling frequency) which could restrict the use of higher encoder resolution and introduces spatial
aliasing.

In this study, we are interested in IAS estimation using a super-heterodyne like demodulation
technique. The idea is to be able to acquire the speed signal with relatively higher resolution without
using a higher sampling frequency. The IAS signal is first analogously shifted in frequency domain in
order to be acquired at a lower sampling rate. Then, the sampled signal is further treated to get IAS.

A first part presents the measurement principle, a second part discuss about limitations, finally a
last part show a comparison with elapsed time technique.

2 Measurement principle

In frequency demodulation technique, the signal is recorded at a high sample rate in order to exploit
only the spectral content between [ fcod−B/2; fcod + B/2]. The idea of super-heterodyne technique
illustrated by figure 1 that come from telecommunication is to shift analogically the optical encoder
signal from the band [ fcod−B/2; fcod + B/2] to the band [ε;ε + B] by using an analog multiplier (ε is
a small margin). Therefore, the recorded signal could be recorded with a sampling frequency greater
than 2×B. Since the band B (a few kiloHertz) is smaller than optical encoder frequency, it becomes
possible to use high resolution (4096 lines per revolution) with a classical data acquisition device. The
demodulation effect is simply compensated after computing instantaneous speed by adding a constant
frequency.

1



Figure 1: Principle of High frequency Demodulation Technique.

In order to illustrates the analog frequency shifting part, the sine wave generator, optical encoder
signal and product signal has been acquired. Due to the limitation of data acquisition device, an
optical encoder resolution of 256 lines has been used (to visualise original optical encoder signal). The
sine wave generator has been set to Fmod = 4 kHz. The spectrum of each signal is presented in figure 2.

The first spectrum is the spectrum of the sine wave generator. On top of the peak at 4 kHz, a
third harmonic 68 dB lower (i.e. amplitude 2400 lower) indicate the quality of the generator. It will
also ask the question latter of the influence of a third harmonic on low-cost generators. The low noise
in the spectrum is produced by the engine inverter as well as the generator.

The second spectrum corresponds to the optical encoder and was already studied in the first part.
The effect of multiplication of encoder signal by sine wave results in a displacement of each component
of the encoder spectrum by Fmod on the left and on the right as indicated by the arrow. Each component
is identified by a colour to help analysis after demodulation.

The last spectrum shows the demodulated signals by using the analog multiplier. Each optical
encoder component has been shifted in both left and right direction. The amplitude ratio of 20 dB
between 1st and 3rd optical encoder harmonic was kept after demodulation (on the bottom spectrum).

Unfortunately, components at fcod , 3. fcod (marked in gray) and Fmod are present after demodulation.
It means that the product p(t) signal is:

p(t) = [encoder(t)+ εe].[sin(2πFmodt)+ εs] (1)

= encoder(t).sin(2πFmodt)+ εe.sin(2πFmodt)+ εs.encoder(t) (2)

Where :

• encoder(t) is a zero mean version of encoder signal obtained by a high pass filter,

• εe is an DC component (introduced by electronic),

• εs is an DC component (introduced by electronic despite the fine tune of the sine wave generator).

The attenuation between the gray signal at fcod and the original red signal is 41 dB, it means that
εs = 0.009. By looking at the sine wave the value εe = 0.001 could be identified.

The values εe and εs are in fact small, and, reduce them necessitate higher precision offset adjust-
ment.

In practice the last spectrum corresponds to the only acquired signal. The only interesting part
of the signal is the left red pattern corresponding to the demodulated fcod part. This part could be
acquired by an acquisition with a sampling frequency of 8 kHz.

After acquisition, a classical instantaneous frequency scheme is applied (band pass filtering, ana-
lytic signal extraction, differentiation). A simple addition of Fmod/Nppt is required to compensate the
frequency shift of Fmod .

It should be noted that in real application the optical encoder frequency Fcod should be higher (for
example 102.4 kHz at 1500 rpm and a resolution of 4096 lines).

This example helps to view some limitation of the method.

2



0 4 12

−5.5

−73.4

−110.0
Si
ne
 w
av
e

F od

PSD (dB) 63 blocks of 25 re(olutions

0.0 6.4 12.7 19.1

−4.7

−64.7

−24.6

−75.4

−110.0

En
co
de
r

F od F od

F od F od

F od F od

F od F od

0.0 4.0 6.4 12.7 19.12.4 10.4 15.1 23.1
Frequency [kHz]

−45.9

−70.8−63.4

−10.8
−30.9

−100.0

Pr
od
uc
t

Figure 2: Illustration of High frequency Demodulation Technique.

3 Limit : Frequency overlapping

Let be β the highest fluctuation frequency in Hz (like in the previous section). By looking at the
bottom spectrum of figure 2, it is possible to identify the following content :

• [ fcod− fmod−β , fcod− fmod +β ] : left shifted encoder frequency used for instantaneous frequency
estimation,

• [k. fcod± fmod−β ,k. fcod± fmod + β ] : all left and right shifted encoder frequencies,

• fmod : modulation frequency (should not be here if εe = 0),

• [k. fcod−β ,k. fcod + β ] : encoder frequencies (should not be here if εs = 0).

In order to have a good estimation, the left shifted encoder frequency should not overlap with the
other area. Otherwise, the analytic signal will no longer be a sine wave and its phase will have a
different meaning.

The frequency shifted red pattern should be kept in positive frequency. It leads to :

fcod− fmod−β > 0 (3)

fmod < fcod−β (4)

In order to access the first harmonic of the encoder, the demodulation frequency fmod is lower than
fcod .

If εe is not 0, no overlapping between the left frequency shifted red pattern and fmod implies that :

fcod− fmod + β < fmod (5)

fmod >
fcod + β

2
. (6)

If εs is not 0, no overlapping between the left red frequency and the original one implies that :

fcod− fmod + β < fcod−β (7)

fmod > 2β (8)
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If εs = 0 and εe = 0, no overlapping between frequency left and right shifted version implies that :

fcod− fmod + β < fcod + fmod−β (9)

fmod > β (10)

To conclude, the modulation frequency fmod should be lower than fcod − β and depending on

whether εe, εs, or no ε are take into account, fmod should be respectively greater than fcod+β
2 , 2β or β .

Another way of thinking should be to find the demodulation frequency fmodop that maximises the
highest observable fluctuation frequency β :

fmodop =
2
3
. fcod , βmax =

1
3
. fcod considering εe and εs, (11)

fmodop =
fcod

2
, βmax =

fcod

2
if εe = εs = 0. (12)

If offsets are not compensated, they limit βmax to order Nppt/3 instead of Nppt/2. The table 1 shows
examples of demodulator setup.

Rotation frequency (rpm) 1500 3000 6000

Optical encoder resolution 256 512 1024 4096 4096 1024

Optical encoder mean frequency (kHz) 6.4 12.8 25.6 102.4 204.8 102.4

Optimal fmodop frequency (kHz) 4.3 8.5 17.0 68.3 136.5 68.3

Theoretical maximum order 85 170 341 1365 1365 341

Table 1: Example of demodulator setup

Since the sampling frequency of the acquisition device should be twice the fmodop frequency in this
particular case, this table is not compatible with a 51,2 kHz maximum sampling frequency. To adapt
it the constraint fmod > fcod + β − fs/2 should be added. This constraint leads to :

fmodop = max(
2
3
. fcod , fcod−

fs

4
) , βmax = min(

fcod

3
,

fs

4
) (13)

or by dividing β by frot the maximum order omax is :

omax = min(
Nppt

3
,

fs

4. frot
). (14)

It means that the demodulation frequency fmod should be increased in order to shift more on the
left the red pattern in figure 2. In this case, the needed sampling frequency become fs.

Rotation frequency (rpm) 1500 3000 6000

Optical encoder resolution 256 512 1024 4096 4096 1024

Optical encoder mean frequency (kHz) 6.4 12.8 25.6 102.4 204.8 102.4

Optimal fmodop frequency (kHz) 4.3 8.5 17.0 89.6 192 89.6

Theoretical maximum order 85 170 341 512 256 128

Table 2: Example of demodulator setup to use not more than fs = 51.2 kHz

These adjustments shows that the sampling frequency will limit the bandwidth in order. It should
be kept in mind for comparison that theoretical order correspond to half of the equivalent optical
encoder resolution.
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4 Comparison with elapsed time

In order to compare both methods, the full resolution optical encoder was recorded using elapsed
time technique and high frequency demodulation technique. The frequency fmod is fixed to 90 kHz
according to table 2.

The figure 3 compares two results for the two approaches. The instantaneous speed obtained with
high frequency demodulation was resampled in angular domain and manually shifted in order to be
compared to elapsed time speed. The band β is chosen to be 3. fmesh (a lower band gives bad results).
The comparison is valid only locally for the first graph. The blue curve corresponds to elapsed time,
and the red curve to high frequency demodulation.

The two instantaneous speed curves are superposed. The high frequency method is smoother than
elapsed time one due to quantification. The variation in the difference of ±0.06 Hz is not so big be
compared to the quantification step of 0.03 Hz for elapsed time method.

The spectrum is also close till order 30. After it seems that an additive noise is present in the high
frequency demodulated signal : high peaks are still present but not smallest one. The filtering effect
due to the band of 3. fmesh (order 69) becomes easily visible near order 100.

11.0 11.5 12.0 12.5 13.0 13.5 14.0
24.5

25.0

Hz

res. 4096 ; demodulat on at Fgbf=90.000 kHz

100 101 102
−100

−50

0

1022 0 101 3 0 101 4 0 101 6 0 101

Frequenc. [Hz] - PSD (dB) 31 blocks of 50 revolutions

−100

150

12.0 12.2 12.4 12.6 12.8 13.0
Angular Pos t on [revolut on]

10.05
0.00
0.05

Hz

D fference bet−een 2 est mated speeds

Figure 3: Comparison of Elapsed time and high frequency demodulation Technique.

5 Conclusion

We have proposed a high frequency demodulation technique that performs an analog demodulation
prior to acquisition and enable to use the full optical encoder resolution. This technique known in
telecommunication as super-heterodyne enables to inspect a restricted bandwidth in high frequency
with a low sampling rate. The study of this new technique explains how to choose intermediary
frequency for demodulation and some limitations due to the imperfection of electronic components.
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A test on a bench to compare this new method with elapsed time shows that the results are similar
to the beginning of the spectrum and that an additive noise is present in high frequency. Therefore,
this method seems to be interesting when no elapsed time system is present, or it is required to do
simultaneous temporal sampling of other signal (acceleration, ...), or, if it is necessary to record very
high frequency optical encoder signal.
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The authors would like to thank Lucien Périsse that design this test bench for us.

References

[1] L. Renaudin, F. Bonnardot, O. Musy, J.B. Doray, and D. Rémond. Natural roller bearing fault
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Abstract
The scope of this paper is the development of a fault detection and diagnosis method aimed to helicopter gear-
box bearings vibration monitoring in an operational context. Bearings are critical components in the gearbox,
and their monitoring allows for failure anticipation capabilities, leading to increased safety and improved main-
tenance planning. Deploying a monitoring strategy for helicopter gearboxes necessitates the development of a
methodology which can provide reliable information under varying operating conditions, dealing with a noisy
vibration environment and simultaneously considering acquisition system constraints, such as limited acqui-
sition duration and sampling frequency, and operational needs, such as low rate of false alarms and minimal
workload for the analyst. The approach proposed in this paper is based on the cyclostationary signals theory and
relies on a two-steps procedure of detection and diagnosis. First, bearing fault detection indicators are devised
on a statistical basis, leveraging on the theoretical properties of the envelope method. Then, a diagnosis based
on the computation of the averaged cyclic periodogram is performed to assess the damage in the eventuality of
an alarm. The developed methodology is validated on real helicopter data collected over about twenty thousand
flight hours, including four bearings from different machines for which in-service spalling initiation occurred.
The fault detection performance is evaluated on the basis of the achieved false alarm rates and the improvement
in fault anticipation with respect to chip detectors, whereas the capability of isolating the fault-related signals
using cyclostationary signal separation methods is shown for the diagnosis stage.

1 Introduction

Aircraft operations always pose the problem of guaranteeing at any time a compliant level of safety of the
machine, achieved through an adequate maintenance plan, without significantly compromising its availability.
In helicopters, the drive train sub-system is responsible for transferring power from the engines to the rotors,
and represents a critical sub-system for the machine due to non-redundant load paths and the high variability
of the dynamic loads acting on the components [1]. As to ensure aircraft airworthiness, the system needs to
be maintained following a prescribed preventive maintenance program, resulting in a burden to operating costs
and aircraft availability. Searching for an optimal trade-off between keeping the machine operational and re-
ducing safety risk within acceptable hazard levels calls for making as informed as possible decisions. In the last
decades, the helicopter industry worked on implementing technical solutions for increasing safety and reducing
maintenance costs by enabling Condition Based Maintenance (CBM) [2, 3]. The effort resulted in the wide-
spread adoption of Health and Usage Monitoring Systems (HUMS). Owing to the mechanical degradation of
drive train components often resulting in specific vibration symptoms, and considering the widespread avail-
ability of vibration measurement systems, helicopter HUMS mostly rely on vibration analysis as a monitoring
mean.

A structured breakdown of the failure mechanisms that may affect a helicopter transmission is given in
[4], mostly based on [5, 6]. Failure modes may be divided into gear failure modes, bearing failure modes
and shaft failure modes. From an operational point of view, the potential of vibration monitoring in driving
maintenance operations toward condition based can probably at most be realized by improving the gear and
bearing monitoring procedures. Gearbox inspections are expensive and require long-term grounding of the
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machine. Therefore, timely detecting an impending mechanical degradation is a great advantage which results
in improved maintenance planning and increased machine availability.

In this paper, a two-steps procedure for rolling element bearing fault detection and diagnosis is proposed,
with the aim of obtaining a reliable operational procedure able to cope with the monitoring of a fleet of he-
licopters. First, cyclostationary analysis is recalled as a tool to describe and characterize the characteristic
signature of a faulty bearing in section 2. Then, a procedure based on automated statistical bearing fault de-
tection and successive fault diagnosis, and tailored on the specific features of helicopter gearbox vibration
environment, is proposed in section 3. The devised strategy is validated in section 4 using data collected from
a fleet of operating commercial helicopters. Finally, conclusions are drawn in section 5.

2 Theoretical background

This section is a summary of existing literature on the subject of cyclostationary methods for bearing fault
detection, and does not contain original material, except for section 2.4.3.

2.1 Cyclic spectral analysis

Rotating machinery vibration signals have been in the last decades successfully modelled as cyclostationary
processes [7–11]. Cyclostationarity is a property characterizing stochastic processes whose statistics vary peri-
odically with respect to some variable (for rotating machinery, typically time or shaft’s angular position) [12].
Due to this generality, it is particularly fit to describe rotating machinery signals [13]. The impact forces gener-
ated by rolling elements interacting with a local defect on the race are not repeating perfectly periodically due
to slippage of the elements in normal operating conditions. Also, the transfer path to the accelerometer varies
depending on the relative position of the sensor and the source of the impact. This is the case, for example,
for a defect localized on any rotating element in the bearing, where the impact location varies periodically with
respect to the transducer position. Such phenomena can be described by their periodic statistics, and therefore
the class of cyclostationary signals is suitable to represent the associated excitation. In this paper, the second
order cyclostationary descriptors are used to characterize the bearing fault signature. The main quantities of
interest when dealing with cyclostationary processes in rotating machinery vibration monitoring are the cyclic
spectral correlation (SC) and its normalized version, the cyclic spectral coherence (SCoh). Those quantities are
bi-spectral representations, containing information related to the correlation between spectral frequency bands
spaced apart by a so-called cyclic frequency α . By considering a signal y(t) recorded in the time T and its
Fourier transform YT ( f ), its cyclic spectral correlation can be expressed as:

Syy( f ,α) = lim
T→∞

E
{

YT

(
f +

α
2

)
YT

(
f − α

2

)∗}
(1)

whereas the (squared magnitude) cyclic spectral coherence reads:

|γx( f α)|2 = |syy( f ,α)|2
syy( f +(α/2))syy( f − (α/2))

, (2)

A practical estimator of the cyclic spectral correlation can be obtained using the averaged cyclic peri-
odogram method [14]. Based on [14], the averaged cyclic periodogram for the N-length discrete sequence x[n]
sampled with sampling frequency Fs, computed using K (possibly overlapping) windows w[n] of length Nw can
be computed as:

S̃(N)
xx ( f ;α) =

1
KFs‖w‖2

K−1

∑
k=0

X (k)
Nw

(
f +

α
2

)
X (k)

Nw

(
f − α

2

)∗
, (3)

where:

X (k)
Nw

(
f ± α

2

)
=

kR+Nw−1

∑
n=kR

wk[n]x[n]e± jπwn/Fse−j2π f n/Fs (4)
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is the DFT of the kth windowed sequence wk[n]x[n]e± jπαn/Fs . Practically, the selection of the window
length, the window function and the cyclic frequency resolution can be optimized as to minimize the compu-
tational time, minimize the cyclic leakage and find the proper trade-off between frequency resolution on the
spectral axis f and variance reduction of the estimator [15]. Despite being computationally heavy, the estimator
of equation (3) provides reliable results, thanks to its statistical properties, well characterized in [15]. Albeit
faster algorithms were developed to estimate the cyclic spectral correlation, e.g. [16], the average cyclic peri-
odogram method still remains a benchmark in terms of estimation accuracy and estimation variance properties.

2.2 Envelope analysis

An important relationship that can be exploited for characterizing a second order cyclostationary process is
that connecting the cyclic spectral correlation of the process with its envelope spectrum. It holds from [10] that
marginalizing the spectral correlation on the cyclic frequency axis, by integrating out the spectral frequency
yields the squared envelope spectrum of the signal. The envelope spectrum has indeed been used in rotating
machinery long before the cyclostationary framework was introduced [17]. However, the work in [10] allows to
explain the efficiency of the envelope spectrum as an analysis tool for second order cyclostationary processes,
framing the technique in the solid theoretical framework of cyclostationary analysis. Other than simplifying the
analysis (albeit at the price of losing information on the spectral frequency distribution of the investigated pro-
cess), the envelope spectrum can be easily estimated from a digitalized realization of the stochastic process by
making use of the discrete Hilbert transform and the Fast Fourier Transform, and it is therefore a computation-
ally very convenient quantity. Being equivalent to the integration of the cyclic coherence along the frequency
axis, the squared envelope spectrum (SES) as a function of the cyclic frequency α , can be obtained from the
N-samples discrete sequence x[n] sampled with sampling frequency Fs as [14]:

ICC(N)
x (α) ∝ | 1

N

N−1

∑
n=0
|x[n]∗g[n]|2e−j2πnα/Fs |2

=
∣∣DFT

{
|x[n]∗g[n]|2

}∣∣2

= SES(N)
x (α)

, (5)

where the convolution with g[n] accounts for whitening of the signal (necessary to have the power normal-
ization leading to cyclic coherence, in place of cyclic correlation); analytic signal transformation; and band-pass
filtering in a band comprised between the frequencies F1, F2, normally to be chosen as to filter the signal in
a band in which the fault symptoms are prominent with respect to the background vibration and the interfer-
ing sources. More recently, the logarithm of the envelope spectrum (LES) for a discrete sequence x[n] with
n = {1, ...,N} was introduced in [18] as:

LESx[α] =

∣∣∣∣∣
∑N−1

n=0 log
(
x[n]2

)
e−2π jnα/Fs

N

∣∣∣∣∣

2

, (6)

The LES is an interesting quantity to be considered in an automated detection framework, thanks to its
advantageous statistical properties demonstrated in [18].

2.3 Statistical tests for cyclostationarity

The problem of detecting the second order cyclostationarity is formulated as the decision between the two
alternative hypotheses:

H0 : "The signal does not contain a CS2 component at the cyclic frequency α”
H1 : "The signal contains a CS2 component at the cyclic frequency α.”

(7)

2.3.1 Testing the SES for cyclostationarity

A rigorous statistical test for the presence of a cyclostationary component at frequency α was given in
[14] and is based on the cyclic coherence. By exploiting the link between the cyclic coherence and the SES, a
practical statistical test on the SES can be obtained, with the advantage of allowing to work on a simpler, faster
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to compute quantity. Namely, for a discrete signal x[n] of length N, the following result is obtained in [14] by
extending the statistical test on the cyclic coherence, and in [19] following a direct analysis of the discrete SES:

"Reject H0 if: ”SES(N)
x (α)>

σ4
x∗g

2N
Fs

F2−F1
f (α) ·χ2

1−p,2”, (8)

being p the significance level of the test, σx∗g the standard deviation of the filtered signal x[n]∗g[n] and:

f (α) =

{
1−|α|/(F2−F1) , |α|< F2−F1
0 elsewhere

(9)

It is important to underline that the optimality of the test is obtained under the assumption of white noise
signal for a healthy component. An analysis of the effects of CS1, CS2 components and colored noise on the
SES of the signal is exhaustively performed in [19]. The relevant points are summarized below:

• The effects of a set of M additive multi-harmonic CS1 components of frequencies λm, m = {1, ...,M} are
that of biasing the SES at the difference frequencies {∆λ} = {λm−λn}, m,n = {1, ...,M}; and that of
amplifying the variance in large frequency bands.

• The effect of an additive CS2 component in the signal is that of introducing a bias in the estimator of the
SES, which is stronger when the average power of the CS2 carrier is dominating over the background
noise.

• The generalization to colored noise implies estimating the variance of the signal at each frequency bin,
resulting in a statistical threshold which is no longer a linear function of the frequency.

2.3.2 Testing the LES for cyclostationarity

For a white noise, discrete signal x[n] of length N, the distribution of the LES at a cyclic frequency α is
given in [18] as:

LESx[α]

π2/4N
∼ χ2

2 (10)

Therefore, the LES test for cyclostationarity at significance level p reads:

"Reject H0 if: ”LES(N)
x (α)> π2

4N
·χ2

1−p,2”, (11)

The LES allows estimating the CS2 components in the signal with the following advantages with respect to
the SES:

• The estimator is unbiased by the presence of cyclic components of a frequency different than the consid-
ered one.

• Under the white noise assumption, the variance of the estimator is independent from the variance of the
noise in the signal.

The second point is more a matter of mathematical rigor for long, whitened noise signals, whereas the first
point constitutes an important advantage of the LES when it comes to defining automated tests for the presence
of cyclostationary components at a frequency of interest. Additionally, the LES was shown to yield better
statistical performance in presence of impulsive noise [20]. This last characteristic is not surprising in light of
its being unbiased from CS2 components, considering the existing relation between the CS2 components in the
signal and its Kurtosis [21].
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2.4 Signal pre-processing

In order to leverage on the optimality of the statistical tests discussed in section 2.3, it is necessary to bring
the analyzed signal’s statistics as close as possible to the white noise conditions. First, it is a good practice
to remove CS1 components from the signal, as they have a biasing effect as explained in section 2.3. The
removal of CS1 components can be performed, e.g., through estimation and subtraction. Such an estimation
can be performed in different ways, depending on whether the fundamental cycle of interest is known or not.
In the case it is not, it can be based on blind estimators, as the linear adaptive enhancer (ALE), or the self-
adaptive noise canceller (SANC) and its more efficient frequency domain formulation [22–25]. Generally,
blind estimators performance is negatively affected by signal to noise ratio. Moreover, blind filters require a
proper parameter tuning which may not be trivial in every case. When the cycle of the signal is known, a
popular estimator of the periodic mean is the synchronous average (SA) operator, which is also known as Time
Synchronous Average (TSA) due to its original formulation in time domain [26]. In order to obtain the periodic
mean in the case of a quasi-cyclostationary signal, the SA must be applied for each of the fundamental cycles
which are present in the signal, and then the extracted periodic components need to be summed together [13].
Once the deterministic part of the signal is removed, it is necessary to obtain a flat frequency spectrum for
the signal, resembling white noise statistics. In order to do so, there are mainly two strategy: one is selecting
a narrow-band frequency region and filter it out; the other is to apply any method to "flatten" the spectrum,
such as cepstrum pre-whitening (CPW) [27–29]. On the other hand, the estimation bias resulting from the
exogenous CS2 components discussed in section 2.3 cannot be simply corrected for, due to its statistical nature.
As a summary, two main steps shall be performed before analyzing the signal, i.e. removal of CS1 components
and pre-whitening of the residual. In this work, two techniques were found particularly useful for the scope:
the angular domain synchronous average and the cepstrum pre-whitening. The first technique is preferred as
the cycles of the main additive deterministic components are known for a given gearbox, whereas the second
one is preferred over filtering, as it allows to consider the full-band signal in the analysis, avoiding a further
optimization step to select a narrow-band filter which is able of isolating the fault signature (e.g., Spectral
Kurtosis [30] is a popular tool that can be used for the scope). Also, if compared to other pre-whitening
techniques, the CPW excels for the simplicity of use and the lack of configuration parameters to be properly
selected.

2.4.1 Synchronous average removal

Under the assumption of cycloergodicity [13], SA is indeed a practical estimation of the periodic mean
of a CS signal, which is its first order cyclostationary part of cycle equal to the fundamental period used for
averaging. The equation for the SA of a signal x(θ) of fundamental cycle Θ reads in angle domain [31]:

SA[x(θ)]Θ =
1
N

N−1

∑
i=0

x(θ + iΘ) (12)

Synchronous averaging is thus equivalent to applying a comb filter to the signal [13], which extracts the mul-
tiples of the reference harmonic. The number of averages controls the bandwidth of the lobes, the amount of
noise rejection and the position of the notches of the filter. In order to remove multiple cycles linked to different
harmonic families, equation (12) can be applied multiple times to extract the harmonic family of interest and
then subtract it from the original signal. It is worth mentioning that an "order tracking" or "angular resampling"
step has to be performed to correct for small speed fluctuations, expressing therefore the measured vibration
signal in the angle-domain form of equation (12) [27]. This angular resampling step is typically performed us-
ing a synchronization signal acquired from an external measurement system, as e.g. a magnetic pick-up sensor
mounted on a reference shaft [31].

2.4.2 Cepstrum pre-whitening

The pre-whitening operation consists in setting a zero value for the whole real cepstrum (except possibly
at zero quefrency), then, once transformed back to the frequency domain, the obtained signal is recombined
with the phase of the original signal and inverse transformed to time domain [29]. Considering a signal x, its
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pre-whitened version can be simply computed as [29]:

xcpw = IFT
{

FT (x)
|FT (x)|

}
(13)

2.4.3 Remarks on signal pre-processing

The two steps of signal pre-processing carry with them some hidden difficulties which is worth pointing out.
First, it is necessary to observe that the synchronous average removal requires angular resampling of the signal,
and when it is performed using the computed order tracking (COT), it involves interpolating the signal in order
to obtain its angle-domain values. In [32], a discussion of interpolation methods is given. Interpolating acts as
a low-pass filter in the frequency domain. Therefore, it is important to keep into account that any order tracking
step has the effect of distorting the signal’s spectrum by attenuating the high-frequency components. As a
consequence, spectral flattening shall always be performed after order tracking, when envisaging the use of the
statistical tests of section 2.3. Furthermore, the cepstrum pre-whitening enhances the sensitivity of the squared
envelope results to phase correlation. This last issue is formalized below by using a simple, unit amplitude
complex harmonic signal as an example. Consider the following:

x(t) = e j2π f̃ t (14)

then its Fourier transform reads:
X( f ) = δ ( f − f̃ ) (15)

being x(t) complex analytic, and noting x(t) its complex conjugate, then the envelope spectrum can be
computed as:

ENVx( f ) = FT (x(t) · x(t)) (16)

if a finite-length, discrete signal y[n] = x[n] ·w[n], n = {1, ...,N} is considered (neglecting the sampling step
from the notation for simplicity), being w[n] a rectangular, causal observation window of length N, and the
Discrete Fourier Transform is used to compute the Fourier transform, it holds:

ENVy[k] =
1
N

N−1

∑
n=0

y[n] · y[n] · exp
(
− j2π

nk
N

)
(17)

then by the convolution theorem, equation (17) can be rewritten as:

ENVy[k] =
N/2

∑
r=k

Y [r] ·Y [r− k] (18)

again, for the convolution theorem, the sifting property of the Dirac’s delta distribution δ (·), and considering
the Fourier transform of the rectangular window w[n], equation (18) can be expressed as:

ENVy[k] =
N/2

∑
r=k

sin(π(r− k̃))
sin(π(r− k̃)/N)

e− jπ(r−k̃)N−1
N · sin(π(r− k− k̃))

sin(π(r− k− k̃)/N)
e jπ(r−k−k̃)N−1

N (19)

where k̃ denotes the discrete frequency index corresponding to f̃ . After the cepstrum pre-whitening op-
eration of equation (13), only the phase terms are left from the DFT of the original signal and equation (19)
becomes:

ENVy[k] =
N/2

∑
r=k

e− jπ(r−k̃)N−1
N · e jπ(r−k−k̃)N−1

N = e− jπk N−1
N (

N
2
− k) (20)

From equation (20), it can be observed that the phase correlation from residual periodic components has
a harmful effect on the classical envelope spectrum of the pre-whitened signal, which is amplified when the
amplitude spectrum of the signal is equalized to the unit value.
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2.5 Bearing fault signature

Healthy bearings vibration does not typically bring a significant contribution to the vibration generated by
a helicopter gearbox. On the other hand, a defective bearing generates a characteristic vibration signature,
characterized by repeated impacts occurring each time that a bearing element contacts the defective surfaces [5,
33–35]. Typically, four characteristic frequencies can be identified: ball pass frequencies on the outer and inner
races (respectively BPFO and BPFI), typically linked to localized defects on one of the races; fundamental
train frequency (FTF), generally linked to cage defects; and ball spin frequency (BSF), normally related to
localized defects on the rolling elements surface. By indicating with fi and fe respectively the inner and outer
race rotation frequency, with Nb the number of rolling elements in the bearing, by α0 the initial contact angle,
by d the rolling element diameter and by D the bearing pitch diameter, these characteristic frequencies read
[36]:

BPFI =
Nb | fe− fi|

2

(
1+

d
D

cos(α0)

)

BPFO =
Nb | fe− fi|

2

(
1− d

D
cos(α0)

)

BSF =
D | fe− fi|

2d

(
1− (

d
D

cos(α0))
2)

FT F =
1
2

(
fe

(
1+

d
D

cos(α0)

)
+ fi

(
1− d

D
cos(α0)

))

(21)

Letting h j(t) be the impulse response to a single impact measured by the sensor located at position j, q(t)
the periodic modulation owing to load distribution (or periodic changes in the loading conditions, or sensor ori-
entation/position with respect to the impact point) [37, 38], and letting T be the fundamental impact periodicity
(which can be computed by inverting the frequency of interest from equation (21)); then the measured response
x j(t) related to the defective bearing was given in [14, 39–41] as:

x j(t) =
+∞

∑
i=−∞

h j (t− iT − τi)q(iT )Ai +n j(t), (22)

where n j(t) includes the additive background noise and all eventual interference sources, the subscript
i indicates the ith impact, τi represents the mentioned uncertainty on pulse arrival time and Ai the random
amplitude of the impact. Both the variables are modeled in [14] as mutually independent, white, stationary
random sequences with respectively zero and unity mean. Those idealized assumptions allow, according to the
literature, to gain sufficient insight into the described phenomenon. The fault signature appears as a pseudo-
periodic excitation consisting of pulses which are separated by a period close to that of the fault frequency,
but affected by a small, random variation typically of the order of one percent of the fundamental period.
Such slight fluctuations results practically in destroying the discrete, harmonic structure that would arise if
the random fluctuations were neglected as in [34], giving raise to an essentially random vibration signal in the
frequency range of interest [14]. The main difference between the model found in [34] and that of equation (22)
is that in the latter, the harmonic structure produced by the fault-related impacts rapidly turns into a random
signal. As a consequence, the bearing fault signature in the spectrum is likely to be localized in the low-
frequency region, and therefore subject to masking from the background noise and from other possibly existing
interference sources, as e.g. gear mesh harmonics. Hence, the model can explain the reason for which classical
spectral analysis may fail in detecting rolling-element bearing faults, making this signal representation closer
to the reality of the phenomenon. A practical solution to this issue resides in making use of the second-order
cyclostationary tools presented in section 2.1 in order to isolate the bearing vibration signature from the rest of
the measured signal. The cyclostationary approach was actually shown very successful for bearing diagnostic
problems in several works, as in [10, 14, 19, 21, 33, 41]. From equation (1), adopting the proper normalization
to obtain the cyclic power spectrum from the spectral correlation, it can be shown that for the signal model of
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equation (22), it holds [10]:
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P

]
+δ [α]Sn( f )

, (23)

in which Φ( f ) stands for the Fourier transform of the probability density function of the random variable
τ associated to the impacts jitter, P for the load variation characteristic period, H j( f ) for the transfer function
from the impact point to the measurement location j, obtained as the Fourier transform of the impulse response
function h j( f ), σA the standard deviation of the random variable A representing the random impact amplitude,
and the Ql are coefficients of the Fourier transform of the modulating function q(t). The weak harmonic
contribution was neglected, being it highly attenuated in the high frequency region as an effect of the random
jitter of the impact times. From equation (23), the discrete structure of the bearing signature is finally evident
in the cyclic power spectrum plane, with continuously distributed values along the spectral frequency lines
appearing at multiples of the fundamental impact frequency (along axis α). Also, the values are higher for
those spectral frequency bands where the fault signature is dominating. It follows for the cyclic coherence [14]:

∣∣γx j( f ,α)
∣∣2 '

∣∣∣∣
SNR( f )

1+SNR( f )

∣∣∣∣
2

|Φ(α)|2
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∑
k,l=−∞

∣∣∣∣
Ql

Q0

∣∣∣∣
2

δ
[

α− k
T
− l

P

]
, (24)

where SNR( f ) represents the signal-to-noise ratio of the fault. Consequently, as a function of the spectral
frequency f , equation (24) shows an increased coherence for increasing amplitude modulation randomness,
impact frequency and load modulation intensity, whereas as a function of the cyclic frequency α , it shows
a discrete structure consisting of harmonics of the fault signature separated by the characteristic impact fre-
quency, with decreasing amplitude depending on the low-pass filtering function Φ(α). Therefore, the highest
the multiple of the fundamental impact frequency, the lower the intensity of the observed bearing signature in
the cyclic coherence. Equation (3), along with the proper normalization, can be used to estimate the quantity
appearing at the LHS of equation (24), yielding an efficient diagnostic representation able of highlighting the
bearing fault signature according to the structure of equation (24).

3 Proposed monitoring procedure

Operationally, it is desirable to control the risk of false alarms from the health monitoring system, in addition
to providing the earliest possible warning. In order to achieve those targets, a two-steps procedure is proposed
in this work. First, statistical indicators leveraging on the cyclostationary theory are designed in order to attain a
specified false alarm rate. Secondly, a diagnostic step based on the analysis of the cyclic coherence is taken each
time that an alarm is raised, in order to confirm that the threshold exceedance is actually due to a mechanical
defect. The importance of the first step of the procedure is that of providing an easy-to-read scalar indicator,
with known statistical behavior, which can be employed to guarantee a given false alarm rate as low as not to
overload the analysts, maintaining contextually an acceptable detection performance. The second step implies
confirming the alarms raised in the detection phase before performing any maintenance, as a measure to avoid
unnecessary grounding of the concerned helicopters.

3.1 Fault detection stage

With the aim of deriving statistically reliable monitoring indicators, the cyclostationary signal theory is
adopted in this work within the frame of a procedure similar to that proposed in [42]. The envelope spectrum
is here computed through the methods described in section 2.2. Both SES and LES can be considered. The
necessity of an automated bearing monitoring gives raise to the following challenges:

1. The false alarm rate shall be kept under control in order to avoid unnecessary grounding of the machine;

2. The actual fault frequency cannot be accurately predicted using the simplified kinematics relations;

3. Interfering, exogenous components may mask the bearing fault signature.
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As to cope with the first point, the statistical tests presented in section 2.3 for LES and SES can be ex-
ploited. First, a signal pre-whitening step consisting of the removal of the periodic (CS1) components through
synchronous averaging followed by cepstrum pre-whitening for spectral flattening is performed. This allows to
get rid of interferring CS1 sources and to bring the signal’s statistics closer to those of white noise. A statistical
threshold can then be derived from the white-noise envelope spectrum statistics as in [18, 43]. For a number
of bearing fault harmonics to be configured, a narrow-band frequency range around the fault frequencies of an
extent to be configured, can be defined. This is done in order to allow some margin in considering eventual
shifts of the fault frequency from its predicted nominal value, addressing the second problem in automatizing
the algorithm. At the same time, if the considered cyclic frequency range is too wide, there is the risk of ex-
ogenous CS2 components leaking into the analysis band, leading to incorrect diagnosis. This issue has to be
carefully addressed when tuning the algorithm’s parameters. Any number of fault harmonics can be considered
in the algorithm. However, according to equation (24), best results are obtained for the low bearing harmonics.
For each defined range, the values of the SES or LES are compared to the statistical thresholds of equations (8)
and (11). If any statistically significant value is present, a fault detection alarm is raised. The advantages of
the adopted procedure are two-fold: on one hand, the envelope spectrum is computed in a computationally
efficient way; on the other hand, the computation of the theoretical threshold after pre-whitening according to
[18, 43] provides solid grounds for statistical testing. For a given signal to be processed, the algorithm can be
summarized in the following steps:

1. Define the desired false alarm rate ˜PFA for the indicator according to the operational needs;

2. Calculate the fault frequency of interest FF (according to equation (21)) in units of the sampling frequency
Fs;

3. Set the number of fault harmonics Nh to be monitored;

4. Set a tolerance band ψ as a percentage of the fault frequency of interest, in order to account for the
uncertainty on the actual fault frequency;

5. Remove known CS1 components using synchronous average removal;

6. Apply spectral flattening using cepstrum pre-whitening;

7. Compute the full-band SES/LES of the pre-whitened signal;

8. Compute the statistical threshold p according to the defined desired false alarm rate, based on the white
noise assumption;

9. For each considered fault harmonic: find the maximum value of SES/LES in the defined tolerance band;

10. Compute the indicator value as the mean of the statistically significant values with respect to the defined
threshold (if no significant value is found for any of the considered harmonics of the fault, the indicator
value is set to zero).

The expected false alarm rate ˜PFA corresponds to the probability of one value of the (squared or loga-
rithmic) envelope spectrum within the considered range being higher than its statistical threshold computed
through equations (8) and (11). Therefore, to attain a desired level for ˜PFA, it is necessary to calculate the
significance level p as to satisfy:

˜PFA = 1− p∑
Nh
h=1 rh (25)

with Nh being the number of the considered fault harmonics and:

rh = dh
ψ

100
FF

Fs
Ne (26)

where N is the discrete signal length and Fs its sampling frequency expressed in inverse units of the sampling
step. The value of p obtained from equation (25) allows for calculating the statistical thresholds of equations (8)
and (11) so that the probability of having one exceedance of the envelope spectrum in the computational range
is equal to ˜PFA. It is important to point out that where the false alarm rate can be kept under control, the
detection performance cannot be predicted a priori. Typically, the higher the tolerance band ψFf , the lower
the detection performance for a fixed ˜PFA; the higher the admissible alarm rate ˜PFA, the higher the detection
performance that can be expected.
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3.2 Fault diagnosis stage

Each time an alarm is triggered, a fault diagnosis step is performed by the analyst. It consists of computing
the cyclic spectral coherence around the fault frequencies for which the detection algorithm raised an alert and
visually assessing the existence of CS2 components compatible with the expected signature from a bearing
fault. The spectral coherence is estimated according to equation (3), where the number of averages and the
window length are set according to the guidelines discussed in [15]. Within this assessment step, the analyst
can additionally assess the presence of diagnostic side-bands carrying supplementary information on the nature
of the fault.

4 Results

In this section, the proposed monitoring strategy is applied on in-service helicopter HUMS data in order
to assess its performance in terms of reliability and detection. LES and SES indicators, along with different
pre-processing treatments are compared, stressing the importance of properly pre-whitening the signal before
carrying on with the analysis.

4.1 Data description

In order to validate the proposed procedure, a comprehensive data-set consisting of vibration data recorded
from fourteen machines over about twenty-thousand flight hours (FH) is considered. The data-set includes four
bearing in-service degradation cases that were detected by the HUMS: two of them concern roller bearings,
and the other two concern ball bearings. The acquisitions were performed in various operating conditions,
involving different regimes for the rotational speed of the rotor and for the transmitted torque from the engines.
Main gearbox (MGB) and accessory gearbox (AGB) acquisitions comprise signals from seven accelerometers
and two keyphasor signals. The two keyphasor signals provide respectively one pulse per revolution of the
main rotor and of the tail rotor shaft. Accelerometers are typically mounted on the gearbox casing, close to
the monitored components. Generally, acquisitions are divided in groups. Each acquisition group is launched
when specific flight conditions are matched and consists of a synchronized acquisition from a set of sensors,
performed with a configured sampling frequency for a configured duration. The available keyphasor signals
are always sampled with the same sampling frequency of the accelerometer signals. Signals were sampled
synchronously from all the MGB accelerometers with a sampling frequency of 50 kHz, for one second dura-
tion. The four documented bearing fault cases occurred on different machines during the monitoring period.
The faults were anticipated by the HUMS in the spalling initiation phase, allowing for timely maintenance.
Table 1 summarizes the four selected fault cases, whereas figure 1 show the inspected bearings after component
removal. All the cases involve outer race spalling which occurred whether on a roller or on a ball bearings.
The HUMS, through the deployed monitoring strategy, triggered regular inspections of the chip detectors and
allowed in each case to anticipate the chip warning coming from the oil metal chips detectors. Additionally,
for the fault case 4, HUMS had gained enough confidence to trigger the removal without the need of waiting
for the metal particles in the chip detector to be out of criteria. The geometrical parameters of the concerned
bearings are not reported for proprietary reasons.

Table 1 – Fleet selected bearing fault cases summary

Fault case ID Machine ID Damaged bearing
1 1 Roller bearing (bearing 1)
2 2 Roller bearing (bearing 1)
3 3 Ball bearing (bearing 2)
4 3 Ball bearing (bearing 2)
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(a)
(b)

(c) (d)

Figure 1 – Damaged bearings after inspection. Outer race presenting spalled area at the time of removal – a)
Bearing fault case 1 ; b) Bearing fault case 2; c) Bearing fault case 3 ; d) Bearing fault case 4.

4.2 Fault detection performance

The bearing monitoring strategy proposed in section 3 is applied on the operational data of this section.
Bearing anomaly indicators are computed routinely on all the fleet data, and then the detected exceedances are
analyzed using cyclostationary analysis in order to complete the diagnosis. Although bearing anomaly indica-
tors are computed for each monitored bearing in the gearbox, the results here presented are restricted to those
for which the faults were observed, allowing to validate both detection and the reliability performance. From
the bearing geometrical properties, the theoretical characteristic frequencies could be computed according to
equation (21). Table 2 reports the computed, nominal bearing defect frequencies for the considered bearings
1 and 2, expressed in orders of the rotational speed of the shaft to which they are attached. According to the
nominal design parameters, the fault frequencies are very close (for the outer race defect frequency, the dif-
ference between bearing 1 and 2 is less than two percent), posing a challenge in discriminating which one is
the faulty bearing in the event of a detection. Both SES-based and LES-based indicators are evaluated, com-
puting the envelope spectra on the pre-whitened signal after a synchronous average removal step and cepstrum
pre-whitening (SES-CPW and LES-CPW indicators). Performance on the signal after the synchronous average
removal step only are also reported for comparison (SES-SA and LES-SA indicators). The indicators were con-
figured such as to allow to separate the two fault frequencies, but allowing some slippage through one-percent
width analysis bands. Only the first harmonic of the outer race fault frequency was considered. With reference
to section 3, care was taken when performing the OT steps in the SA removal and when resampling the signal
to order domain before the cepstum pre-whitening.

Table 2 – Bearing 1 and 2 characteristic fault frequencies in order domain.

Parameter Description [dimension] Bearing 1 Value Bearing 2 Value
BSF Roller Spin Frequency [Hz] 3.64 3.67
FT F Fundamental Train Frequency [Hz] 0.44 0.45
BPFO Ball Pass Frequency Outer race [Hz] 9.69 9.85
BPFI Ball Pass Frequency Inner race [Hz] 12.31 12.15
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Figure 2 shows the actual false alarm rate against the expected one for the SES and LES indicators for
bearing 1 and bearing 2 on the whole collected healthy fleet data. It can be seen that the actual alarm rates for
both the bearings do not match well the expected results in the case of the SA indicators. This is attributable
to two main factors: first, the SA procedures do not remove all of the periodic components originally present
in the signal, leaving some residual, biasing CS1 component; secondly, the spectrum of the measured vibration
is far from resembling white noise, leading to the statistical thresholds computed using equations (8) and (11)
being inaccurate. On the other hand, figures 2c and 2d show better results for the indicators computed after
the cepstrum pre-whitening step. From the distribution check it can be seen that the LES-based indicator
provides very accurate results for both the considered bearings: the actual false alarm rate agrees very well
with the predicted one. Conversely, despite the spectral flattening and the SA removal, the SES indicator yields
higher false alarm rate than expected. This fact might be explained by the SES statistics being affected by
exogenous CS2 components, differently from those of the LES. In order to evaluate the detection performance
of the devised statistical indicators, an anticipation over removal metrics is introduced. For each fault case, the
removal anticipation (RA) achieved by HUMS alert and expressed in acquisitions number, was computed as
a function of the actual false alarm rate on the fleet. Typically, the removal is triggered by an inspection of
the particles captured in the chip detector and matching some criteria on size and composition. The RA figure
allows to judge the achievable trade-off between detection capability and global false alarm rate performance
of an indicator. Figures 3a and 3b show the results respectively for the fault cases 1 and 2, for the SES-SA
and LES-SA outer race fault indicators, whereas figures 4a and 4b report the same results for the SES-CPW
and LES-CPW outer race fault indicators. Concerning the fault cases 3 and 4, related to the ball bearing, the
RA is constant for each considered indicator, despite pre-processing differences and equal respectively to 66
acquisitions and 34 acquisitions. This depends actually on two distinct facts: first, in the considered data-
set, acquisitions for machine 3 begins already in a relatively advanced bearing degradation stage, where all
indicators detect very clearly. Secondly, the second degradation produced very early, strong CS2 symptoms
which were as well detectable in a robust manner from all of the considered indicators. Also, for the second
ball bearing degradation (fault case 4), the HUMS alerting system was already deployed, and guaranteed the
detection of the incipient bearing degradation, along with an optimized, planned maintenance intervention.
Therefore, the time to removal metrics is not representative of the anticipation over the chip detector alert
for case 4. For the roller bearing degradation cases, evidently the SES-CPW and LES-CPW achieve a better
anticipation over removal for a given false alarm rate, implying their better performance in terms of early
detection with respect to the SES-SA and LES-SA indicators in both the cases. The comparison between LES-
CPW and SES-CPW shows that they perform very similarly for the first fault case (figure 4a), whereas the
SES-CPW indicator shows better detection performance with respect to the LES-CPW in the second fault case
(figure 4b).

4.3 Fault diagnosis stage

In this section, the diagnostic charts based on the cyclic coherence are shown for each detected bearing
degradation. The defined operational procedure only requires to compute such quantities when an alert is
raised, so to confirm the actual occurrence of a mechanical degradation. In figures 5 to 8, for fault cases re-
spectively 1 to 4, the diagnostic charts and the associated LES and SES spectra, together with their statistical
threshold computed for the 0.1 percent significance level according to equations (8) and (11), are shown in three
conditions: before the beginning of the bearing degradation, during the bearing degradation and after gearbox
replacement. In each case, the spalling manifests as a high-frequency excitation, at a cyclic order which is
slightly different than that predicted from the theoretical calculations. Consequently, the actual loading condi-
tions encountered in operations have an impact on the exact determination of the fault frequency, owing to the
simplified kinematics assumptions being inadequate to describe the bearing dynamic behavior. By comparing
figure 5 to figure 6, it can be seen that the symptoms of the spalling appears much more evident for the second
fault case (compare, e.g., the statistical threshold to the value of the emerging peak in the two cases). Coher-
ently, figures 3 and 4 show that the second fault case is predicted with a higher anticipation time from both the
SES and LES indicators. This can be explained by looking at figure 1. It can be noticed from figure 1a and
figure 1b that the shape of the surface degradation is consistently different in the two cases. In fault case number
2, the spalling area extends across the full span of the race, creating a slot. Conversely, in fault case number 1
the spalling area is restricted to part of the width of the race. It can be expected that for the second degradation
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Figure 2 – Healthy fleet data, actual vs. expected probability of false alarm rate of the SES and LES outer
race fault detection indicators for: a) Bearing 1, SA indicators; b) Bearing 2, SA indicators; c) Bearing 1,
CPW indicators; d) Bearing 2, CPW indicators. Blue: theoretical relation; red dashed: LES indicator; magenta
dot-dashed: SES indicator.
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Figure 3 – Removal anticipation (RA) time in acquisitions vs. fleet false alarm rate for SES-SA (upper row,
magenta dot-dashed) ad LES-SA (lower row, red dashed) indicators – a) Fault case number 1; b) Fault case
number 2.
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Figure 4 – Removal anticipation (RA) time in acquisitions vs. fleet false alarm rate for SES-CPW (upper row,
magenta dot-dashed) ad LES-CPW (lower row, red dashed) indicators – a) Fault case number 1; b) Fault case
number 2.
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Figure 5 – Diagnostic charts for fault case 1. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.

case, impacts will occur, exciting the bearing resonances and resulting in stronger CS2 symptoms with respect
to those produced in case number 1, where the quasi-periodic change in the dynamic response is more likely due
to the change of the load distribution within the contact line of the rolling elements rolling over the defective
surface. As a matter of fact, the detection performance depends, among the other factors, from the evolution
of the mechanical degradation. This does not appear to be the case for the ball bearing degradation, where
the symptoms are of relatively comparable magnitude, despite the case number 3 presenting a more advanced
degradation at the time of removal (figure 1). The fact that the contact taking place in ball bearings between
the races and the elements can better be described as a point contact interaction could explain these results. In
fact, any geometry of the degradation would almost surely provoke mechanical impacts between the elements
and the race. The analysis of the diagnostic charts is an important step to confirm the alarms: the bearing fault
signature presents itself as a clear cyclic excitation localized in the high spectral frequency band, and allows
the analysts to reliably confirm whether the fault detection alert is effectively related to a mechanical fault. In
fact, by observing the cyclic spectral coherence representation, it is possible in an operational scenario to rule
out both the occurrence of false alarms and those false indications coming from corrupted measurements.

4.4 Impact of the operating conditions

In order to assess the sensitivity of the bearing monitoring indicators to the different operating conditions,
the correlation of the indicator values to the torque and rotor speed values was studied. Figures 9 and 10 show
such correlation for the LES-CPW outer race indicators related respectively to the roller (bearing 1) and to the
ball bearing (bearing 2). Similar results were obtained for the other indicators, therefore only figures 9 and 10
were reported for brevity. As indicator value, the magnitude of the detected peak in the envelope spectrum
was reported. This is a consistent indication, being the LES statistical distribution independent from the cyclic
frequency. From the results, it can be observed that there is no significant correlation between the values of the
indicator and the contextual parameter, whenever the indicator takes its nominal values. However, the higher
values related to degraded conditions are mostly localized in correspondence of the high-torque region, for a
rotor speed of around 97 percent of the nominal speed. This may indicate a slight sensitivity of the indicators
to the operating conditions. However, it has to be pointed out that the majority of the recorded acquisitions
occurred in the low rotor speed, high torque conditions. Being the acquisitions density in the region higher
than in the rest of the operating spectrum, the likelihood of acquiring in those conditions during the progression
of the fault is also higher. Finally, relatively high values of the indicator during the fault progression can be
observed also in other regions of the operating spectrum, confirming its detection robustness to the different
flying regimes of the helicopter.
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Figure 6 – Diagnostic charts for fault case 2. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

S
pe

ct
ra

l f
re

qu
en

cy
 [O

rd
er

s]

0

100

200

300

400

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

C
P

W
-L

E
S

 a
m

pl
itu

de
 [-

]

×10-4

0

2

4

6

8

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

C
P

W
-S

E
S

 a
m

pl
itu

de
 [-

]

×10-13

0

1

2

3

4

5

6

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6
0

100

200

300

400

500

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-12

0

0.5

1

1.5

2

2.5

3

3.5

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6
0

100

200

300

400

500

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-4

0

2

4

6

8

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-13

0

1

2

3

4

5

6

Figure 7 – Diagnostic charts for fault case 3. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.

15



9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

S
pe

ct
ra

l f
re

qu
en

cy
 [O

rd
er

s]

0

100

200

300

400

500

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

C
P

W
-L

E
S

 a
m

pl
itu

de
 [-

]

×10-4

0

1

2

3

4

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

C
P

W
-S

E
S

 a
m

pl
itu

de
 [-

]

×10-14

0

1

2

3

4

5

6

7

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6
0

100

200

300

400

500

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-4

0

1

2

3

4

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6
0

100

200

300

400

500

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-4

0

1

2

3

4

Cyclic frequency [Orders]
9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

×10-14

0

1

2

3

4

5

6

7

Figure 8 – Diagnostic charts for fault case 4. Upper row: cyclic coherence (darker areas corresponds to higher
values); middle row: LES-CPW spectra; lower row: SES-CPW spectra. First column: healthy bearing; second
column: detected outer race spalling; third column: gearbox replaced. Dashed line: 99.9 percentile threshold.
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Figure 9 – Impact of the operating conditions on the bearing 1 outer race fault LES-CPW indicator values.
Top-left: joint distribution of torque, rotor speed and indicator values; top-right: indicator values vs. torque;
bottom-left: rotor speed vs. indicator values; bottom-right: rotor speed vs torque.
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Figure 10 – Impact of the operating conditions on the bearing 2 outer race fault LES-CPW indicator values.
Top-left: joint distribution of torque, rotor speed and indicator values; top-right: indicator values vs. torque;
bottom-left: rotor speed vs. indicator values; bottom-right: rotor speed vs torque.

5 Conclusions

A predictive maintenance strategy for the monitoring of rolling element bearings in the context of heli-
copter operations was developed. The proposed methodology relies on a two-step fault detection and diagnosis
process. The first step consists of devising reliable statistical indicators, allowing to attain a given false alarm
rate. The second step consists of confirming eventual alarms through refined diagnostic analysis based on the
estimation of the cyclic spectral coherence of the concerned signals. The devised procedure was validated
on comprehensive, in-service helicopter fleet data set, comprising high-frequency acquisitions from fourteen
machines flying according to several different profiles. Statistical indicators based on the logarithm envelope
spectrum and on the squared envelope spectrum were compared in terms of both reliability in providing a given
false alarm rate and ability to promptly anticipate four in-service bearing degradation cases. Two pre-processing
algorithms based on synchronous average removal and cepstrum pre-whitening were considered, and some of
their properties investigated. It was shown that indicators based on the logarithm envelope allow for a very fine
tuning of the desired false alarm rate, together with providing acceptable detection performance in the consid-
ered cases. Conversely, squared envelope based indicators proved less reliable in actual operations. The results
were shown to be consistent across the full range of considered operating conditions. The diagnostic step was
shown to be able of accurately disclosing the faulty bearing signature, proving to be an effective discrimination
mean to avoid unnecessary grounding of the machine in the occurrence of a HUMS alarm. At the same time,
the burden of performing the diagnosis is restricted to those cases in which an alarm from the detection step
actually occurs. The impact of different mechanical degradation shapes was also considered: it was shown
that for the roller bearing outer race degradation cases, the fault shape has a significant impact on the HUMS
detection performance. The developed approach allowed to deploy a statistically efficient, operationally valid
procedure to monitor the rolling element bearings in helicopter mechanical transmissions within an in-service
context, characterized by harsh mechanical environment, acquisition constraints and multiple different operat-
ing conditions. Remarkably, it could be used to deploy an effective, semi-automated monitoring for helicopter
bearings which guarantees an effective condition based maintenance of the monitored components.
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1 Abstract  

In vibration-based diagnosis of rolling element bearings, the complexity of the signals requires an expert 
to use advanced signal processing tools and to interpret the results based on his/her experience. Recently, 
a few autonomous methods have been proposed to alleviate the demand on the user’s expertise, yet they 
have been mainly focused on fault detection. They ideally track certain properties in the signal, whose 
occurrence is correlated with the symptom of a fault. This paper follows a similar direction but with wider 
objectives: it aims to develop an indicator that is sensitive to both non-stationarity, non-Gaussianity and 
to the modification of the acoustic signature of the vibratory signal. The indicator is based on the recently 
developed Fast Spectral Coherence, a key tool of the theory of second-order cyclostationary processes. It 
condenses the whole information initially displayed in three dimensions into a scalar. it initially addresses 
the case where the faults frequencies are unknown. In addition, the proposed indicator is able to return 
information for different levels of damages in both stationary and non-stationary operating conditions. A 
new pre-processing step is provided to ensure an efficient and constant statistical threshold. The 
proposed indicator is intended to be used in an autonomous process without the need for visual analysis 
and human interpretation. The proposed indicator is compared with a recent indicator based on the 
Envelop Spectrum, in terms of classification and detection performance. Several applications using real 
and benchmarked data eventually illustrate the capability for self-running diagnosis.  
 
Keywords: spectral coherence, Gaussianity, Stationarity, Acoustic signature, Indicator. 
 

2 Introduction 

Roller bearings (REBs) are one of the essential components of rotating machines, hence the demand for 
their efficient and reliable condition monitoring (CM). Condition monitoring ensures maximum 
production, prevents accidents and serious damage and helps to detect failures at an early stage by 
keeping the system in good conditions. Over the last few decades, considerable research has been 
conducted on diagnostics based on REB vibrations and acoustics signals leading to the development of 
some condition’s indicators. Therefore, several strategies have been adopted. This is derived from the 
fact that the occurrence of numerous faults induces changes in signal characteristics that can be described 
as (i) a deviation from Gaussianity, and/or (ii) a shift in the statistical behavior of the signal from stationary 
to non-stationary, accompanied by (iii) a change in the machine's acoustic signature.  
The crest factor [1], the peak-to-peak, the entropy [2]–[4], the form factor, the third-order central 
moment (skewness) and the fourth-order central moment (kurtosis) [5], [6], or any higher-order moments 
or cumulants [7], [8] are all typical examples of the non-Gaussianity measure. They are dedicated to 
characterizing the non-Gaussian behavior in the form of impulsivity of machine signals. The most 
traditional and probably the most widely used is the kurtosis, or its combination with other indicators. In 
the past, they have been used mainly because of their simple calculation formulas, and their relatively 



short computation times. This is despite its uncorrelated values with the fault symptoms in numerous 
situations, reported in many studies[9], [10]. This argument has become obsolete thanks to modern 
computing capabilities. 
The roughness indicator, as traditionally calculated in the time domain from the Aures model [11], is an 
example of the psychoacoustic parameters used to monitor the existence of a fault based on an alteration 
of the machine's acoustic signature. It aims to mimic the ability of the human auditory system to detect 
high-frequency modulation, as evidenced by the faulty rotating machines. The researchers have 
developed various mathematical models [12]–[15] to estimate roughness but none of them have been 
normalized. 
The degree of cyclostationarity [16] and the indices of cyclostationarity [17] based on the 2nd-order 
cyclical cumulants or any higher-order cyclostationarity indices based on higher-order cyclical cumulants 
[18] are typical examples of measures of the non-stationarity that characterizes the cyclostationarity 
introduced by the fault existence. Despite its importance in diagnosis, the real-time use of CS indices can 
be hindered in practice by its high cost, especially in real-time applications [19]. 

This paper aims to fill in these gaps by proposing an indicator sensitive to both non-stationarity, non-
Gaussianity and to the modification of the acoustic signature of the vibratory signal. To do so, the 
frequency domain instead of time domain is used since it better extracts cyclic repetition from a signal 
produced by a repetitive fault and also reduces the noise impact. The cyclostationary framework is then 
our subject of interest since it has been reported that rotating machine signals are cyclostationary [20]. 
Advantage is taken of the availability of a recently proposed fast algorithm to calculate the spectral 
coherence [19], on which the proposed conditioning indicator is based. The spectral correlation is a three-
dimensional distribution of all modulation patterns existing in a signal as a function of the carrier 
frequency in Hertz and the modulation frequency (also called cyclic frequency) in machine order, which 
generalizes the SC to nonstationary operations. It is thus considered optimal for revealing bearing fault 
signatures under stationary and nonstationary speed regimes [21], [22].  
The idea is to condensate the whole information initially displayed in the spectral coherence into a scalar 
after an appropriate weighting performed to select the audible frequencies range from about 20 Hz to 20 
kHz and the audible modulations range from about 15 Hz to 200 Hz. This selection can be easily made 
using the weight 𝜔𝑘,𝑝 designed as a bandpass filter, used to accentuate or reduce certain frequency 

components in order to model the bandpass characteristic of the roughness on the modulation frequency. 
 This approaching, the spectral coherence which is sensitive to both non-stationarity and non-Gaussianity, 
also becomes sensitive to the acoustic signature of the vibratory signal. A new preprocessing step is 
provided in order to eliminate any possible bias (as typically produced by transient disturbances in the 
signal or the presence of unexplained nonstationarities) in the estimated spectral coherence. This original 
step is necessary to produce a pivotal statistic by forcing the spectral coherence to have a constant 
probability distribution with respect to the dual frequencies plan.  
The proposed indicator is statistically consistent, i.e. its variance converges to zero when the signal length 
increases. On the opposite, Aures’ roughness does not involve any time average and is therefore prone to 
significant estimation errors. Contrary to the kurtosis, the proposed indicator separates impulsivity from 
non-stationarity, allowing the identification of the type of deviation from normality. A non-nonparametric 
hypothesis test is also provided in order for this indicator to be credible and possibly implemented in an 
automated monitoring system. The capacity of the proposed indicator is validated on real data and 
benchmarked with the kurtosis to extract meaningful conclusions. It is found to return higher performance 
in terms of detecting faulty bearings.  



3 Indicator 

3.1 Preliminary steps 

This steps briefly resumes the statistical methodology proposed by kass et al.[22] to design the test 
statistics. The starting point is to describe the health of the system under investigation by two alternative 
hypotheses, 𝐻0 and 𝐻1, which correspond respectively to the healthy and the faulty states, respectively. 

The principle is to consider the spectral coherence, 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘), as the random quantity of interest rather 
than its squared magnitude.   

In principle, Under 𝐻0, the random field 𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘), seen as a function of the two frequency variables 

𝛼𝑙  and 𝑓𝑘, can be shown to have zero probability of being nil at any position (𝛼𝑙  ,  𝑓𝑘) even though having 
small values. Under the alternative hypothesis 𝐻1, the difference is that the random field will have higher 
magnitudes along parallel lines, discretely located at cyclic frequencies associated with the fault 
frequencies. The objective is to keep only these values and to zero all the other ones. To do so, a statistical 
threshold, defined as a high percentile, is needed to differentiate between information and background 
noise. Hence, the presence of a possible bias (as typically produced by transient disturbances in the signal 

or the presence of unexplained nonstationarities) in the 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) compromises the efficiency of the 

latter threshold.  As result, the noise baseline is not uniformly distributed along the frequencies axis. It is 
therefore impossible to establish a fixed threshold to distinguish between information and noise. To 
correct this situation, the following empirical steps are proposed. The first step is to standardize the EES 
in order to force it to have a constant probability distribution with respect to the cyclic order α, under the 
null hypothesis 𝐻0. In principle, The transformation reads 

𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘)  =

𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) −  {𝛾𝑋
(1)

(𝛼𝑙  ,  𝑓𝑘)|𝐻0}

√ {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)

2|𝐻0} −  {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)|𝐻0}

2
 (1) 

where {⋯ |𝐻0} stands for the ensemble averaging operator taken under 𝐻0. One issue is to replace 

 {𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘)|𝐻0} and  {𝛾𝑋

(1)(𝛼𝑙  ,  𝑓𝑘)
2|𝐻0} in the above equation by estimates obtained from a 

realization of 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) which may either pertain to 𝐻0 or 𝐻1. Since the difference in 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) 
under the null and alternative hypotheses is essentially marked by the presence of parallel lines, it is 

proposed to estimate  {𝛾𝑋
(1)(𝛼𝑙 ,  𝑓𝑘)|𝐻0} from a running median of 𝛾𝑋

(1)(𝛼𝑙 ,  𝑓𝑘), called 𝜇𝑀𝐸𝐷(𝛼𝑘), and 

 {𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘)2|𝐻0} from the running median of the absolute deviation, called 𝜎𝑀𝐴𝐷(𝛼𝑘). The rationale 

for using a running median is to leave unaffected informative peaks in the spectral coherence. Therefore, 

the 𝛾𝑋
(2)(𝛼𝑙  ,  𝑓𝑘) reads  

𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘)  =  

𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) − 𝜇𝑀𝐸𝐷(𝛼𝑙 , 𝑓𝑘)

𝜎𝑀𝐴𝐷(𝛼𝑙, 𝑓𝑘)
 (2) 

which returns a “pivotal” statistics (i.e. whose probability distribution does not depend on any unknown 
parameter). Briefly, the presence of the possible bias is firstly removed by subtracting a running median, 
then the results are standardized by dividing it with a running median of the absolute deviation. These 
two steps can be though as a normalization of the 𝐻1 statistics with respect to the 𝐻0  statistics.  

3.2 Proposition  

The first step is to preserve the informative values, i. e. the spectral lines parallel to the frequency axis 𝑓𝑘 
along 𝛼𝑙, expected during the fault’s existence i. e. under 𝐻1.To do so, this step consists of setting all non-

significant peaks in 𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘) to zero which are found below a given threshold. A reasonable choice is 



to define the threshold as a high percentile pc (e.g. 𝑝𝑐 = 0.9)[23], which means that only the 100(1 −
𝑝𝑐)% highest values will be kept. Thanks to the standardization step, the threshold is constant over the 

full frequency plane (𝛼𝑙  ,  𝑓𝑘). And the 𝛾𝑋
(3)

(𝛼𝑙 ,  𝑓𝑘) is expressed as 

𝛾𝑋
(3)(𝛼𝑙  ,  𝑓𝑘) =  𝛾𝑋

(2)(𝛼𝑙  ,  𝑓𝑘). 𝕀
[𝛾𝑋

(2)
(𝛼𝑙 , 𝑓𝑘)>𝑝𝑐]

(3) 

where the symbol 𝕀
[𝛾𝑋

(2)
(𝛼𝑙 , 𝑓𝑘)>𝑝𝑐]

 denotes the indicator function defined on the frequencies plane 

(𝛼𝑙  ,  𝑓𝑘) having the value 1 for all elements of (𝛼𝑙  ,  𝑓𝑘) satisfying the condition 𝛾𝑋
(2)(𝛼𝑙 ,  𝑓𝑘) > 𝑝𝑐 and the 

value zero otherwise. 

This is a crucial step as the next step involves modelling the bandpass characteristics of the roughness by 
accentuating or reducing certain frequency components, thus preventing the occurrence of misleading 
peaks. 

The next step is to performs an appropriate weighting of the 𝛾𝑋
(3)

(𝛼𝑙  ,  𝑓𝑘) so as to select the audible 
frequencies range from about 20 Hz to 20 kHz and the audible modulations range from about 15 Hz to 
200 Hz in order to approach the roughness measurement proposed by Aures. This selection can be easily 
realized based on the weight 𝜔𝑘,𝑝 designed as a bandpass filter, used to accentuate or reduce specific 

frequency components in order to model the roughness bandpass characteristic on modulation 
frequencies. In other words, 𝜔𝑘,𝑝 resembles the distribution matrix of the weighting functions for each 

Bark channel. The weighting of 𝛾𝑋
(3)(𝛼𝑙  ,  𝑓𝑘) is achieved as follows: 

𝛾𝑋
(4)

(𝛼𝑙  ,  𝑓𝑘) = 𝛾𝑋
(3)

(𝛼𝑙  ,  𝑓𝑘).𝜔𝑘,𝑝 (4) 

The third step is divided into two sub-steps, the first is to integrating the 𝛾𝑋
(4)(𝛼𝑙 ,  𝑓𝑘) over the cyclical 

frequency axis 𝛼𝑙, which condenses the whole information initially displayed in three dimensions into a 
two-dimensional representation, 

𝐼𝑋
(5)

( 𝑓𝑘) =
1

𝐹1
[∑ 𝛾𝑋

(4)
(𝛼𝑙 ,  𝑓𝑘)

𝑙∈𝐹1

] (5) 

 
While the second sub-step consists of dividing the frequency axis into a Bark filter bank to estimate the 
modulation depth per auditory channel which is spaced by 1 Bark representing a psychoacoustic scale for 
the bandwidths of the hearing filters. The latter is a frequency band established by Zwiker [24], it is divided 
into 24 critical bands ranging from 0 to 15500 Hz. 
As a final step, the roughness dependence with respect to the carrier frequency is introduced into the 

model by multiplying 𝐼𝑋
(5)( 𝑓𝑘) by a weighting function 𝑔(𝑓𝑘) with factors ranging from 0.6 to 1.1 in 

accordance with the dependency of the roughness to the carrier frequency of the amplitude modulated 
tones. The values of the weighting function with respect to the channel number are shown in Figure 1.  

Finally, the proposed indicator 𝐼𝑅 is obtained by integrating 𝐼𝑋
(5)( 𝑓𝑘) over the frequency axis 𝑓𝑘. 

𝐼𝑅 =
1

𝐹2
∑ 𝐼𝑋

(5)( 𝑓𝑘)

𝑘∈𝐹2

. 𝑔(𝑓𝑘) (6) 

By analogy with the result given by the connection between the kurtosis and the sum of the squared 
envelope spectrum [25], it was shown in [23] that the proposed indicator might be interpreted as a 
kurtosis, yet sensitive only to cyclostationary components. 
The next section describes how the fault detection will be done using a statistical hypothesis test using 
the proposed indicator. In this context, alternative strategies to statistical testing can also be used. For 
example, the proposed indicator can also be used as an input parameter for an SVM classifier (machine 



vector support) or a neural network. This statement is based on the observation of the results obtained 
by applying the proposed indicator to the various databases. 

3.3 Hypothesis testing, design 

The interpretation of the proposed indicator could vary from one application to another, depending on 
several parameters (such as the noise level related to transient perturbations in the signal or to the 
presence of unexplained non-stationarity as well as the vibration level and the interfering contribution of 
other second-order components emitted by other sources). In the majority of the literature [16]–[18], the 
provided methods give their results as scalar. The latter indicates the presence of a fault in some 
applications while in another, and for the same value, the fault will be considered as absent. This is why a 
threshold is needed for decision-making. To do so, two thresholds are provided in this paper. The lower 
threshold 𝐼𝐿 is defined as the indicator value of the randomized version of the vibration signal under which 
the fault is absolutely absent. In detail, 𝐼𝐿 is equal to the indicator value when the signal is randomized. 
The randomization of the signal is defined as a circular permutation of its elements, it can be performed 
using the MATLAB function called "randperm". The latter returns a new version of the signal containing a 
random permutation of its values. On the other hand, the link between the kurtosis and the spectral 
correlation makes it possible to reach the upper threshold, 𝐼𝑈, beyond which the fault presence is declared 
with high certainty. 
After the 𝐼𝑈 is calculated, a comparison is then made with the proposed indicator to detect the fault 
presence. If 𝐼𝑅 has a value greater than 𝐼𝑈, the fault exists. 
The null hypothesis test relative to our case originating from the comparison between 𝐼𝑅 and 𝐼𝑈 can be 
written as: 
“Reject the null hypothesis H0 if: 

𝐼𝑅 ≥ 𝐼𝑈 (7) 
where 𝐼𝑈 ≥ 2⨉𝐼𝐿. 

It easily allows performing a statistical test: according to the decision rule, any value of 𝐼𝑅 that is greater 

than the 𝐼𝑈-threshold will indicate that the signature of the fault is detected. The proof of proposition Eq. 
(7) is based on observing that under the null hypothesis test H0 the quantity asymptotically follows a 
nonparametric distribution that has a constant bias and variance all over the cyclic order axis. It also 
remembers that this test is true almost everywhere. 
The complete flow diagram for the algorithm described in this section is shown in Fig.3 
 



 
Figure 1.Complete algorithm flowchart 

It is worth noting that 𝐼𝑅 is very similar to the Aures’ roughness measure used in psychoacoustics. One 
difference is that Aures’ roughness is based on a decomposition of the signal through a Bark filter bank 
whereas a narrow-band decomposition is used in this paper, yet this is more or less transparent after 
integration over the frequency plane (𝛼𝑙  ,  𝑓𝑘). Another difference is that Aures’ roughness does not 
involve any time average and is therefore prone to significant estimation errors. On the contrary, the 
indicators introduced in this work are statistically” consistent” (i.e. their variances converge to zero when 
the signal length increases). 

4  Experimental Validation 

The ability of any method in detecting a bearing fault must be validated on real signals. In the present 
paper, four benchmarks are used. The first is provided by the Case Western Reserve University (CRWU) 
bearing data center [26], while the second is an industrial database provided by SOMFY-Cluse. These 
databases are widely used to test new algorithms by comparing their efficiency with existing techniques 
[27]. The CRWU’s database provides multiple fault types, i.e. rolling element, cage inner-race, and outer-
race fault, and it is used to illustrate the proposed method and to compare the proposed algorithm to 
those existing in the literature. The industrial database is used to illustrate the diagnosis of bearings in a 
real industrial world signal. 

4.1 Algorithm illustration and comparison with kurtosis 

To illustrate the proposed algorithm, we consider a real industrial signal. This analyzed signal is provided 
by Somfy and includes an industrial fault. It is provided as supplementary material of the article. This may 
be used as a general source of bench mark data for research on diagnosis of industrial faults under 
constant speed operation. The comparing the results of the proposed indicator with those given by 
kurtosis. The duration of signals is 20 s with a sampling frequency of 50 kHz. 
As explained above, the first begins with the calculation of the fast estimator of the spectral coherence 

for the resampled time domain signal 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘). In what follows, the window length in the Fast-OFSC 

is set to 𝑁𝑤 = 29 in order to achieve a frequency resolution of about 100 Hz and the cyclic range 𝛼𝑚𝑎𝑥 =

750 Hz. The next step is to standardize 𝛾𝑋
(1)(𝛼𝑙  ,  𝑓𝑘) in order to force it to have a constant probability 
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distribution with respect to the frequency plane, under 𝐻0. The statistical threshold will be defined as a 
high 𝑃𝑐 percentile (𝑃𝑐 = 0.9), which means that only the 100(1 − 𝑃𝑐)% of the highest values will be 
preserved. It is noteworthy that this method perfectly preserves the diagnostic information that nicely 
appears with a significant overrun of the 0,1% statistical threshold. This signal is easily diagnosable and it 
should, therefore, be considered as a preliminary test for the proposed algorithm. The visual inspection 
of the spectral coherences presented in Figure 2 (a) and (b) shows a series of symptomatic pulses at the 
fault frequency - spectral lines parallel to the 𝑓-axis discretely located at cyclic frequencies associated with 
the fault frequencies- as expected by the model given by Somfy during under 𝐻1. In Figure 2 (b) it is 

obvious that some frequency components disappear from the 𝛾𝑋
(1)

(𝛼𝑙 ,  𝑓𝑘) while retaining only 
informative peaks and eliminating noise-related components found below the chosen threshold. 

 
Figure 2. For the raw time signal  a) the  𝛾𝑋

(1)(𝛼𝑙 ,  𝑓𝑘) , and b) the  𝛾𝑋
(3)(𝛼𝑙 ,  𝑓𝑘) 

The audible frequencies and modulations range are selected by using the weight 𝜔𝑘,𝑝, shown in Figure 

3(a), so as to select the audible frequencies range from about 20 Hz to 20 KHz and the audible modulations 

range from about 15 Hz to 200 Hz. The weighted version of spectral coherence 𝛾𝑋
(4)(𝛼𝑙  ,  𝑓𝑘) is presented 

in Figure 3 (b). As shown in Figure 3 (b), certain frequency components are emphasized or reduced so as 
to model the band-pass characteristic of the roughness over the modulation frequency. 

 

  
Figure 3 (a) The weight 𝜔𝑘,𝑝 used  to select the audible  frequencies and modulations ranges, (b) the  𝛾𝑋

(4)(𝛼𝑙 ,  𝑓𝑘). 

In the next step and as mentioned in section 3.2, the integration of 𝛾𝑋
(4)(𝛼𝑙  ,  𝑓𝑘) over 𝛼𝑘 will be 

performed. The two-dimensional representation 𝐼𝑋
(5)( 𝑓𝑘) which condenses the three-dimensional 

information is shown in Figure 4 (a). Then, the modulation-depth per auditory channel is estimated by 



dividing the 𝑓-axis into the 24 bands of Bark filter. 𝐼𝑋
(5)

( 𝑓𝑘) is then multiplied by a weighting function 

𝑔(𝑓𝑘). Finally, the roughness indicator 𝐼𝑅 is obtained by integrating the weighted 𝐼𝑋
(5)

( 𝑓𝑘)  over the 𝑓-
axis. The latter has in this case a value of 2.2624.  
The signal is now randomized in order to calculate the upper and the lower threshold. Figure 4 (a) et (b) 
shows both the raw time signal and its normalized version. When both signals are visually inspected, it is 
evident that cyclostationary symptoms are lost when the signal is randomized, which is consistent with 
the auditory test performed using MATLAB's sound function (). More precisely, when performing a hearing 
test, the original signal exhibits periodic behavior that is produced with each cycle. This periodic symptom 
is no longer heard after the randomization of the signal. The value of the indicator in this case 𝐼𝐿 =
0.27109 is negligible compared to the case of existing fault, matching both the visual and the hearing 
inspection. 𝐼𝑅 is equal to about 10 times 𝐼𝐿. According to the decision rule provided by Eq. (7), the fault 
existence is reported. 

 
Figure 4. (a) the integration of 𝛾𝑋

(4)(𝛼𝑙 ,  𝑓𝑘)  over 𝛼𝑙 , (b) the weighting function g 

 

 
Figure 5. (a) the raw time signal and (b) its randomized version 

Surprisingly, and contrary to both visual and auditory inspection tests, the kurtosis of the original and 
randomized signal gives a very low value of 3.0088 reporting the fault absence in both cases. 
After an appropriate filtration of the raw time signal, the kurtosis value is now 20.8589, corresponding to 
a very high value -7 times the value of a normal case - indicating the failure's presence. The success of 
kurtosis after proper filtering highlights its limitation when analyzing a signal with a low signal-to-noise 
ratio and at the same time demonstrating the superiority of the indicator designed from a cyclostationary 
method for the detection of fault symptoms.  
Now the filtered signal is randomized to study kurtosis response in this case and presents another 
superiority of the proposed indicator over kurtosis. In detail, the same kurtosis value for both the 
randomized signal and the filtered signal is obtained indicating that the fault is detected in these cases. 
The obtained results are expected since kurtosis is defined as follows  



𝑘 =

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 )

2                                                                (8) 

This equation shows that regardless the sequence of this signal summation, results will be the same since 
the permutation disorganizes only the sequence of the original signal. The kurtosis in this case cannot 
therefore indicate whether the signal is cyclostationary or stationary but not Gaussian. On the other hand, 
the proposed indicator can perform this distinction giving a cyclic roughness value of 2.2424 for the 
filtered signal and 0.25819 for its randomized version. 

4.2 Performance Evaluation in the CWRU database 

The performance of the proposed indicators is now evaluated on the bearing signals provided by the 
CWRU database. The CWRU database has been used in many references (e.g. [19], [22], [27], [28]) and 
can be considered as a reference to test newly proposed algorithms and compare them against the state-
of-the-art. The experimental setup consists of a 1.4914 kW, reliance electric motor driving a shaft on which 
a torque transducer and encoder are mounted. Torque is applied to the shaft via a dynamometer and 
electronic control system. Four types of vibration signals are collected (normal, ball fault, inner-race fault, 
and outer-race fault), acquired by accelerometer sensors under different operating loads and speeds. 
More details about the test bench as well as the description of its vibration signals can be found in the 
reference source [27]. In this study, the drive end data-set category with sampling frequency 48 kHz have 
been analyzed. Information for all 64 data sets used are shown in table 1. The capacity of the proposed 

indicator is evaluated using different faults types. The 𝛾𝑋
(1)

(𝛼𝑙  ,  𝑓𝑘) parameters are as given in the previous 
section.  

Table 1. The 48K drive end bearing faults data sets used. 

Fault types Data sets name 

Inner-race 110,111,112,174,176,177,14,215,217 

Outer-race (centered) 135,136,137,138,201,203,204,238,239,240,241 

Normal data 97,98,99,100 

 
Table 2 and table 4 collect the results of the proposed method. Included in these tables are the 𝐼𝑅 as well 
as the kurtosis values, of each raw time signal and its randomized version. 
As shown in Table 3, for the original signals, 𝐼𝑅 is close to 0.15, while for its randomized version, it is about 
0.1 (𝐼𝐿 = 0.1). In all these cases and in according to the decision rule in equation (7), the fault is declared 
missed. The kurtosis in these cases is approximately 3. From Table 3, nearly the same increasing or 
decreasing behavior of the proposed indicator values are detected compared to the values provided by 
kurtosis and by the roughness indicator provided in commercial psychoacoustic software. In all these 
cases and in according to the decision rule in equation (7), the fault is declared presented. According to 
the obtained results, all faults detected by the human visual inspection of [27] in the inner ring and outer 
ring are also detected by the proposed indicator. It is clearly proven that the distinction between healthy 
and defective bearings can be made using these indicators. Unfortunately, given that the proposed 
indicator provides overlapping values when applied to the different types of bearing faults, the existence 
of the fault can be detected but not identified. 
In conclusion, the objective has been achieved and the proposed indicator can identify the fault even if its 
frequencies are unknown. 
 

Table 2. analysis results of the healthy bearing; Kurtosis, 𝐼𝑅 

 Raw signal Randomized signal 



Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

100 2.9572 0.1354 2.9572 0.0999 

97 2.7642 0.1471 2.7642 0.1011 

98 2.9306 0.1422 2.9306 0.1002 

99 2.9306 0.1422 2.9306 0.0977 

 
Table 3. analysis results of the faulty bearing; Kurtosis, 𝐼𝑅 

Inner-race faults 

 Raw signal Randomized signal 

Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

110 7.36862 0.494821 7.36862 0.101008 

111 7.51043 0.467891 7.51043 0.103501 

112 6.82779 0.439782 6.82779 0.104584 

174 11.6689 0.504829 11.6689 0.10279 

176 20.1511 0.861307 20.151 0.117898 

177 14.9400 0.823425 14.940 0.114356 

214 3.93724 0.507309 3.93724 0.100236 

215 3.65185 0.444887 3.65185 0.099826 

217 3.65185 0.444887 3.65185 0.09756 

Outer-race faults (Centered) 

 Raw signal Randomized signal 

Dataset kurtosis 𝐼𝑅 kurtosis 𝐼𝐿  

135 6.7415 0.5032 6.741461 0.1047 

136 6.8648 0.5293 6.864769 0.1027 

137 6.9370 0.5295 6.937026 0.1017 

138 7.3917 0.5154 7.391694 0.1030 

201 3.7676 0.2039 3.767617 0.1031 

203 6.0172 0.2108 6.017181 0.1015 

204 2.9993 0.2104 2.999284 0.0996 

238 20.7910 2.3374 20.79105 0.1169 

239 20.5436 2.7322 20.54365 0.1148 

240 21.0265 0.5032 21.02651 0.1205 

241 19.7818 0.5293 19.78182 0.1199 

5 Conclusion  

This paper aims introduces an autonomous method of bearing diagnosis. It relies on the introduction of a 
new scalar indicator. The indicator results from a post-processing of the spectral coherence, as computed 
by the fast algorithm.  
The factors that are likely to impede the autonomous diagnosis have been addressed; a new 
standardization of the estimated spectral coherence to remove any possible bias and frequency 
dependence in the estimation variance. The method comes with a robust hypothesis test, which is crucial 
for decision making. 
The proposed method has been validated on several databases, where it has been checked to be able to 
systematically replace both the human intervention or the classical conditioning indicator to efficiently 
complete the diagnosis of bearings.  
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Abstract
Rolling element bearings are critical parts of rotating machinery, as they support the loads applied to the ro-
tating components. Therefore, continuous monitoring of the health state of the operational bearings is applied
in order to detect early damages before any unexpected breakdown of the rotating machinery occurs. Bearing
diagnostics is a field of intensive research, focusing nowadays mainly in complicated machinery (e.g. plane-
tary gearboxes, multi-stage gearboxes, etc.) operating under varying conditions (e.g. varying speed and load),
as they still provide challenges in terms of accuracy and time of detection/diagnosis. One of the most com-
mon methods for bearings diagnostics is the Envelope Analysis. A filter is usually applied around an excited
frequency band (by impulsive damage) and the signal is enveloped, thus obtaining the Squared Envelope Spec-
trum. For the detection of the filtering frequency band, several band selection tools have been proposed in the
past that extract the optimal band in a semi-autonomous or fully autonomous manner. The most widely used
tool for band selection is the Kurtogram, where the band that returns the highest Spectral Kurtosis value is
selected as the optimal band for demodulation. However, as the bearing damage may excite several frequency
bands simultaneously, band-pass filtering around only one frequency band may not be sufficient for the detec-
tion of the bearing fault under the presence of noise. One proposed method to circumvent this case is to filter
around several bands that carry the Signal of Interest (bearing damage signature). Recently, multi-band filtering
based on the Autogram feature values, used as a pre-step in order to extract the Combined Squared Envelope
Spectrum (CSES) has been presented, providing better detection performance of faulty bearings compared to
the extraction of the SES after filtering over a single optimal band returned by the Autogram. Recently, a par-
ticular interest had been target to the Cyclic Spectral Correlation (CSC) and to the derived methods, due to their
effectiveness in describing second-order cyclostationary signals. One of such methods is the Cyclic Spectral
Coherence (CSCoh) which is a normalized version of the CSC bivariable map. Both methods are represented
in the frequency-frequency domain. It has been shown that the integration of the bivariable functions over
discrete spectral frequency bands is analogous to band-pass filtering. The IESFOgram has been proposed as a
band selection tool, based on either the CSC or CSCoh, in order to extract the optimal frequency band. The
integration on the frequency band of the bivariable map further enhances the detectability of faulty bearings on
the resulting Improved Envelope Spectrum (IES). However, the method has been proposed with the integration
of one single band. In this paper the method is extended towards the extraction of the Combined Improved
Envelope Spectrum (CIES), performing a multi-band integration of the bivariable map around multiple reso-
nant frequencies that are carriers of the bearing damage signature. The proposed method is applied, tested and
evaluated on experimental data and the results are compared with other state-of-the-art band-selection tools.

1 Introduction

Rolling element bearings are critical components of rotating machinery and their failure can cause sudden
breakdown of the system, leading to time-loss and increased costs. Condition monitoring is the field where
rotating machinery is analysed, including bearings and gears and damages that may be present on the structures
can be detected. Therefore, maintenance and faulty component repair can be performed before breakdown. The
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diagnostics of bearings continues to be a challenge however, as their signatures are usually masked under noise
and other stronger component signatures (e.g. gears). Specifically, condition monitoring of complex machinery
has seen increased research, due to their wide application on critical mechanisms and to their high difficulty to
diagnose caused by their many components signatures.

One of the most well established methods is the Envelope Analysis, where the signal is demodulated after
band-pass filtering around the resonant frequencies excited by the damage impulses, obtaining in the end a
filtered Squared Envelope Spectrum (SES). The main idea is to obtain an optimal filter band which presents a
high Signal-to-Noise ratio (SNR) leading to a SES after demodulation where the fault harmonics are enhanced
[1, 2]. The selection of this frequency band for demodulation is a frequency and continuous topic present in the
field. The main reason is because some sort filtering processing is common to most of condition monitoring
applications, and the band can either be selected by engineering knowledge, or by a methodology that selects the
band in a (semi-)automated manner. The most widely used of these band selections tools is the Fast Kurtogram
(FK) [3], which is an automated band selection tool based on the maximum kurtosis level. Aside from this
tool there are other band selection tools that have been developed to obtain the SES. The Optimised Spectral
Kurtosis (OSK) [4] selects the band with the maximum kurtosis as well, while retaining a narrow bandwidth
in order to by-pass electro-magnetic interference noise on the signals. The Sparsogram [5] is based on the
sparsity level on different bands based on the wavelet-packet, and the Infogram is utilizes the negentropy as
a feature to detect the impulsive bands of the signal for demodulation. Moshrefzadeh and Fasana proposed
the Autogram [6], a tool also based on the maximum kurtosis, but unlike the FK, it is calculated from the
unbiased autocorrelation of the squared envelope of the demodulated signals. Instead of a classical filter (e.g.
Butterworth filter), the undecimated wavelet packet transform (MODWPT) is used instead to split the signal in a
series of frequency bands. The band of the autocorrelated squared envelope with the highest Kurtosis is selected
as the optimal one, and is shown to have higher diagnosis performance than other stat-of-the-art band selections
tools. One conclusion of the method is that band selection tools select only one node as the optimal, and often
other unused nodes may contain useful information that is negleted. As such, they introduce the concept of
multi-band integration to the Autogram, where several filtered SES, corresponding to the highest kurtosis of
each level, are all combined into one spectrum denominated as Combined Squared Envelope Spectrum (CSES).

The Cyclic Spectral Correlation (CSC) and the Cyclic Spectral Coherence (CSCoh) have been proposed
in the last two decades as an alternative for the SES-based methods [7, 8, 9]. The main advantage of this
method falls on its ability to reveal hidden periodicities of second-order cyclostationarity, like bearing signals
that are masked under stronger signals. They are represented in bi-variable maps in the frequency-frequency
domain, from which its spectral axis can be integrated to obtain either the Enhanced Envelope Spectrum (EES)
or the Improved Envelope Spectrum (IES). These spectra, the EES and IES, have been seen to improve the
detection of cyclostationary faulty signals. However, to obtain the optimal band of demodulation for the CSC
or CSCoh, its bi-variable map needs to be analysed in order to select the optimal band for integration along
the spectral axis. The IESFOgram [11] as been previously proposed as a band selection tool to be applied on
the bi-variable maps of CSC or CSCoh, in order to take advantage of its good perfomance in extracting the
cyclistationry information of the signals. It also displays a color-mapped 1/3 binary tree like the FK and is
seen to provide an optimal band of integration resulting in an IES allowing the detection of the fault frequency
harmonics. However, as information of the damage can be present in other bands beside the optimal band, the
authors propose an approach to combine the spectra of different bands into one Combined Improved Envelope
Spectrum (CIES).

The objective of this paper is the proposal of extending the IESFOgram methodolgy by adding the infor-
mation of other bands into a combined spectrum, the CIES. The methodology is validated on real signals of
two datasets (one with roller bearing damage under variable speed and load conditions [10] and one from a
planetary gearbox with electromagnetic interference [4]). Furthermore, the performance of the methodology
is compared with the band pass filtering selection based on the Fast Kurtogram-based SES and the Autogram-
based CSES. Figure 1 depicts a scheme of the used methodologies. The rest of the paper is outlined as follows.
In Section 2, the background theory deemed needed for the application of the proposed method is detailed. In
Section 3 the proposed methodology itself is presented. In Section 4, the methodology is tested, validated and
compared with state of the art methodologies. The paper closes in Section 5 with some conclusions.
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Figure 1: Schematic description of diagnostic methods based on Fast Kurtogram, Autogram, and IESFOgram

2 Cyclostationary signals

Rotating mechanical components are likely to generate cyclic transient signatures which are periodic in
nature if the rotational speed is kept constant during the acquisition of signals. These signals often carry
information on the health of its components, and signal processing and feature extraction are widely used in
order to track the health condition of its components. Following the cyclostationary theory, the signals of
interest acquired from rotating machinery can be defined into two orders of cyclostationary signals. Signals of
first order of cyclostationarity (CS1) are signals whose first-order statistical moment is a periodic function of T
that complies with the condition of Eq. 1.

C1x(t) = E{x(t)}=C1x(t +T ) (1)

where E denotes the ensemble averaging operator, and t stands for time. In rotating machinery, CS1 vi-
brations signals are periodic waveforms related to components phase-locked with the rotor speed( e.g. shaft
misalignment, spalling on meshing gears, etc). A second-order cyclostationary (CS2) signal is a signal whose
second order statistical moment is periodic [13]. In particular, if its autocorrelation function is periodic with
period T as described in Eq. 2.

C2x(t,τ) = E{x(t)x(t− τ)∗}=C2x(t +T,τ) (2)

where τ corresponds to the time-lag variable. Bearing vibration signals are often described as CS2, due to
having a hidden periodicity related to the shaft speed. Finally, an nth- order cyclostationary (CSn) is a signal
whose nth-order statistical moment is periodic, but signal with higher order than CS2 are not taken into account,
as CS1 and CS2 describe well the signals of interest generated by rotating machinery.

The Cyclic Spectral Correlation (CSC) is a tool in which the CS1 and CS2 signals are well described in the
frequency-frequency domain. The method is represented as a distribution function of two frequency variable:
the cyclic frequency α linked to the modulation; and the spectral frequency f linked to the carrier signal.
The tool can be described also as the correlation distribution of the carrier and modulation frequencies of the
signatures present in the signals, defined in Eq. 3.

CSC(α, f ) = lim
W→∞

1
W

E{FW [x(t)]FW [x(t + τ)]∗} (3)

where FW [x(t)] stands the Fourier transform of the signal x(t) over a finite time duration of W . Processing
the CSC results in the bi-variable map which reveals the hidden modulations, making it a robust tool for
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detecting the cyclostationarity in vibration signals [8, 9].
In order to minimize uneven distributions, a whitening operation can be applied to the CSC. This extended

tool, named the Cyclic Spectral Coherence (CSCoh), describes the spectral correlations in normalized values
between 0 and 1, and is defined as in Eq. 4 :

CSCoh(α, f ) =
CSCx(α, f )√

CSCx(0, f )CSCx(0, f +α)
(4)

Both the CSC and the CSCoh bi-variable maps can be integrated along the spectral frequency axis in order
to obtain a regular spectrum, resulting in a one dimension spectrum function of the cyclic f requencyα . The
band of spectral frequencies to be integrated can be defined as the full available band, from zero to the Nyquist
frequency, resulting in a spectrum that exhibits all modulations present in the signal. On the other, the band
can be defined as the one that maximizes the cyclic characteristic frequency of interest while minimizing the
background noise and the other frequency components that may mask the frequency of interest. In this manner,
the integration over a specific band on the bi-variable map can improve the detection rate of the characteristic
frequency related to the present damage on the signal. The resulting spectrum is then named Improved Envelope
Spectrum (IES) and it is obtained from the frequency-frequency domain according to Eq. 5 :

IES(α) =
1

F2−F1

∫ F2

F1

|CSCohx(α, f )|d f (5)

3 Proposed methodology

Diagnosis using the bi-variable maps requires a deep understanding of the map in order to exploit its infor-
mation. Analysis of one dimensional spectra is far more widely applied in the academia and industry and easier
to anaylise. It has been seen that integration of the bi-variable function along its spectral variable results in a
one dimensional spectrum, which would be a good tool on itself for diagnostics purposes. On the other hand,
the diagnostics information could still be masked under the noise and other components signatures. Integration
of the specific band that carries the signal of interest can further enhance the spectrum and increase the perfor-
mance in the detection of the frequencies of interest. The detection of the optimal band of integration on the
bi-variable map is not always straight forward.

The Improved Envelope Spectrum via Feature Optimization-gram (IESFOgram)[11] is one such band se-
lection tool to be applied in the bi-variable map as placed in the scheme depicted Fig. 1.

The proposed method tries to optimize a Normalized Diagnostic Feature (NDF) based on the cyclic char-
acteristics of interest (e.g. rolling element bearing characteristic fault frequencies/orders) on the demodulated
spectrum resulting from the integration of the bi-variable map. The method is thought to be general enough
to be applied to either the CSC or the CSCoh. The scheme representing the IESFOgram procedure and the
extraction of the NDF is shown in Fig. 2, and step-by-step details for its extraction as described as follows.

Step 1: In the first step, the bi-variable map is extracted from the signal. The estimators of the CSC(α, f )
can be based on the Averaged Cyclic Periodogram, Cyclic Modulation Spectrum or any other numerical method
[14] to extract the CSC bi-variable map previously described in Eq. 3. The CSC can also be in its normalized
version CSCoh(α, f ). The user can define on its own discretion which method to use in order to obtain the
bi-variable map CSC(α, f ). The reader is forwarded to the references [15, 16], suggested as providers of the
numerical implementation of the CSC in the Order-Frequency domain, and the reference [8] to the Frequency-
Frequency domain CSC, if it is applied to the order tracked signal as a function of angle results in the Order-
Order domain CSC.

Step 2: The next step consists in dividing the map along the spectral axis f according to the 1/3-binary
tree that is also applied to the Fast Kurtogram [3]. Each is defined by a series with a decreasing bandwidth bw
and incremental steps of center frequency c f which define the upper and lower limit f1 and f2 described in the
integration of Eq. 5. Each band is then integrated and results in a demodulated spectrum IESc f ,bw(α).

Step 3: From each processed IESc f ,bw(α), one Diagnostic Feature DF(c f ,bw) is extracted. This feature
is based on the cyclic fault frequency/order of interest. Therefore, to calculate this feature, as well as the
IESFOgram, this cyclic component needs to inserted into the method as input. The feature DF(n) is defined
as the sum of the N-harmonics of the characteristic fault frequency/order α f ault normalized by the noise level
estimated in a bandwidth 2× fb, as described in Eq. 6.
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Figure 2: Schematic description of the IESFOgram procedure for extraction of CIES.

DF(c f ,bw) =
N

∑
k=1

IESc f ,bw(k×α f ault)

1
2 fb

[∫ k f f ault+ fb
k f f ault− fb

IESc f ,bw(α)dα− IESc f ,bw(k×α f ault)
] (6)

The normalization procedure is important to be taken into account. This is due to some bands having high
peak values of noise, and the direct absolute value at the fault frequencies can be higher than at the optimal
band. Normalizing with the background noise level at the peaks solves this problem, making high values of the
DF to correspond to bands where the frequency peaks of interest are present.

Step 4: The objective of this step is to find the the weight value to be applied on each band for integration of
the bi-variable. To quantify the presence of a cyclic component in each band, the library of features DF(c f ,bw)
is used. The higher the value of DF, the higher the presence of the component of interest is present. Thus, the
optimal band OB is identified as the arguments which maximizes DF(c f ,bw), as described in Eq. 7.

OB = argmax
c f ,bw

[ DF(c f ,bw) ] (7)

Colormap presentation of the values of DF as function of (c f ,bw) in a 1/3-binary tree is called the IESFO-
gram, and its maximum value corresponds to the selected optimal band for integration.

Step 6: The representation of DF(c f ,bw) as function of center frequency c f and bandwidth bw is trans-
formed to a representation function of the spectral frequency f and the level, as DF( f , level). To be used as
a proper weight on the bi-variable map, the DF(c f ,bw) is summed along its level (SDF(c f ,bw)), and then
normalized between 0 and 1 (NDF(c f ,bw)):

SDF( f ) =
N

∑
level=1

[ DF( f , level) ] (8)
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NDF( f ) =
SDF−min(SDF)

max(SDF)−min(SDF)
(9)

Step 7: The final step is to integrate the bi-variable map along the spectral axis on and weight each band
with normalized diagnostic feature NDF( f ) in order to obtain the Combined Improved Envelope Spectrum
CIES(α). This step can be considered not be part of the IESFOgram procedure, but as the extraction of the
CIES with highest Signal-to-Noise Ratio (SNR) for diagnostic purposes.

CIES(α) =
f s/2

∑
f=0

CSCoh(α, f )∗NDF( f ) (10)

To define if the extracted amplitude value on the spectra of the cyclic component are statistically relevant,
a threshold is also calculated, and visualized on all spectra of this paper. The threshold is the same as the
one presented by the authors in [13], based on 3 times the Moving Absolute Deviation (MAD) of its spectra.
The window defined on all spectra corresponds to the total number of samples of each corresponding spectrum
divided by 27. All values above the threshold are considered to be statistically relevant for detection of the
frequency.

4 Experimental application and results

In order to test and validate the proposed methodology, vibration data captured from two separate test rigs
are used as case studies. One dataset corresponds to damage on the roller of a bearing under variable speed and
load conditions. The second dataset corresponds vibration signals with damage in the outer race of the bearing
with high electromagnetic interference present in the signals.

4.1 Case 1 - Roller damage under variable speed and load conditions

The first studied case of this paper is performed on the rolling bearing testing rig developed at the DIRG
lab of Politecnico di Torino, where a high-speed spindle drives a shaft supported by a couple of identical
bearings. Different damage conditions have been imposed on one of the bearings, and accelerations have
been recorded in different positions and directions, under various load and speed conditions. The evaluation
of the local damage on a roller has also been evaluated by monitoring the bearing under the same speed and
load conditions for about 230 hours. A selection of the acquired records can be downloaded from ftp:
//ftp.polito.it/people/DIRG_BearingData/ [10] .

The test rig is composed of three bearings (B1, B2 and B3) mounted inline on the output shaft of a high-
speed spindle motor and a precision sledge applying radial load on the bearing on the middle, as depicted in
Fig. 3.

The speed of the spindle is set through the control panel of an inverter but can not be actively controlled:
not only the spindle has no keyphasor transducer or tachometer to detect its actual speed but also there is no
feedback to the controller of the inverter. As a direct consequence, the actual speed of the shaft is always lower
than the ideal one and the difference increases with the applied load. A static load cell allows for measuring the
resulting force, whose direction is purely radial.

The main geometrical properties of the three bearings, specifically manufactured for this high speed aero-
nautical applications, are listed in Table 1.

Bearing reference Pitch diameter D (mm) Rollers diameter d (mm) Rolling elements
B1 & B3 40.5 9.0 10

B2 54.0 8.0 16

Table 1: Main properties of the roller bearings [10].

The dataset corresponding to the variable conditions has 7 cases: three with indentation on the inner ring
of the bearing; three with indentation on a roller of the bearing; and one with no damage (healthy). Each
damage corresponds to indentation damages diameter of 450,250 and 150µm. The case depicted in this paper
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Figure 3: Test rig (up) general view, (left) position of the two accelerometers, (right) shaft with the three
accelerometers [10].

corresponds to the damage on the roller with a diameter of 150µm. Each case contains signals acquired during
20 seconds at 51.2 kHz under speeds of: 100, 200, 300, 400 and 500 revolutions per second. Furthermore,
the acquired signals are under 4 radial load conditions: 1000 N, 1400 N, 1800 N, and no load. The damaged
bearing corresponds to bearing B1, and its characteristic frequencies under the different speed conditions are
described in Table 2.

Motor speed (Hz) FTF (Hz) 2xBSF (Hz) BPFO (Hz) BPFI (Hz)
100 38.9 427.8 388.9 611.1
200 77.8 855.6 777.8 1222.2
300 116.7 1283.3 1166.7 1833.3
400 155.6 1711.1 1555.6 2444.4
500 194.4 2138.9 1944.4 3055.6

Table 2: Characteristic frequencies of bearing B1 under different steady speed conditions.

From the two triaxial accelerometers, the signals used to diagnose the roller damage are on the radial
direction of the accelerometer mounted on the damaged bearing B1, or in other word, the radial output of
accelerometer A1 is used.

The speed reference is provided along with the signals, but the description details that the speed is in reality
lower than the provided one. Upon analyzing the signal in the bivariable map from the CSCoh, it is defined that
the shaft speed frequency is clear at around 90% of the theoretical one and can be extracted from the spectra
under null applied load. Figure 4 shows the CSCoh map exemplifiying the clear shaft frequency at 288 Hz, for
the case of speed 300 Hz and a load of 0 N.

When load is applied to the bearing, the FTF harmonics of bearing B1 become the prominent ones, as can
be seen from the CSCoh map in Fig. 5 for the case of speed 300 Hz and a radial load of 1000 N.

These peaks at 90% of the given speed and the FTF were used as reference for the real speed of the test rig.
With this, the frequencies at the 2xBSF can be correctly defined to determine if they are indeed present in the
spectra.

The frequency at 2xBSF and its two next harmonics are then used as inputs to calculate the IESFOgram,
and the weight of the different bands that will enhance the peak extraction at those frequencies, as shown in
Fig. 6.
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Figure 4: CSCoh bi-variable map around the first 3 FTF harmonics of the damaged bearing and shaft frequency
speed of signal under no radial load.

Figure 5: CSCoh bi-variable map around the first 3 FTF harmonics of the damaged bearing and shaft frequency
speed of signal under 1000 N of radial load.

Figure 6: Signal under 300 Hz speed and 0 N load: (left) IESFOgram, (right) Combined IESFOgram.
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Figure 7: CIES for the signal under 300 Hz speed and 0 N load.

Figure 8: CSES for the signal under 300 Hz speed and 0 N load.

The IESFOgram shows high feature values at high frequencies, mainly around 20 kHz. Applying the
resulting weighted function (Combined IESFOgram) to the integration of the CSCoh, the 2xBSF can be clearly
extracted from the CIES seen in Fig. 7.

The Autogram applied to the same signal has a similar result, with high feature values for around high
frequency bands. The Combined SES based on the Autogram is successful in extracting the peak at the 2xBSF
above the threshold, along with the shaft frequency harmonics, as shown in Fig. 8.

The Fast Kurtogram detects the center frequency 10.1 kHz with a bandwidth of 1067 Hz with the highest
kurtosis. The resulting SES based on the Fast Kurtogram does not provide any valuable diagnostic information,
as illustrated by Fig. 9.

Following to the case of radial load of 1000 N at 300 Hz of shaft speed, the IESFOgram shows high feature
values around 12 kHz. Applying the weighted function based on the IESFOgram, the 2xBSF and its harmonics
are clearly detected from the Combined IES seen in Fig. 10.

For this case, the radial increases the impulses due to the roller damage, making it easier to detect the fault
frequencies. The harmonics of the FTF that modulate the roller characteristic frequency also became dominant
under the radial load.

The Autogram applied to the same signal has a similar result, with high feature values for around high
frequency bands. The CSES based on the Autogram is also successful in extracting the peak at the 2xBSF
above the threshold, as well as the FTF harmonics, as shown in Fig. 11.

In the cases with high load applied, the FTF and 2xBSF harmonics are so dominant on the signals that
both the FK-based SES as well as the classical SES with no filtering detect these above the threshold. As
a final remark, for the other speeds, the same pattern is found, where in high radial loads the damage related
frequencies are dominant while in the no load cases they are masked in the noise level. For avoiding redundancy
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Figure 9: FK-based SES for the signal under 300 Hz speed and 0 N load.

Figure 10: (left) IESFOgram and (right) CIES for the signal under 300 Hz speed and 1000 N of radial load.

Figure 11: (left) Autogram and (right) CSES for the signal under 300 Hz speed and 1000 N of radial load.

10



Figure 12: Test rig (left) inside view, (right) schematic representation [4].

on the results, these figure results are not shown here.

4.2 Case 2 - Outer race damage under electromagnetic interference (EMI)

The following case vibration data was acquired from the planetary gearbox test rig with applied torque is
presented in Fig. 12. The gearbox torque is provided by a hydraulic system driven by a three-phase induction
motor. A torque transducer is attached to measure the applied torque on the gear set while the speed of the
driving shaft is controlled by a VFD. The gear ratio of the planetary stage is 1:3 (speed up) consisted of a 40
tooth sun gear, three 20 tooth planetary gears and a 80 tooth ring gear. The planet carrier is the input of the
planetary stage, the sun gear is the output while the ring gear is fixed. The overall transmission ratio of the
test rig is approximately 1:1 as an initial 90:32 reduction stage is attached. An accelerometer is mounted on
the planet carrier to measure acceleration in the axial direction focusing towards the investigation of internal
vibration measurements. The vibration signal is finally transmitted to the signal conditioner by the use of a
slip ring. Faults have been seeded in the inner race and the outer races of the planet gear bearings using spark
erosion. needle roller bearings are used, containing 15 rollers of 2 mm diameters and a pitch diameter of 18
mm. The depth of the faults is 0.4 mm while the width is 1.2 mm for the outer race and 1.0 mm for the inner
race respectively. The measurements have been realised for each type of defect (inner and outer race) at a
constant input shaft speed of 6 Hz for three torque loads 30, 50 and 70 Nm. The sampling frequency has been
selected equal to 131,072 Hz, the switching frequency of the VFD was set at 14 kHz, and the control frequency
of the VFD was 24 Hz (giving a nominal 6 Hz shaft speed for the 8-pole motor). The PWM carrier and the
PWM message are equal respectively to 14000 Hz and 24 Hz. Based on the geometry of the bearing and its
speed, the BPFO is equal to 55 Hz and the BPFI is equal to 69 Hz, but only the BPFO case is demonstrated in
this paper.

Applying the Autogram to the signal with outer race damage and with a applied torque of 50 Nm, the band
with the maximum Kurtosis with center frequency of 44 kHz and a bandwidth of 2048 Hz is selected as the
optimal. This is the correct band with the carrier of the outer race damage. However, the impulsive bands of
the carrier of the EMI have also high values of kurtosis, and the resulting CSES shows the peaks at noise level
and bellow the threshold, as shown in Fig. 13.

This is the principal obstacle in detecting bearing damage with EMI noise, as both signatures have a im-
pulsive nature which are represented with high kurtosis. The Fast Kurtogram selects the bands related to EMI
as the ones with the highest kurtosis, as it as been concluded on this signal by the authors in [4, 12]. In this
case, the SES based only on one band with the maximum kurtosis level of the Autogram would provide better
performance.

The IESFOgram and its CIES are presented in Fig. 14, and the peaks of the BPFO are seen to be detect
with clarity, well above the threshold. The case of BPFI not shown here the IESFOgram extracts the peaks of
BPFI, however the CSES version also allows detection of fault.
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Figure 13: (left) Autogram and (right) CSES for the signal under 50 Nm of torque.

Figure 14: (left) IESFOgram and (right) CIES for the signal under 50 Nm of torque.

5 Conclusion

This paper proposes a new method for demodulation on multi-bands of frequencies using the bi-variable
maps based on the Cyclic Spectral Correlation and Coherence. Initially, the IESFOgram related to the damaged
bearing characteristic frequency is calculated in order to extract the spectral frequency bands that have high
information content on the fault. The Normalized Diagnostic Feature as a function of frequency is defined as
the normalized sum of feature values of the IESFOgram. The last step is to perform a multi band integration
with the enhanced bands with high Normalized Diagnostic Feature values, and finally obtaining the Combined
Improved Envelope Spectrum that allows a correct bearing diagnosis.

The methodology shows good performance in detecting the characteristic frequencies when they are present
on the signals, by enhancing the bands with more relevant information on the fault and performing a multi band
integration with higher weigthed values on those bands. The method was compared mainly with the Combined
Squared Envelope Spectrum based on the Autogram, which also showed higher performance than the Fast
Kurtogram on the detection of the bearing characteristic frequencies by also performing a multi band filtering
procedure. When the signals contain a high impulsive signal with the same nature as a bearing damage, such as
electromagnetic interference, the CSES-based on the Autogram shows to keep the peak frequencies of interest
bellow the noise level in case of high impulsive noise spread over several bands. The CIES shows to be able
to extract clearly the fault frequency peaks above the noise level while ignoring the bands dominated by the
impulsive noise. This is shown to be the case because the IESFOgram is targeted at the frequencies of interest,
while the Autogram is blind. Indeed, the main disadvantage of the IESFOgram compared to the Autogram and
the Fast Kurtogram is that it is not a blind method.

The methology was tested and validated on two experimental datasets: the first under variable speed and
load condition, and the second on signals with high electromagnetic interference contamination. The results
show the method can diagnose with confidence bearing damages on vibration signals.
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Abstract 
A Deep Learning protocol is developed for identification of typical faults occurring in rotating machinery. In 
past Support Vector Machines (SVMs), Clustering, Artificial Neural Networks (ANNs) and other algorithms 
have been used for this purpose. However, these algorithms require the raw time-domain data, from the 
sensors on the machine, to be first processed and handcrafted into parameters like Fast Fourier Transform 
(FFT) coefficients, Statistical Moments, etc. before being fed as inputs. ANN with back-propagation is a 
popular algorithm in many domains. It however suffers from the vanishing gradient problem and not 
adequate enough when subjected to raw sensor response as input. Deep Learning or Deep Neural Network is 
understood as a form of neural network with a large number of layers. Convolutional Neural Network (CNN) 
architecture is commonly used in a deep neural network for image recognition. A Deep Learning CNN 
architecture has been developed, employing the analogy of an RGB image, to directly work upon the raw 
time-domain signals obtained from sensors on a rotor-bearing system. The analogous RGB channels are 
vibration data from different sub-systems of the complete rotor-bearing assembly. The Deep Learning 
Network effectively recognizes all kinds of faults that were investigated.  

 
1 Introduction 

Data collection, feature extraction and fault identification are typical steps in fault diagnosis of a 
mechanical system. Conventional approaches in fault diagnosis extract features from time and frequency 
domain of raw signals. Statistical parameters and Fast Fourier Transform coefficients are widely used 
features. Machine learning techniques are used with these handcrafted features to identify faults. Fuzzy 
Logic, Wavelets, Clustering, Decision Trees, Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN) are some of the techniques used in past for fault identifications [1]–[7]. Statistical moments 
of raw time domain signal and its derivatives were used as features of ANN by Vyas [7] for fault diagnosis 
of rotor-bearing system. Efforts to automate the feature extraction using deep learning techniques are being 
made in recent studies [8]. Janssensa [9] used Discrete Fourier Transform coefficients as input to 
Convolutional Neural Network (CNN) for bearing fault classification. Features learnt from CNN network 
combined with time domain features were used by Xie [10] to train SVM model. Guo [11] trained a CNN 
network with input as continuous wavelet transform scalogram of rotor machinery. 

ANNs are not adequate to abstract features from raw time domain data due to large dimension of the 
data and vanishing gradients. The method proposed in this study, directly works upon raw time domain data 
eliminating the pre-requisite of extracting features.  

Deep Neural Network, like CNN is capable of learning abstract features from large and multi-
dimensional data like images and audio signals. CNN preserves the topology of the input and has lesser 
number of learning parameters than a neural network of the same depth, which also makes learning faster. 
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2 Methodology and Training Data 
CNN is chosen as primary model in this study. As a multi sensor model is necessary to identify faults in 

large systems, a Multi-channel Convolution Neural Network (McCNN) is incorporated in the proposed 
model. 

 
2.1 Network Architecture 

Input layer, Convolution layer, Pooling layer and Fully Connected layer form the building blocks of a 
CNN. The architecture is described in Figure 2.1. The input layer is a multi-dimensional array like an RGB 
image. Convolution is the dot product of a Kernel with a part of input or previous layer. The topology of a 
Kernel is smaller than previous layer. Kernels are weight parameters of CNN and they traverse over the input 
space and generate a feature map. A Kernel of size m x n after convoluting over input of size M x N will 
result into feature map of size (M-m+1) x (N-n+1). Number of Kernels and Size of Kernel are the 
hyperparameters for particular convolutional layer. The Feature Map is then activated by an Activation 
Layer. ReLU Activation Function is used in CNN as it reduces vanishing gradients. The Feature Map is 
sometimes padded with zeroes to control the topology of further feature maps. Batch Normalization Layer is 
added between Convolution and ReLU Activation Layer. It normalizes the feature map after Convolution 
layer, firstly by subtracting the mini-batch mean from each of its inputs and then dividing by their standard 
deviation for each channel; and secondly by scaling the new obtained featured map by γ and then shifting by 
β, where γ and β are learnable parameters. Batch Normalization accelerates deep network training [12]. 
Pooling layer summarizes the response over a neighbourhood. It reduces the output size and makes features 
invariant to small input noise. Max Pooling, Average Pooling are widely used pooling operations. The size of 
the region is the hyperparameter. Finally, softmax function is used for fault classification. 
 

 
Figure 2.1:  CNN Architecture: Input matrix is made with responses from three sub-systems corresponding 

to three channels with two sensors response (horizontal & vertical) in each channel. 
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2.2 Experiment Setup & Training Data 
Experiments were performed by Jasdeep Singh [13] on a rotor test rig (Machine Fault Simulator Figure 

2.2), which consists of a shaft supported in two roller bearings and driven by a DC motor. A flexible 
coupling is used to connect rotor shaft to that of motor. At one end of the shaft there is a sheave, which is 
connected to a reciprocating mechanism through a belt drive and a gearbox. Two discs mounted on the shaft.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: The rotor system (Machine fault Simulator) and sensor locations 
 
The set-up comprises subsystems - (i) Gearbox (ii) Bearing and (iii) Shaft-Rotor Disc. Accelerometers 

were used at (i), (ii) and Proximity pickups at (iii). Each location has two sensors oriented mutually 
perpendicular to each other (horizontal & vertical). Data was collected at 2560 samples/sec. For an 
experiment data is collected for duration of 1.6 sec i.e. 4096 sample points in time domain. Variety of faults 
(Table 2.1) were introduced at a constant operating frequency of 40 Hz. Typical vibrations sensed for one of 
the faults introduced in the rotor are shown in Figure 2.3. Twenty such signals were collected for each sensor 
for the fault introduced.  

 
# Faults (Set A) 

1 No Fault with Attached Belt 
2 Loose Belt 
3 Tight Belt 
4 Missing Tooth 
5 Loose Gear 
6 Unbalance 6.82 gram 
7 Eccentric Rotor 
8 Cocked Rotor 
9 Bearing Outer Race Defect 
10 Bearing Inner Race Defect 
11 Ball Spin Fault 
12 Combined Bearing Fault 

 Faults (Set B) 
Combined with missing tooth 

13 Unbalance 6.82 gram 
14 Eccentric Rotor 
15 Cocked Rotor 
16 Bearing Outer Race Defect 
17 Bearing Inner Race Defect 
18 Ball Spin Fault 
19 Combined Bearing Fault 
20 Loose Gear 

 
 

Table 2.1: Type of faults in dataset (Set A). Extra combined faults and (Set A) form (Set B) 

Twelve faults (Set A) are described in Table 2.1. Set B is a combination of Set A and combined faults. 
Set A has 240 and Set B has 400 experimental responses. The datasets are divided between - training (60%), 
validation (20%) and test (20%) datasets. 

Shaft 
Sensor 
Locations 
(Horizontal
, Vertical) 

Gear 
Sensor 
Locations 

Bearing 
Sensor 
Locations 
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Figure 2.3: Typical sensor data 

2.3 Network Topology 
As described earlier (Figure 2.1), the response of all six sensors is mapped between normalised values 

of 0 and 1, on a McCNN, a multi-channel input similar to an RGB image. The two (horizontal and vertical) 
sensors of a sub-system comprise a channel and three such sub-systems complete the multi-channel input to 
the CNN. The topology of input, therefore is, 4096x2x3. Each channel is analogous to an RGB channel of a 
colored image. Each channel is padded with zero columns on both sides as shown in Figure 2.1. This input is 
passed down to further layers as listed in Table 2.2.  

 
# Layer Kernel Size/ Pooling Region # of Kernels Padding 
1 Input - - - 
2 Convolution 1  40 × 2 8 Yes 
3 Batch Normalization + ReLU - - - 
4 Pooling 1 3 × 1 - - 
5 Convolution 2 20 × 2 16 Yes 
6 Batch Normalization + ReLU - - - 
7 Pooling 2 4 × 1 - - 
8 Convolution 3 4 × 2 32 No 
9 Batch Normalization + ReLU -  - 
10 Pooling 3 3 × 1 - - 
11 Convolution 4 4 × 2 32 No 
12
13 

Batch Normalization + ReLU - - - 
Pooling 4 2 × 1 - - 

14 Convolution 5 2 × 2 32 No 
15 Batch Normalization + ReLU - - - 
16 Pooling 5 2 × 1 - - 
17 Convolution 6 2 × 1 32 No 
18 Batch Normalization + ReLU - - - 
19 Pooling 6 2 × 1 - - 
20 Fully Connected 12 Neurons - - 

Table 2.2: CNN architecture and hyperparameters 
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Network training is performed with stochastic gradient descent algorithm with momentum. The network 
was limited to a maximum of 800 iterations. Learning rate was 0.01. Mini-batch size was kept as 64 for Set 
A training and 128 for Set B. Both, max and average pooling were used in training for comparison.  

 
3 Training and Validation 

Training of McCNN is performed, both, on Set A and Set B. The architecture classified all training, 
validation and test dataset successfully for both Set A (individual faults) and Set B (combined faults). The 
accuracy increases as we increase number of layers hence depth of network, (Table 3.1). Variation of 
accuracy with pooling function is also studied.  Average Pooling network required less number of layers in 
comparison to Max Pooling to achieve zero error. 

 

Network Depth  Set A (Test Accuracy %)  Set B (Test Accuracy %) 
 (Max. Pooling) (Avg. Pooling)  (Max. Pooling) (Avg. Pooling) 

Layer [1 to   4] + 20  0.00 39.00  5.00 33.00 
Layer [1 to   7] + 20  50.00 29.00  23.00 16.00 
Layer [1 to 10] + 20  81.00 95.00  97.00 92.00 
Layer [1 to 13] + 20  95.00 100.00  98.00 98.00 
Layer [1 to 16] + 20  100.00 100.00  98.00 100.00 
Layer [1 to 19] + 20  - -  100.00 100.00 

Table 3.1: Accuracy variation with depth and pooling function 
 
A comparison between traditional Neural Network and McCNN is also made to study the weights 

updation with training iteration. From Figure 3.1 it can be seen that traditional Neural Network shows the 
effect of vanishing gradient, while in McCNN the weight updation of layers distant from output layer are of 
nearly same order compare to proximate layers. Complex and large systems can be diagnosed in McCNN 
with significant depth without facing vanishing gradient. 

 
 
 
 
 
 
 
 
 
 
 
 

 
(a) traditional ANN       (b) McCNN 

 
Figure 3.1: Weight updation  

 
It is seen that better results are obtained when training is carried out with data from all sub-systems (row 

number 4 in Table 3.2) in comparison to those obtained through training by isolated data from an individual 
sub-system (row numbers 1-3 in Table 3.2). This observation is visible for Set B, which contains more and 
combined faults, which increase the complexity of task, and underlines the fact that for fairly large and 
complex system we need sensor data from multiple critical locations. 
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Network Input Input Layer 
Topology 

 % Error (Set A)  % Error (Set B) 
 Training Validation Test  Training Validation Test 

Bearing 4096 × 2 × 1  0.00 0.00 0.00  0.00 7.50 3.75 
Gear 4096 × 2 × 1  0.00 0.00 0.00  0.00 1.25 1.25 
Shaft 4096 × 2 × 1  0.00 0.00 0.00  0.00 0.00 1.25 

Bearing + Gear + Shaft 4096 × 2 × 3  0.00 0.00 0.00  0.00 0.00 0.00 

Table 3.2: Training with input from individual Sub-Systems and all sub-systems combined 
 
Figure 3.2, shows features obtained after each ReLU activation layer, after they are transformed to two 

dimensions using t-SNE dimensionality reduction algorithm. The fault classification process can be seen to 
be consolidated at each ReLU layer where fault data points are getting clustered more compactly and distant 
from other faults. The distinction and separation between faults increases as we move toward output layer. 

 

 
Figure 3.2: Feature map after each ReLU layer, plotted t-SNE (Set A). 

 
 

4 Conclusion 
The present study introduces an approach for fault identification of a rotor-bearing system using 

Convolutional Neural Network. The need to extract features like statistical parameter or to convert time 
domain data to FFT domain for training is eliminated in present study. Raw time domain sensor response is 
used without any pre-processing or feature engineering for constructing input layer. A generic method of 
fault diagnosis for big complex systems with distant and multiple subsystems is presented, which merges 
sensor responses from demanding subsystems into distinct channels of input matrix to form the input layer of 
McCNN architecture. Patterns in raw time domain data, difficult to be comprehended manually, are 
perceived by the McCNN network. 
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Abstract
Condition monitoring of gear-based mechanical systems undergoing non-stationary operation conditions is
in general very challenging. In particular, this issue is remarkable as regards wind turbine technology because
most of the modern wind turbines are geared and gearbox damages account for at least the 20% of unavailability
time. For this reason, wind turbines are often equipped with condition monitoring systems (CMS), processing
vibration measurements collected at meaningful subcomponents of the gearbox. In this work, a novel approach
for the diagnosis of gearbox damages is proposed: the turning point is that vibration measurements are collected
at the tower, instead that at the gearbox and can be performed also for machine not provided with specific CMS.
This implies that measurement campaigns are quite easily performed and repeatable, also for wind turbine
practitioners, and that there is no impact on wind turbine operation and power production. A test case study
is discussed: it deals with a wind farm owned by Renvico, featuring 6 wind turbine with 2 MW of rated
power each. The vibration measurements at two wind turbines suspected to be damaged and at reference
wind turbines are processed through a multivariate Novelty Detection algorithm in the feature space. The
application of this algorithm is justified by univariate statistical tests on the time-domain features selected and
by a visual inspection of the dataset via Principal Component Analysis. Finally, the novelty indices based on
such time-domain features, computed from the accelerometric signals acquired inside the turbine tower, prove
to be suitable to highlight a damaged condition in the wind-turbine gearbox, which can be then successfully
monitored.

1 Introduction

The diagnosis of gears and bearings faults of gearbox systems [1] is a very important topic, especially if the
gear-based mechanical system of interest undergoes non-stationary operation conditions.

The technology of most of the modern wind turbines is based on the transformation of the slow rotor
rotational speed (order of 10 revolutions per minute) into the fast generator rotational speed through a gearbox.
It is estimated [2] that the unavailability time of a large wind turbine operating in an industrial wind farm is of
the order of the 3% and at least the 20% of this quantity is due to gearbox damages. For this reason, therefore,
the improvement in gearbox condition monitoring is a crucial step for the target of 100% availability of wind
turbines. Therefore, commonly, megawatt-scale wind turbines are equipped with condition monitoring systems,
elaborating the vibration measurements collected at meaningful sub-components of the gearbox.

Nevertheless, in the wind energy practitioners community, gearbox vibration data are often under-exploited
because of the complexity of the analysis techniques that are required in order to interpret them. Therefore,
often it happens that oil particle counting and operation data analysis (especially temperatures, as in [3]) are
employed as condition monitoring techniques, despite they provide a late stage fault diagnosis, with respect to
vibration analysis.

Therefore, two can be important direction targets as regards wind turbine gearbox condition monitoring
through vibration analysis: on one hand, the precision of the diagnosis and on the other hand the simplicity of
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the methods. As regards the former aspect, there are several recent studies. In [4], data mining algorithms and
statistical methods are applied to analyze the jerk data obtained from monitoring the gearbox of a wind turbine:
the failed stages of the gearbox are identified in time-domain analysis and frequency-domain analysis. In [5],
the proposed techniques are based on three models (signal correlation, extreme vibration, and RMS intensity)
and have been validated with a time-domain data-driven approach using condition monitoring data of wind
turbines in operation. The results of that study support that monitoring RMS and extreme values serves as a
leading indicator for early detection. In [6], the focus is on separating the bearing fault signals from masking
signals coming from drivetrain elements like gears or shafts. The separation is based on the assumption that
signal components of gears or shafts are deterministic and appear as clear peaks in the frequency spectrum,
whereas bearing signals are stochastic due to random jitter on their fundamental period and can be classified
as cyclo-stationary [7]. In [8], order analysis is individuated as a useful technique for condition monitoring
the planetary stage of wind turbine gearbox. The approach takes advantage of angular resampling to achieve
cyclo-stationary vibration signals and lessen the effects due to speed changes. In [9], the objective is condition
monitoring of the planetary stage of wind turbine gearboxes: the proposed technique is resampling vibration
measurements from time to angular domain, identification of the expected spectral signature for proper residual
signal calculation and filtering of any frequency component not related to the planetary stage.

On the grounds of this brief literature survey, it arises that the techniques for the analysis of cyclo-stationary
signals are the most employed for an accurate condition monitoring. The type and the quality of data that are
requested for this kind of analysis confines the subject mainly to the scientific community and at present dis-
courages the collaboration between industry and academia. Actually, the commercial condition monitoring
systems, that are mostly adopted in most operating wind turbines exploited at the industrial level, record vibra-
tion measurements only when some trigger events occur and, most of all, don’t stock the raw data (commonly,
Fourier transforms and-or simple statistical indicators are stocked).

On these grounds, there is a growing demand of vibration-based gearbox condition monitoring techniques
that could be easily repeatable, without impacting on the wind turbines operation (i.e. without intruding in
the gearbox), and whose interpretation could be sufficiently simple and powerful. One remarkable study by
this point of view is [10], where sound and vibration measurements collected at the wind turbine towers are
employed for condition monitoring of generators. Tower vibration signals are analyzed using Empirical Mode
Decomposition (EMD) and the outcomes are correlated with the vibration signals acquired directly from the
generator bearings. It is shown that the generator bearing fault signatures are present in the vibrations from the
tower.

This study is devoted to the test case of two multi-megawatt wind turbines sited in Italy, owned by Renvico
(a company managing around 340 MW of wind turbines in Italy and France, www.renvicoenergy.com). The
wind turbines are not equipped with gearbox condition monitoring systems and they have been diagnosed of
gearbox damages (of different severity) through the analysis of oil particle counting. Before the gearboxes
replacement intervention, a measurement campaign has been conducted by the University of Perugia. The
idea is measuring vibrations at the tower: the measurements are collected on the target damaged wind turbines
and on one (or more) reference undamaged wind turbines. Subsequently, the data are processed through a
multivariate Novelty Detection algorithm in the feature space. The application of this algorithm is supported
by statistical analysis on the time-domain features selected. Finally, the novelty indexes based on such time-
domain features prove to be suitable to diagnose a damaged condition. It should be noticed that the obtained
results allow distinguishing between the two target wind turbines and the corresponding different severity of
the gearbox damages.

The manuscript is organized as follows: in Section 2, the test case wind farm, the measurement techniques
and equipment and the obtained data sets are described. Section 3 is devoted to the data analysis, feature
extraction and results discussion. Finally, in Section 4 some concluding remarks and further directions of this
study are indicated.

2 The on-site measurements and the data sets

The wind farm is composed of six multi-megawatt wind turbines and it is sited in southern Italy. The layout
of the wind farm is reported in Figure 1, where the damaged wind turbines are indicated in red. The lowest
inter-turbine distance on site is of the order of 7 rotor diameters.
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Figure 1: The layout of the wind farm. In red, the damages wind turbines (WTG03 and WTG06) are indicated.

It should be noticed that the damages to WTG03 and WTG06 have different level of severity: actually, the
damage at WTG06 was detected through oil particle counting some days before the measurement campaign,
while the damage at WTG03 can be considered at incipient stage.

The measurements are conducted as follows: accelerometers are mounted inside the tower of the wind
turbine. They measure the longitudinal (x-axis) and transversal (y-axis) vibrations, as displayed in Figure 2.
An overall set of four accelerometers (respectively two on the superior level 7 m above ground and two at the
inferior level 2 m above ground) and a microphone (on the inferior level) were used for the acquisition. Each
acquisition therefore consists of 4 channels sampled at 12.8 kHz for 2 minutes.

Figure 2: Definition of the reference frame for the longitudinal and the transversal directions.

Operational data have been provided by the wind turbine manufacturer in real time during the measurement
campaign, with a sampling time of the order of the second. These have been used to assess the similarity of the
wind and operation conditions at different wind turbines at the same time.

The vibration time series have been organized as indicated in Tables 1 and 2. The WTG01 time series are
not labelled with more details (as for example the recording time) because they can be interchanged and the
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results of the following analysis don’t sensibly change.

TS number Wind turbine Wind turbine status Use
1 WTG01 healthy reference - calibration
2 WTG01 healthy reference - calibration
3 WTG01 healthy validation
4 WTG03 damaged validation

Table 1: The data set for WTG03 damage detection

TS number Wind turbine Wind turbine status Use
1 WTG01 healthy reference - calibration
2 WTG01 healthy reference - calibration
3 WTG01 healthy validation
4̄ WTG06 damaged validation

Table 2: The data set for WTG06 damage detection

The information regarding the state of health of the wind turbine must be extracted from these data. In
order to highlight it, some features can be extracted from the raw data set. Obviously, the choice of these
characteristic parameters is strongly affecting the ability to perform a damage detection, so that they should be
selected wisely. A simple choice is to use common time-domain statistics such as root mean square, skewness,
kurtosis, peak value and crest factor (peak/RMS). These are usually quite sensitive to the operational and
environmental conditions and are very fast to compute [11]. To ensure the statistical significance of the results,
many measurement points are necessary. These features will be then extracted on short, independent (no
overlap) chunks of the original signals. In particular, each acquisition is divided in 100 sub-parts on which
the five features are computed. The considered data sets X results then to be a n ·d matrix, where n = 20 is the
number of channel and feature combinations, while d = 400 is the number of samples from the 4 acquisitions
of Tables 1 and 2 placed one after the other.

3 Analysis and results

The results about the feature extraction are reported in Figures 3 and 4. The samples 0-200 are referred to
the training data set for the wind turbine WTG01, the samples 201-300 are referred to the validation data set for
the wind turbine WTG01 and, finally, the samples 301-400 are referred to the validation data set for the wind
turbine WTG03 (WTG06, respectively). In the Figures, the training - calibration data set is separated from the
validation data set by a black line. The validation data set for the damaged wind turbine is separated from the
rest of the data sets through a red line.
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Figure 3: The extracted features for the data sets in Table 1.
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Figure 4: The extracted features for the data sets in Table 2.

A statistical approach is used in this paper to test if some diagnostic information can be obtained from the
data, basically assessing the goodness of the selected features. The study starts with a univariate Analysis Of
Variance (ANOVA), able to infer from the data the hypothesis that no statistical difference is detected among
the groups, meaning that all the groups come from the same distribution.

The ANOVA is a statistical tool to test the omnibus (variance based) null hypothesis H0: all the considered
groups populations come from the same distribution, meaning that no significant difference is detectable. This
hypothesis will be accepted or rejected according to a statistical summary F̂ which, under the assumptions of
independence, normality and homoscedasticity of the original data, follows a Fisher distribution:

F̂ =

σ2
bg

G−1
σ2

wg
N−G

' F(G−1,N−G), (1)

where

σ2
bg =

G

∑
j=1

n j

N
(ȳ−µ j)

2 , (2)
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σ2
wg =

1
N

G

∑
j=1

n j

∑
i=1

(ȳi j−µ j)
2 , (3)

with G being the number of groups of size n j, N being the global number of samples with overall average ȳ,
σ2

bg being the variance between the groups, σ2
wg being the variance within the groups (basically the average of

the variance computed in each group) [12, 13]. The null hypothesis H0 will be accepted with a confidence level
1−α if the summary F̂ is less extreme than a critical value Fα(G− 1,N−G). A corresponding p-value can
also be computed: it coincides with the probability of the summary to be more extreme than the observed F̂ ,
assuming H0 to be true. If this value is less than α (typically, 5%), H0 is rejected. The concepts of critical value
and p-value are summarized in Figure 5.

Figure 5: F(G−1,N−G) distribution, with highlighted the 5% critical value and the concept of p-value.

In this analysis, the data sets are divided in 2 groups: the healthy one contains the first 300 samples (time
series 1 to 3), while the last 100 samples, coming from the damaged and turbines WTG03 and WTG06 (time
series 4 and 4̄), are labelled as damaged. The assumption of normality can be considered verified with enough
confidence. The same does not hold for the homoscedasticity (equal variance in the different groups), but the
ANOVA is commonly considered robust to such violations, so that the trustworthiness of the results will not
be affected. It is relevant to point out that in this case, which uses 2 groups only, the ANOVA reduces to a
Studentâs t-test. Furthermore, the ANOVA is a univariate technique, so it will be repeated per each channel and
feature combination (20 times). The results are reported in Tables 3 and 4.

Feature / Channel Xinf Xsup Yinf Ysup
RMS < 10−32 < 10−32 9 ·10−13 < 10−32

Skewness < 10−8 0.4 0.4 < 10−32

Kurtosis < 10−12 0.6 < 10−12 < 10−32

Crest 0.005 0.8 < 10−19 < 10−22

Peak < 10−32 < 10−32 0.01 < 10−32

Table 3: ANOVA p-values for the data sets in Table 1. The red cells are used to highlight the acceptance of H0
(p-value> 5%), which implies a more difficult damage detection.

Feature / Channel Xinf Xsup Yinf Ysup
RMS < 10−32 < 10−32 < 10−32 < 10−32

Skewness < 10−13 0.2 < 10−32 < 10−32

Kurtosis < 10−32 < 10−32 < 10−32 0.01
Crest 0.001 < 10−32 < 10−32 0.6
Peak < 10−32 < 10−32 < 10−32 < 10−32

Table 4: ANOVA p-values for the data sets in Table 2. The red cells are used to highlight the acceptance of H0
(p-value> 5%), which implies a more difficult damage detection.
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The Principal Component Analysis (PCA) is a technique widely used in multivariate statistics, in partic-
ular for the purpose of allowing the visualization of multi-dimensional data sets using projections on the first
2 or 3 principal components. This dimension reduction is not really advisable for diagnostic purposes, as the
condition-information may, in principle, be hidden in the neglected principal components, making the detection
more challenging. In any case, it is used in this analysis as a qualitative visualization of the data set under a
different point of view, resulting from the transform produced by the technique. The PCA uses an orthogonal
space transform to convert a set of correlated quantities into the uncorrelated variables called principal compo-
nents. This transform is basically a rotation of the space in such a way that the first principal component will
explain the largest possible variance, while each succeeding component will show the highest possible variance
under the constraint of orthogonality with the preceding ones. This is usually accomplished by eigenvalue
decomposition of the data covariance matrix, often after mean centering.

The PCA transform has been applied to the reference data set: the statistical features matrix extracted from
the WTG01 time series 1 and 2 of Tables 1 and 2. Subsequently, the validation data sets have been separately
projected to the space generated by the first two principal components of the reference data set. The results are
reported in Figures 6 and 7, from which it arises that the data set of WTG06 is more easily distinguishable with
respect to the calibration data set than the data set of WTG03. As regards Figure 7, the indication is that the
visual inspection based on the first two principal components can be sufficient for detecting an anomaly.
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WTG01 (TS 1−2)
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Figure 6: Projection of the data from Figure 3 to the space generated by the two principal components of the
calibration data set (first 200 samples in Figure 3)
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Figure 7: Projection of the data from Figure 4 to the space generated by the two principal components of the
calibration data set (first 200 samples in Figure 4)

In statistics, the detection of anomalies can be performed pointwise, looking for the degree of discordance
of each sample in a data set. A discordant measure is commonly defined outlier, when, being inconsistent with
the others, is believed to be generated by an alternate mechanism. The judgment on discordance will depend on
a measure of distance from the reference distribution, usually called Novelty Index (NI) on which a threshold
can be defined [14]. The Mahalanobis distance is the optimal candidate for evaluating discordance in a multi-
dimensional space, because it is non-dimensional and scale-invariant, and takes into account the correlations
of the data set. The Mahalanobis distance between one measurement y (possibly multi-dimensional) and the x
distribution, whose covariance matrix is S, is given by

dM(y) =
√
(y− x̄)S−1 (y− x̄). (4)

In the following, the reference x distribution is selected as the statistical features matrix extracted from the
WTG01 time series 1 and 2 of Tables 1 and 2. The target y is selected as the statistical features matrix extracted
from respectively time series 3 (WTG01), 4 (WTG03), 4̄ (WTG06).
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Figure 8: The Mahalanobis distance µ with respect to the calibration WTG01 data set: WTG01, WTG03,
WTG06.
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From Figure 8, it is possible to clearly distinguish between wind turbine WTG01 and wind turbines WTG03
and especially WTG06. The Mahalanobis distance therefore qualifies to be particularly responsive for novelty
detection issues.

4 Conclusions

A novel approach for damage detection of a wind turbine gearbox was proposed in this study. One main
novelty is that the accelerometric acquisitions were performed inside the tower of the wind turbines of interest
because, despite the distance with respect to the gearbox, it is easily accessible by the turbine practitioners
without shutting down the wind turbine. This measurement technique is a distinctive part of the outcome of the
present work. One reference healthy wind turbine and two wind turbinse affected by different damage severity
have been selected as test cases for the measurement campaigns proposed in the present study.

Subsequently, a Novelty detection procedure was set up, based on the calculation and the elaboration of
common time domain features like RMS, Skewness, Kurtosis, Crest factor and Peak value. The analysis started
with an ANOVA and a PCA, two fundamental tools in univariate and multivariate statistics. Both techniques
proved that the damages can be detected. Finally, the Mahalanobis Novelty detection showed optimal results
in detecting the possible damage, given the large margin which separates the supposedly damaged wind tur-
bines from the healthy wind turbine. This algorithm also proved to be a good unsupervised damage detection
technique considering the quickness, the simplicity and the full independence from human interaction, which
makes it suitable for real time implementation. Overall, the whole gearbox vibration monitoring methodology
can be considered validated by the test. The simple, non-invasive measurement system composed of just 2
biaxial accelerometers placed in accessible locations at 2 levels inside the tower of the wind turbine, together
with the Novelty detection algorithm applied on the common time-domain features extracted, demonstrated
indeed to provide a robust monitoring system, which can be easily integrated in existing installations.

This system can, in principle, enable to monitor also the damage evolution in time, establishing the foun-
dations for further works on prognostics: this is supported by the responsiveness of the proposed methods
(especially the Mahalanobis distance analysis) with respect to the severity of the damages (Figure 8). The
straightforward further direction of the present work is therefore the analysis of the evolution in time of the
same test case.
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Abstract 
 

Gears and bearings are more and more used in every industrial area mainly due to their strong reliability. 

Nevertheless as every mechanical transmission system, failures appear during time life. It induces critical 

damage, time cost for maintenance services to repair the fault potentially on duty. A wide part of work in the 

scientific community already provides a large quantity of features to follow health status of these systems 

(e.g., RMS, kurtosis, crest factor, FM0) in order to detect the fault as soon as possible.  

Since few years, methods developed in signal post-processing are coupled with Machine Learning (ML). 

ML allows ability to detect novelty or fault based on a trained algorithm. According to the literature [1], to 

identify the type of damage, a supervised algorithm is needed. Consequently an accurate diagnosis implies 

labelled data which are often difficult to obtain practically. 

The aim of this paper is to provide keys, based on our knowledge about features in Structural Health 

Monitoring (SHM), to get higher information level in classification by adding a qualitative analysis (type of 

damage) without label or information about the type of fault.  

Work carries on a measurement database. The assumption is made about two classes “healthy” / “faulty” 

using a supervised algorithm. The contribution of our work brings a new step in the default analysis by 

adding a probability for a defect case to be identified. Indeed, by combining some sensitive features selected 

for their relevance to describe a type of fault, a probability to have this particular default can be given. This 

classification is tested against three fault classes: bearing, gear generalized, gear localized.  

Results show that a probability for having bearing fault can be identified using this method contrary to 

the gear generalized and localized fault which are more complex to characterize. This new step enables to 

help maintenance services to focus more efficiently on the incriminated faulty part of the system, inducing a 

reduction of time to repair for maintenance services, a shorter out of order time leading to a significant 

productivity gain.  
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1 Introduction 

Gears are used in a huge quantity of mechanical systems. As a consequence, monitoring their possible 

faults the most accurately possible is a major issue in the field of Structural Health Monitoring (SHM) as 

they can provoke critical damages.  

With the increasing use of ML techniques, different algorithms have emerged to deal with this problem. 

Support Vector Machine, Neural Network, Random Forest are examples of ML methods currently used to 

classify faulty and healthy sample. 

 

Looking at industrial maintenance services requirements, the needs in terms of monitoring may be 

resumed as: 

1- Find efficient condition indicators (CI) to monitor their systems, 

2- Use ML algorithms to allow a continuous monitoring and an high efficiency of faulty detection, 

3- Have a minimal cost and time to repair the faulty equipment. 

 

The first and the second point are already addressed in literature. This paper proposes to industrials a 

method to complete their process by the third part: a qualitative analysis of fault, leading to a reduction of 

cost and time for maintenance services. 

 

2 Presentation of the study case 

PHM Society proposes a challenge for monitoring and fault detection. They provide a measurement 

database (measured on a test bench). Students, researchers and companies can participate. Each one proposes 

their own method to classify the given database. This work is based on the database provided for the 2009 

challenge. Figure 1 presents the test bench used to build this measurement database. 

 

   
Figure 1: Presentation of the test bench used for measurements coming from PHM Society 2009 Challenge 

 

This test bench is built with two gear stages mounted on three shafts with six bearings. Two gear 

geometries are used: one using spur gears, the other one using helical gears.  

 

Table 1 presents the gear parameters for both configurations. 

 

Shaft Gear Spur gear Helical gear 

Input shaft input gear 32 16 

Idler shaft 1st idler gear 96 48 

Idler shaft 2nd idler gear 48 24 

Output shaft output gear 80 40 

Table 1 : Gear description for the two geometries: spur and helical 
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Whatever the gear geometry, the gear ratio between each gear stage is the same, leading to keep the same 

global gear ratio. Thus, from input to output the gear reduction ratio is 5 to 1 reduction: 

 

            
  

  
 
  

  
 
 

 
        

 

The instrumentation is composed of a limited number of sensors with two accelerometers mounted on the 

housing and one tachometer on the input shaft (see Figure 1). The tachometer delivers 10 tops by rotation. 

The sampling frequency is the same for the three sensors and fixed at 66666.67 Hz. Each sample of the 

database is composed of three raw data columns of one second length. 

 

Several configurations are listed such as: 

- 14 gear cases:  

o 8 configurations on spur gear [7 faulty and 1 healthy], 

o 6 configurations on helical gear [5 faulty and 1 healthy], 

- 5 rotational speeds [30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz], 

- 2 load cases [high, low].  

 

This leads to 140 different configurations. Each configuration is repeated four times to give at least 

560 measurement inputs. 

 

3 Method 

The methodology developed and exposed here is composed of three main steps: 

- CI computing, 

- Classification using ML, 

- Qualitative analysis using relevant selected features for each chosen default. 

 

3.1 Condition indicators computing 

 

Figure 2 and Figure 3 present the post-processing used to build a matrix with all indicators. 

 

 
Figure 2 : Signal post-processing used to access to the different needed types of signals 
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Figure 3 : List of indicators calculated on each signal 

 

From raw signals, based on literature on bearings and gearboxes monitoring, some CI are extracted. 

Taking into account the difficulty to add a lot of different sensors, most of usual CI used in industry are 

directly computed from accelerometers raw signals (conditioned signal) such as RMS, kurtosis, crest factor. 

Based on [3], some new indicators, using residual or differential signals, requiring a tachometer information 

allow to increase strongly the efficiency of fault detection. 

 

In order to complete this list of CI, some other indicators are computed from the frequency domain, such 

as gear mesh harmonics, shaft rotational frequencies and specifics bearings frequencies.  

All these frequencies are calculated and added in the panel of features using the following equations: 

 

                                         
  

 
      

  
  

            

 

                                         
  

 
      

  
  

            

 

                          
  

    
       

  
  
 

 

               

 

with f the number of revolutions per second, Db the ball diameter, Nb the ball number, Dp the pitch 

diameter and α the contact angle. 
 

 
                                          

 

with fsh(i) the rotational speed frequency of the shaft “i” and nteeth(i) the number of teeth on the gear 

mounted on the shaft “i”. 

 

Considering the two accelerometers, a total of 298 indicators are extracted. 
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3.2 Classification using Machine Learning 

Based on all our indicators, the second step of the methodology consists in the classification of the 

560 signals in two classes: healthy or faulty. Although the labels are not given in the database from the PHM 

Society, in [2], authors give the label of all healthy samples they have classified. Based on this, an approach 

using supervised algorithms is possible for the classification. 

 

A wide range of supervised algorithms exists in the literature. Among them, a classification is proposed 

using four of them implemented within the Scikit-learn Python module [5]:  

- Nearest Neighbors classifier (KNN) [6], 

- Random Forest classifier (RFC) [7], 

- Support Vector classifier (SVC) [8], 

- Multi Layer Perceptron Classifier (MLPC) [9]. 

 

Each algorithm works with a specific method to classify. SVC determines a boundary between the two 

classes using only the data of each class which are close one to the other, the so-called support vectors. KNN 

looks at the same class nearest samples of a particular observation to build the boundary between classes. 

RFC builds decision trees and it combines them together to give its final classification. Finally MLPC relies 

on a trained neural network to decide that class the tested observation belongs to. 

 

The considered input signals for this step are the 560 one second duration signals provided by the PHM 

database. So an observation for the following of the contribution refers to a vector of dimension 298 

gathering all the features computed from one of these 560 signals. These 560 signals are splitted in two 

categories: a train set and a test set. 80 % of the database is used for the train set (448 signals) and 20 % for 

the test set (112 signals). 

 

The efficiency of these algorithms without any optimization is around 90% of good classification. An 

efficient solution to increase the performance of a ML algorithm is to optimize some hyper parameters. Table 

2 presents results before and after optimization on SVC algorithm. 

 

 

SVC 

algorithm 

Before 

optimization 

After 

optimization 

Accuracy 0.893 0.973 

Precision 0.893 0.971 

Recall 1.000 1.000 

Table 2 : Results of Support Vector Classifier before and after hyper parameters optimization 

 

The optimization phase enables to increase significantly the accuracy of the considered algorithm from 

89.3 % to 97.3 %. After an optimization of the hyper parameters on every algorithm, each individual 

algorithm gives interesting results with a percentage of good classification between 90 % and 97.1 %. 

 

Finally a method to increase strongly the performances relies on combining different algorithms with 

different approaches. This method called “ensemble learning” reduces individual weaknesses of each 

algorithm. In the present case, the precision reaches 100 % using ensemble learning on the three best 

algorithms, namely RFC, SVC and MLPC.  
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3.3 Qualitative analysis 

The classification in healthy or faulty cases enables to alarm maintenance service immediately after or 

ideally a short time before the failure. However, no information is given about the type of fault.  

The methodology proposed in this work consists in adding a qualitative information in the classification.  

The work presented here proposes a method to estimate the probability for a faulty observation to 

correspond to one of these three types of faults: 

- Bearing faults, 

- Gear generalized faults, 

- Gear localized faults. 

 

The wide quantity of indicators to monitor bearings and gearboxes given in the first section does not 

describe the same input signals’ features. Consequently they are not equally sensitive to the different types of 

faults [4]. 

Where RMS represents the energy of the signal leading to an accurate indication about the general state 

of the complete system, the peak-peak value is in opposition, very sensitive to any localized phenomenon on 

the signal, enabling to discriminate a localized fault such as crack on tooth or more critical case like a 

missing tooth. A solution based on the physics described by each indicator is investigated to predict the type 

of fault.  

 

3.3.1 Feature selection 

The selection proposed is composed of: 

- 70 indicators for generalized faults: 

o Rms on TSA signal: 

 Rms on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Rms on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Rms on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Absolute mean: 

 Absolute mean on conditioned signal, 

 Absolute mean on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Absolute mean on residual signal, 

 Absolute mean on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Absolute mean on differential signal, 

 Absolute mean on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o MA6: 

 MA6 on differential signal, 

 MA6 on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Gear mesh harmonics: 

 1
st
 gear mesh frequency, harmonics 1 to 5, 

 2
nd

 gear mesh frequency, harmonics 1 to 5. 

- 14 indicators for localized faults: 

o FM0: 

 FM0 on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Peak-peak value on residual signal: 

 Peak-peak value on residual signal, 

 Peak-peak value on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

- 18 indicators for bearing faults: 

o BPFO: 

 BPFO on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o BPFI: 

 BPFI on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o BSF: 
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 BSF on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft.  
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From the 298 indicators, a total of 102 indicators are extracted for this qualitative analysis, they are 

summarized in Table 3. 

 

Type of fault Type of CI 
Number of indicators (for 2 

accelerometers) 

Generalized 

RMS on residual signals 18 

MA6 8 

Absolute mean 24 

Gear mesh harmonics 20 

Localized 

FM0 6 

peak-peak value on residual 

signal 
8 

Bearing 

BPFO 6 

BPFI 6 

BSF 6 

Table 3: List of CI used for the qualitative analysis 

 

3.3.2 Characterization method 

Once feature selection is performed according to their relevance for each of the investigated fault, the 

method to highlight the cases associated with a particular fault relies on the Principal Component Analysis 

(PCA) method [10]. The goal of PCA is to find, in a point cloud, the direction on which the projection of its 

point cloud has a maximum variance. This direction is called the first principal component and the next ones 

are the orthogonal directions of this first one that again explain the maximum variance. In this contribution 

each feature selection for each fault gives a point cloud of high dimension: 

- Dimension 70 for the gear generalized faults, 

- Dimension 14 for the gear localized faults, 

- Dimension 18 for the bearing faults. 

 

Consequently the PCA is used in this case to perform a dimensionality reduction in order to be able to 

represent in a two-dimensional space data which came from these high-dimensional spaces. From this 

representation the observations which represent a particular fault are expected to be significantly far away 

from the healthy and the other default cases. 

 

Therefore once the PCA is performed on each case, the probability density function (PDF) derived from 

the healthy cases is estimated. According to isolines corresponding to specific probability values three 

categories are differentiated: 

- A category with a low probability to have the studied fault type whose data are close to the 

healthy ones after PCA, 

- A category with a medium probability to have this fault which are a little bit further from the 

healthy data, 

- A category with a high probability to have this fault which are far away from the healthy data. 
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4 Results and analysis 

4.1.1 Bearing defaults 

Once the 18 features which should represent well the bearing faults are selected, the PCA is performed 

and Figure 4 is obtained. 

 

 
Figure 4: PCA result with the bearing faults feature selection. Yellow and purple lines represent respectively 

the        and       isolines of the probability density function derived from the healthy data. Healthy 

cases are given by blue dots, cases with a low / medium / high probability to have a bearing faults are given 

by green crosses / orange diamonds / red squares. 

 

It clearly shows a distinct group further than the       probability isoline that gives candidates for 

having bearing fault. Then in between the two probability isolines the observations are classified as possible 

to have bearing fault. Finally data which are lying among the healthy cases are not likely to have bearing 

fault at all. 

 

Consequently the feature selection made beforehand has allowed a qualitative analysis of the data. 

Indeed, thanks to their position compared to the healthy cases some observations can be classified within a 

bearing fault category with a given probability. 

 

4.1.2 Localized and generalized defaults 

Concerning gear localized and generalized faults, the results are more difficult to interpret as it is shown 

in Figure 5 with the PCA result of the localized fault case and in Figure 6 with the generalized fault case. 
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Figure 5: PCA result with the gear localized fault feature selection. The yellow line represents the      

isoline of the probability density function derived from the healthy data. Healthy cases are given by blue dots 

and faulty cases are given by orange crosses.   
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Figure 6: PCA result with the gear generalized fault feature selection. The yellow line represents the      

isoline of the probability density function derived from the healthy data. Healthy cases are given by blue dots 

and faulty cases are given by orange crosses. 

 

In these cases the feature selection has not allowed to distinguish different categories within the fault 

cases. It means that the selected features are not a relevant set enough to predict both gear localized or 

generalized faults. Some work is in progress to find better sets of features in order to be able to reproduce the 

results obtained with the bearing fault identification.  

 

5 Conclusion 

This work presents the full method to diagnose and follow the healthy condition of a rotating equipment: 

from the conditions indicators to the classification. From 298 relevant conditions indicators obtained from 

accelerometer signals, a first supervised classification step enables to decide whether or not a considered 

observation is healthy or faulty using ensemble learning with three combined ML algorithms. To add a 

qualitative analysis of the faulty cases, a new step is performed using principal component analysis on a 

feature subset of the 298 ones. Three different faults are studied, bearing faults and gear localized and 

generalized faults, bringing three different subset of features of dimension 18, 14 and 70, respectively. The 

dimensionality reduction obtained using the principal component analysis allows to represent in a two-

dimensional space, corresponding to the two first principal components, both healthy and faulty cases. From 

this representation a probability density function of the healthy cases is determined and the faulty cases can 

be marked as having a low or high probability to indeed, having this specific fault from their position 

compared to this function. 

Results show that bearing faults can be identified using this methodology with three different categories 

highlighted: low, medium and high probability for having this fault type. However the feature selection made 

for the gear localized and generalized faults have not allowed to distinguish clearly between healthy and 

faulty cases and consequently there is no specific observation which can be identified with these fault types. 

Work is in progress on the feature selection to be able to reproduce the bearing fault results and other 

methods are investigated to perform a better dimensionality reduction such as manifold learning techniques. 

These two ideas could bring the missing part to be able to give a complete qualitative assessment of the fault 

types.  
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Abstract 
Continuous gear grinding is a well-established and widely used process in the industry for large-scale 

production gears. It offers an economic/efficient process for finishing gears, which shapes the micro-geometry 

of the gear tooth flank and improves its surface quality. The resulting quality of ground gears depends on 

several factors, namely the tool performance, the machine stability as well as the correct clamping/positioning 

of the workpiece. The grinding step is very crucial since it has a direct impact on the operating quality of gears 

and in particular on the running noise behaviour of the end product. The potential of online vibration based 

gear grinding monitoring has been explored and demonstrated in the previous work [1] as a means of quality 

control that could lead to the overall reduction of production losses and to the prevention of sending defective 

parts to customers. A number of features which could be used to monitor the grinding processes and to identify 

a specific type of defects have been proposed & experimentally validated to some extent. The types of faults 

include i) high feed rate, ii) high infeed, iii) non-flat workpiece, and iv) eccentric workpiece. However, a 

further investigation on a new test campaign revealed that none of the features developed in [1] was sensitive 

and robust enough to detect eccentric workpieces during the grinding process. It is worth mentioning here that 

an eccentric workpiece fault is unlikely to happen, but it is analogous to a runout on the incoming workpiece 

quality. In this paper, a qualitative model to predict the vibration signature due to eccentric workpieces/runouts 

is developed and discussed. Based on the qualitative understanding, a novel feature to detect eccentric 

workpieces/runouts during gear grinding processes based on vibration signals has been developed. The newly 

developed feature has been validated on real vibration signals captured during the emulation of process 

malfunctions on an industrial gear grinding machine. The experimental results show that the novel feature is 

sensitive and robust for detecting workpiece eccentricities of about 40 microns. It is also shown in this study 

that the feature is insensitive to other types of gear grinding faults, which is important for diagnostics/root-

cause analysis purposes. 

1. Introduction 

A new industrial revolution, known as Industry 4.0, has been taking place worldwide for less than a decade. 

However, Europe is still at the beginning of this era and is currently in an effort to reindustrialise and to 

increase total value added from the manufacturing sector to a targeted 20%. The EU supports industrial change 

through its industrial policy and through research and infrastructure funding in the frames of H2020. The key 

success to Industry 4.0 is digitalisation and data transformation into business insight, namely how to gather, 

filter, analyse, store and retrieve data and extract useful information from it. The information is then 

subsequently shared and used to drive, control and monitor processes. This direction is supported by the 

continuous need for lower production cost, higher quality, more flexibility, better safety and more 

environmentally friendly, as well as the ever-increasing per currency computing power of microprocessors 

and the ever-decreasing cost of sensors and measuring platforms. 

One concrete example of Industry 4.0 applications is the monitoring of manufacturing processes for 

improved efficiency and productivity. The monitoring application in manufacturing can contribute to the 

machine health monitoring, to the tool condition monitoring (e.g. wear, breakage etc), to the workpiece 

inspection and quality (e.g. geometry) as well as to the process monitoring [2]. As a result, the manufacturing 

processes monitoring could from one side reduce the downtime and possible repair costs, and from the other 

side, be used as a product quality control, leading to the overall reduction of production losses and to the 

prevention of sending defective products to customers. Since manufacturing processes and equipment are 



numerous and vastly different, a plethora of sensors and signal processing tools have been proposed in the 

literature being usual adapted to the specific application. Among other approaches, online vibration 

monitoring seemed to be promising and could be used in order to monitor manufacturing processes and 

consequently accurately, on time and online malfunctions and defects can be identified, detected and 

diagnosed. 

In gear manufacturing processes, continuous generating gear grinding is a well-established and commonly 

used process in the industry for large-scale gears production because it offers an economic/efficient process 

for finishing gears. This process is a dominating hard-fine finishing process, especially in the field of 

automotive gears [3]. Due to its high process efficiency, continuous generating gear grinding has replaced 

other grinding processes such as profile grinding in batch production of small- and middle-sized gears. Figure 

1 illustrates a continuous generating gear grinding process that involves three movements, namely 1) Infeed – 

along with the tooth depth, 2) feed – along with the workpiece axis and 3) shift – along with the grinding 

wheel axis. The three movements serve as the process parameters determining the final quality of gears. 

 
Figure 1: Illustration of a continuous generating gear grinding [4] 

Continuous generating gear grinding is characterized by a high stock removal rate and is thus suited for 

high productivity batch processing. One of the main challenges is the determination of the abrasive/grinding 

forces due to their significant influence on the dynamics of the grinding process. During the grinding, there 

are multiple points of contact between the grinding worm and the gear, however, the number of these contacts 

changes continuously. This involves also a continuous change of the excitation forces. Thus, optimizing the 

cutting forces can lead to an increased quality of ground gears and a minimised wear behaviour of the grinding 

worm. Despite its wide industrial application, the knowledge of the generating grinding process is limited. 

The process design is based on experience along with time- and cost-intensive trials and research is based 

mostly on empirical studies. To maintain the high quality of ground gears, a reliable and robust online 

monitoring solution for gear grinding processes is therefore necessary. 

The potential of online vibration based gear grinding monitoring has been explored and demonstrated in 

the previous work [1] as a means of quality control that could lead to the overall reduction of production losses 

and to the prevention of sending defective products to customers. A number of vibration features which could 

be used to monitor the grinding processes and to identify a specific type of defects were proposed & 

experimentally validated to some extent. The types of gear grinding faults include i) high feed rate, ii) high 

infeed, iii) non-flat workpiece, and iv) eccentric workpiece. However, a further investigation on a new test 

campaign revealed that the previously developed features [1] were not sensitive and robust enough to detect 

eccentric workpiece during the grinding process.  

To fill the gap discussed earlier, the main focus of this study is therefore on the development of a novel 

feature that is reliable and robust for detecting eccentric workpieces/runout faults during gear grinding 

processes based on vibration signals measurement on the grinding machines. Some quality parameters of the 

ground gears were also measured that can be used as objective measures for the quality assessment. The 

remainder of the paper is organised as follows. In Section 2, an introduction to eccentric workpiece/runout is 

presented. In Section 3, qualitative modelling to predict the vibration signature of eccentric workpiece/runout 

is presented. In Section 4, the signal processing and feature extraction algorithm is presented. In Section 5, the 



experimental setup and the design of experiments are discussed. In Section 6, the results of the data analysis 

are discussed. Finally, some conclusions and recommendations for future work are summarised in section 7. 

 

2. Eccentric Workpiece/Runout as A Type of Gear Errors 

Gear errors can be classified into individual and composite errors. As shown in Figure 2(a), an individual 

error is, in fact, a three-dimensional (3D) error occurring in the direction of: 

1) Tooth depth referring to the shape of tooth profile and length of tooth depth. 

2) Tooth trace referring to the inclination and unevenness of tooth trace. 

3) Tooth thickness referring to the thickness of tooth and tooth space. 

These three types of individual errors are measured by taking apart a three-dimensional error into a two-

dimensional error. However, these individual errors are correlated and the extent of correlation differs between 

the methods of production and measurement. In general, the correlations of these individual errors are shown 

in Figure 2(b) [5]. 

 

(a) 

 

(b) 

Figure 2: (a) Theoretical three-dimensional deviations, (b) Correlation with an individual deviation of 

ground spur gears [5] 

Runout is one of the gear errors and defined as the amount of off-centre measured between gear and the 

axis. It is a characteristic of gear quality that results in an effective centre distance variation. Figure 2(b) shows 

how the runout deviation matters for gear quality and in fact affects every other characteristic of gear quality, 

such as involute or tooth form, index or pitch variation, lead or tooth alignment variation, etc. Therefore, a 

good practice for the manufacturing or inspection/monitoring of gears requires the control of runout. Runout 

results in accumulated pitch variation, and this causes non-uniform motions, which affect the function of gears 

[5]. Although runout is a radial phenomenon, the resulting accumulated pitch variation affects the tangential 

functionality that causes transmission error. In gear quality metrology, the runout error 𝐹𝑟 is measured by 

indicating the position of a pin or ball inserted in each tooth space around the gear and taking the largest 

difference as schematically shown in Figure 3. 

 

Figure 3: Measurement of runout [5]. 



When a workpiece is not centred on the spindle rotating axis as illustrated in Figure 4 (i.e. eccentric 

workpiece), the grinding of the eccentric workpiece will lead to a variation in the infeed penetration (i.e. the 

direction of tooth depth) once per gear revolution. Eventually, this variation will result in a runout error on the 

workpiece as will be shown later in the gear quality measurement results discussed in Section 6. Note that an 

eccentric workpiece fault is unlikely to happen, but a runout deviation might occur on incoming workpiece 

quality prior to grinding process. 

 

Figure 4: Illustration of an eccentric workpiece fault [1]. 

3. Qualitative Prediction of Grinding Vibration Signature/Feature 

Resulting From Eccentric Workpiece/Runout Faults 

Figure 5 illustrates the kinematic model between a grinding worm and an eccentric workpiece. Without 

loss of generality, let assume that the workpiece is mounted on a rigid shaft, while the grinding wheel is 

mounted on a flexible shaft. Let 𝑟1 be the radius of workpiece and 𝑟2 be the radius of the grinding wheel. For 

a concentric workpiece as illustrated by the dashed circles in the figure, the rotation centre of the workpiece 

𝑂 coincides with the centre of the workpiece geometry and the rotation centre of the grinding wheel is at point 

𝑂̂. However, for an eccentric workpiece, the centre of the geometry 𝑂1 does not coincide with the rotation 

centre 𝑂 and the distance between the point 𝑂1 and 𝑂 determines the eccentricity level 𝜖. As a result of the 

eccentricity on the workpiece, the rotation centre of the grinding worm (which is coinciding with the centre 

of the geometry) shifts from 𝑂̂ to 𝑂2. 

 

Figure 5: Kinematic model of a grinding wheel and an eccentric workpiece (gear). 

With the aid of Figure 5, the distance between the rotation centres of the workpiece and the grinding wheel 𝜌 

can be derived as follows: 

𝜌 = ϵ cos(𝜃) + 𝑅 cos(𝜙) (1) 



With 𝑅 = 𝑟1 + 𝑟2, and the angle 𝜃 denoting the angular displacement of the workpiece which can be 

determined by integrating the angular speed of the workpiece over time 𝜃 = ∫ 𝜔𝑔
𝑡

𝑜
𝑑𝑡. As the angular speed is 

typically constant, thus 𝜃 = 𝜔𝑡. The angle 𝜙 can be inferred by using the sine rule as follows: 

𝜖

sin(𝜙)
=

𝑅

sin(𝜃)
 (2) 

Eq (2) can be further rearranged as follow: 

𝜙 = arcsin(𝛿 sin(𝜔𝑔𝑡)) (3) 

With 𝛿 =
𝜖

𝑅
. In practice, the eccentricity is a lot smaller than the sum of the workpiece and the grinding wheel 

radii, 𝜖 ≪ 𝑅 →  
𝜖

𝑅
= 𝛿 ≈ 0, so the angle 𝜙 is approximately zero, 𝜙 ≈ 0. 

Hence, the distance 𝜌 can now be approximated as follows: 

𝜌 ≈ 𝑅 × [1 + 𝛿 cos(𝜔𝑔𝑡)] (4) 

As theoretically and experimentally shown in [3,6], the amplitude of the gear grinding force in the normal 

direction 𝐹𝑛 is proportional to the grinding depth 𝑎𝑒, the grinding width 𝑏𝐷 and the feed rate 𝑣𝑤. 

Mathematically, the grinding force amplitude 𝐹𝑛 can be expressed as follows: 

𝐹𝑛 = 𝐶 × 𝑎𝑒
𝑓𝑎 × 𝑏𝐷

𝑓𝑏 × 𝑣𝑤
𝑓𝑣 (5) 

where 𝐶, 𝑓𝑎, 𝑓𝑏 and 𝑓𝑣 are constants which should be determined experimentally.  

Eq. (4) shows that the distance 𝜌 changes in time with the amplitude modulated with the same frequency 

as the workpiece angular speed. This suggests that the grinding depth (infeed penetration) 𝑎𝑒 also varies in 

time with the same frequency as the workpiece angular speed. This implies that: 

𝑎𝑒 ∝ 𝜌 ∝ [1 + 𝛿 cos(𝜔𝑔𝑡)] (6) 

Hence, by substituting Eq. (6) to (5) and by assuming the other terms are constant, the gear grinding force 

amplitude can be written as follows: 

𝐹𝑛 ∝ [1 + 𝛿 cos(𝜔𝑔𝑡)] = 𝐶̂  × [1 + 𝛿 cos(𝜔𝑔𝑡)]
𝑓𝑎 (7) 

where 𝐶̂ is a constant. Since 𝛿 ≪ 1, Eq. (7) can thus be approximated by using the Taylor expansion as follows: 

𝐹𝑛 = 𝐶̂  × [1 + 𝑓𝑎 × 𝛿 cos(𝜔𝑔𝑡)] (8) 

It is obvious from Eq. (8) that the normal force amplitude 𝐹𝑛 is modulated by the rotational speed of the 

workpiece 𝜔𝑔 = 2𝜋𝑓𝑔.  

According to [7], the dynamic mesh forces between two meshing gears have spectral content at (at least) 

the harmonics of mesh frequency. By assuming the grinding wheel and the workpiece have similar properties 

as two meshing gears, the dynamic mesh forces between the grinding wheel and workpiece can be expressed 

as follows: 

𝐹𝑚𝑒𝑠ℎ(𝑡) = ∑𝐹𝑛𝑘(𝑡) sin(2𝜋𝑘𝑓𝑚𝑡 + 𝜓𝑘(𝑡))

𝐾

𝑘=1

 (9) 

With 𝑓𝑚 = 𝑧𝑔 × 𝜔𝑔=𝑧𝑤 × 𝜔𝑤 denoting the gear meshing frequency between the grinding wheel and the 

workpiece, the index 𝑘 = 1, 2,… , 𝐾 denoting the harmonic order of the meshing frequency, 𝐹𝑛𝑘(𝑡) denoting 

the normal force amplitude at the harmonic order 𝑘 and 𝜓𝑘(𝑡) is the phase which probably varies in time. By 

substituting Eq. (8) into (9), one can show that the latter can be rewritten as follows: 



𝐹𝑚𝑒𝑠ℎ(𝑡) = ∑𝐴𝑘 [1 + 𝜀𝑘 sin(2𝜋𝑓𝑔)]⏟            
Related to gear eccentricity

× sin(2𝜋𝑘𝑓𝑚𝑡 + 𝜓𝑘(𝑡))

𝐾

𝑘=1

 (10) 

Eq. (10) suggests that workpiece eccentricity/runout errors modulate the gear mesh force amplitude with 

the frequency the same as the workpiece rotational speed. Hence, one can expect that the resulting vibration 

signals will also contain some amplitude modulation with the frequency of the workpiece rotational speed 

around the gear mesh frequency (i.e. the carrier frequency) and possibly the higher order harmonics. 

4. Proposed Signal Processing and Feature Extraction Algorithm 

In practice, depending on the application, gear grinding process is repeated for a given set of gears 

(multiple stroke passes). For such applications, it is important to localise the measured vibration signal 

corresponding to each stroke pass. This way, the physical effects of different passes on the measured vibration 

signal that are not relevant to the fault detections are eliminated.  

During the first pass, the eccentricity will generate a variation of the amount of stock removal around one 

rotation of the gear. But during the following passes, the amount of stock removal will be constant all around 

the gear because the first pass will have corrected the variation of stock with respect to the eccentricity. Hence, 

only the first stroke pass (Pass#1) is relevant for detecting an eccentric workpiece during grinding processes 

Based on the aforementioned reasoning and the qualitative model described in Section 3, the workflow of 

the signal processing and feature extraction for eccentric workpiece/runout fault detection has been established 

as visualized in Figure 6. The details of each step are described in the subsequent paragraphs. 

 

Figure 6: Workflow of the signal processing and features extraction for eccentric workpiece/runout faults 

detection. 

Step 1 

As shown in Figure 6, the ingredients to complete this first step are (i) the vibration signal recorded on a 

continuous gear grinding process which is synchronously acquired together with the worm motor current 

signal and (ii) a template current signal corresponding to Pass#1 that needs to be pre-determined by expert 

supervision. Pass#1 is determined by using the worm motor current signal 𝐼𝑤(𝑡) and the template current 

signal 𝐼𝑡(𝑡). As the current signal of the worm motor is typically noisy, low-pass filtering on this signal is 

recommended. The key process in this step is to align the measured current with template current signals. The 

alignment is attained by first computing the cross-correlation of the two current signals. Later on, the time 

delay is computed by detecting the lag corresponding to the peak in the resulting cross-correlated signal as 

described in [8]. Subsequently, the time delay is used to align the two current signals. Once aligned, the sample 

indices corresponding to Pass#1 can be determined. Finally, the sample indices are used to segment the 

measured vibration signal corresponding to Pass#1. Note that the segmentation of the signal can be further 

refined, for example, by chopping off the segmented signal around the maximum current signal. The workflow 

of this step is schematically illustrated in Figure 7. 

 



 

Figure 7: Block-diagram of the vibration signal segmentation of Pass#1. 

Step 2 

Once the raw vibration signal corresponding to Pass#1 has been segmented following the procedure in 

Step 1, the segmented signal is then fed into a band-pass filter. The central frequency of the band-pass filter is 

at the gear mesh frequency (GMF) between the workpiece and the worm, while the bandwidth of the filter is 

fixed about 4 times of the rotational speed of the workpiece. 

The instantaneous envelope (IE) and the instantaneous frequency (IF) of each band-pass filtered signal are 

estimated using the Hilbert Transformation [9]. For an arbitrary signal 𝑥(𝑡), its Hilbert transform is defined 

as 

𝐻[𝑥(𝑡)] =
1

𝜋
∫
𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 (11) 

And the analytical signal 𝑧(𝑡) of 𝑥(𝑡) is determined as 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)] = 𝐴(𝑡)𝑒𝑗𝜙(𝑡) (12) 

In this case, the IE 𝐴(𝑡) is given by  

𝐴(𝑡) = |𝑧(𝑡)| = √𝑥2(𝑡) + 𝐻2[𝑥(𝑡)] (13) 

And the instantaneous phase 𝜙(𝑡) is calculated as follows 

𝜙(𝑡) = arg[𝑧(𝑡)] = arctan [
𝐻[𝑥(𝑡)]

𝑥(𝑡)
] (14) 

Furthermore, the IF 𝜐(𝑡) can be computed by taking the time derivative of the instantaneous phase 

𝜐(𝑡) =
1

2𝜋

𝑑𝜙(𝑡)

𝑑𝑡
 (15) 



Step 3 

The frequency spectra of the IE and IF are determined by applying the Fourier transform to 𝐴(𝑡) and 𝜐(𝑡) 

as described in the following equations: 

𝑋𝐼𝐸(𝑓) = ℱ[𝐴(𝑡)] = ∫ 𝐴(𝑡)

+∞

−∞

𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (16) 

𝑋𝐼𝐹(𝑓) = ℱ[𝜐(𝑡)] = ∫ 𝜐(𝑡)

+∞

−∞

𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (17) 

With 𝑋𝐼𝐸(𝑓) and 𝑋𝐼𝐹(𝑓) denoting the frequency spectra of the IE and IF respectively. 

Step 4 

The IE and IF features are defined as the average magnitude of their corresponding spectrum within a 

given frequency range ([𝑓𝑙    𝑓𝑢]). Based on this definition, the IE and IF features can be mathematically 

expressed as the following equations: 

IE Feature =
1

𝑓𝑢 − 𝑓𝑙
∫ 𝑋𝐼𝐸

𝑓𝑢

𝑓𝑙

𝑑𝑓 (18) 

 

IF Feature =
1

𝑓𝑢 − 𝑓𝑙
∫ 𝑋𝐼𝐹

𝑓𝑢

𝑓𝑙

𝑑𝑓 (19) 

The frequency range ([𝑓𝑙    𝑓𝑢]) should be selected such that a few harmonics of the workpiece rotational 

speed are included. In this study, 𝑓𝑙 is set at 2 Hz and  𝑓𝑢 is set at 20 Hz. 

5. Experimental Study 

5.1 Experimental Setup 

An industrial grinding machine depicted in Figure 8(a) has been used to emulate different grinding faults, 

namely i) high feed rate, ii) high infeed, iii) non-flat workpiece, and iv) eccentric workpiece. Two triaxial 

accelerometers were mounted on the machine, the first one on the grinding worm holder and the second one 

on the base of the workpiece spindle. From the previous investigation [1], it can be concluded that one 

accelerometer mounted on the grinding worm holder is sufficient for gear grinding monitoring purposes, which 

is the focus of this study. Note that the axes orientations of the triaxial accelerometer in this study are different 

from the ones in the previous study [1]. The accelerometer axes orientations of this study are the following: 

• X-axis: Parallel to the worm axis 

• Y-axis: Direction of Infeed (and small component in direction of Feed) 

• Z-axis: Upward, the direction of Feed (and small component in direction of Infeed) 

 



 

(a) 

 

(b) 

Figure 8: (a) Experimental setup of the grinding machine, (b) Emulation of an eccentric workpiece. 

 

5.2 Design of Experiment 

In this study, three types of gear grinding faults are considered, namely i) high feed rate, ii) high infeed 

and iii) eccentric workpiece. Moreover, two severity levels of each fault type are considered as summarised 

in Table 1. The eccentric workpiece is emulated by mounting the clamping arbour eccentrically as shown by 

Figure 8(b). To seed the eccentric fault, the clamping arbor was mounted with an eccentricity. This can be 

done by playing with 3 centring bolts at the base of the clamping arbor. The actual eccentricity was checked 

using a dial indicator as shown in the photograph. 

 

Test Classification Settings 

Baseline Grinding with the nominal (optimised) parameters 

Feed 1 The feed rate is 75% higher than the nominal feed rate 

Infeed 1 The infeed is 80% higher than the nominal infeed 

Excenter 1 Nominal grinding parameters. The workpiece is mounted eccentrically at 20 µm 

Feed 2 Feedrate is 150% higher than the nominal feed rate 

Infeed 2 The infeed is 150% higher than the nominal infeed 

Excenter 2 Nominal grinding parameters. The workpiece is mounted eccentrically at 40 µm 

Table 1. The settings of each test condition 

For each type of fault, five measurements are captured sequentially by grinding five gears (workpieces) in 

a row. Prior to performing tests in a faulty state, five measurements are realised by grinding five gears with 

the nominal parameters to set up the baselines. Moreover, the grinding wheel is redressed prior to the baseline 

tests. The complete test sequence is illustrated in Figure 9, so in total there are 60 tests. 



 

Figure 9: Overview of the test sequence 

The grinding program is realised in two-stroke passes. As mentioned earlier in the previous section that 

only the first pass (Pass#1) is relevant for detecting eccentric workpieces/runouts during grinding processes. 

The duration of the signal is approximately about 40 seconds and the sampling frequency was selected at 25.6 

kHz. 

6. Results and Discussion 

After completing the test campaign, a number of gear quality parameters of individual ground gear were 

measured using a dedicated gear metrology machine. For the analysis of this particular eccentric 

workpiece/runout fault test data, only the runout error 𝐹𝑟 is relevant as discussed earlier. Figure 10 shows the 

boxplot of the measured runout error for each test class. As seen in the figure, only the Excenter#2 (i.e. 

eccentricity of 40 µm) test class leads to significantly increased runout errors. Moreover, one can clearly see 

that the Excenter#2 test class is very well separated with the Baseline test class and the other test classes 

including Feed#1, Infeed#1, Excenter#1, Feed#2, and Infeed#2. Notably, the other fault types (high infeed 

and high feed rate) do not lead to significantly increased runout errors. 

Despite the fact that all the gears are ground with the nominal (optimised) parameter in the Baseline tests, 

there still exists some residual runout error on the ground gears. As can be seen in the figure, the averaged 

runout error of the gears in the baseline tests is about 8 µm. The residual runout errors could be caused by 

existing runout errors on the incoming workpiece due to imperfect pre-grinding processes. 

Although the eccentricity introduced on the workpiece in the Excenter#2 tests is about 40 µm, the resulting 

averaged runout error is about 65 µm, which is higher than the workpiece eccentricity. This suggests that the 

grinding processes seem to add more runouts on the ground gears. On the other hand, the averaged runout 

error resulting from the Excenter#1 test class is about 10 µm, which is lower than the workpiece eccentricity 

of 20 µm. It is not clear yet till now, why for the Excenter#1 test the resulting runout error is lower than the 

workpiece eccentricity. A possible explanation is that the emulation method for introducing an eccentric 

workpiece fault of 20 µm was not accurate enough, see Figure 8(b).  



 

Figure 10: The measured runout error 𝐹𝑟 of different test classes. 

The measured vibration data of each test class has been processed and analysed using the algorithms 

proposed in Section 4. Initially, the raw vibration signal is segmented according to the event corresponding to 

Pass#1. The segmentation steps of the vibration signal corresponding to Pass#1 from the raw vibration signal 

have been visualised in Figure 7. Figure 11 shows the resulting signals of a Baseline test and an eccentric 

workpiece test (Excenter#2) after applying the Pass#1 segmentation algorithm. Visually, it is seen that the 

overall vibration amplitude of the eccentric workpiece test is slightly higher than that of the Baseline test. 

However, at this point, it is still difficult to justify the difference between the two signals. 

 

(a) 

 

(b) 

Figure 11: Typical vibration signals segmented from Pass#1 measured in the infeed direction/Y-axis of (a) 

Baseline test, (b) eccentric workpiece (Excenter#2) test. 

Once the vibration signal corresponding to Pass#1 has been segmented, the instantaneous envelope (IE) 

and instantaneous frequency (IF) are then estimated using Eq. (13) and (15), respectively. Figure 12 shows 

the resulting IE and IF signals calculated from the segmented signals of the baseline and eccentric workpiece 

test. As seen in the figure, the IE varies periodically in time and the IF around the fundamental gear mesh 

(GMF), ≈ 333 Hz, also varies periodically in time. It becomes more apparent from the figure that the proposed 

signal processing steps for computing the IE and IF help us to highlight the difference between the eccentric 

workpiece (Excenter#2) test and the Baseline test. Furthermore, the IE and IF are transformed into the 

frequency domain as shown in Figure 13. The difference between the two test conditions is even more 

highlighted by comparing the magnitudes of the IE and IF spectra, respectively 𝑋𝐼𝐸 and 𝑋𝐼𝐹, around the 

workpiece rotational speed and the magnitudes of the higher order harmonics. 



 

(a) 

 

(b) 

Figure 12: The estimated IE and IF of (a) Baseline test, (b) eccentric workpiece (Excenter#2) test. 

 

(a) 

 

(b) 

Figure 13: The frequency spectra of IE and IF of (a) Baseline test, (b) eccentric workpiece (Excenter#2) test. 

Note that the fundamental frequency of 5 Hz corresponds to the workpiece (gear) rotational speed 𝑓𝑔. 

The final step is to compute the IE and IF features from the frequency spectra based on Eqs. (18) and (19). 

Figure 14, Figure 15 and Figure 16 show the IE and IF features extracted from the X-axis, Y-axis and Z-axis 

signal, respectively. As seen in the figures, in general, the IE feature shows a strong correlation with the 

measured runout error shown in Figure 10. On the other hand, the IF feature shows a weak correlation with 

the measured runout error. Notably, the strongest correlation of the IE feature with the runout error can be 

observed on the measurement data in Y-axis, which is in the infeed direction. This is expected since the 

workpiece eccentricity/runout errors affect significantly the grinding forces in the infeed direction, as 

discussed earlier in Section 3. A rather weak correlation between the IE feature and the runout error can be 

observed on the measurement data of Z-axis, which is in the feed direction. 



(a) (b) 

Figure 14: (a) The IE feature and (b) the IF feature of the X-axis signal from all test conditions. 

 

(a) (b) 

Figure 15: (a) The IE feature and (b) the IF feature of the Y-axis signal from all test conditions. 

 

(a) (b) 

Figure 16: (a) The IE feature and (b) the IF feature of the Z-axis signal from all test conditions. 

 



7. Conclusions and Outlook 

Eccentric workpiece/runout error is one of the gear errors affecting the operating quality of gears and in 

particular the running noise behaviour of the end product. For gear manufactures, it is important to detect this 

fault to prevent sending defective gears to customers. A qualitative model developed in this paper has enabled 

us to derive a novel vibration feature for detecting eccentric workpiece/runouts. The feature extracted from 

the vibration signals measured at different test conditions/other fault types shows that it is sensitive and robust 

for detecting workpiece eccentricity of 40 microns. It is also shown in this study that the feature is insensitive 

to other types of gear grinding faults, which is important for diagnostics/root-cause analysis purposes. 

Furthermore, it is also shown in the study that the most sensitive measurement direction to detect workpiece 

eccentricity/runout errors is in the infeed direction. 

Future work will be on the investigation of the minimum workpiece eccentricity/runout error that can still 

be detected by the proposed vibration feature during gear grinding processes. 
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Abstract 
Manufacturing companies are under a constant pressure due to multiple factors: new competition, disruptive 

innovations, cost reduction request, etc. To survive, they must strive to innovate and adapt their business model 

to improve their productivity. Recent developments based on the concept of Industry 4.0 such as big data, new 

communication protocols and artificial intelligence provide several new avenues to explore. In the specific 

context of machining, we are working toward the development of a system capable of making the prognostic 

of the quality (in terms of dimensional conformance) of a workpiece in real time while it is being manufactured. 

The goal of this paper is to showcase a prototype of the data acquisition aspect of this system and a case study 

presenting our first results. This case study has been conducted at our industrial partner facility (Quebec, 

Canada) and is based on the manufacturing of an aircraft component made from Inconel alloy 625 (AMS5666). 

The proposed prototype is a data acquisition system installed on a 5 axis CNC machines (GROB model G352) 

used to acquire and to contextualize the vibration signal obtained from the CNC machine sensor. The 

contextualization of the data is a key component for future work regarding the development of a prognostic 

system based on supervised machine learning algorithms. In the end, this paper depicts the system architecture 

as well as its interactions between the multiple systems and software already in place at our industrial partner. 

This paper also shows preliminary results describing the relationship between the workpiece quality (in terms 

of respect toward the dimensional requirements) and the extracted features from the sensors signals. We 

conclude that it is now possible to do the diagnostic of a cutting operation. Additionally, with the same 

information we show that it is possible to quickly do the general diagnostic of the health state of the machine. 

Future work regarding this project will include data acquisition from a wider range of products (i.e. different 

shapes, materials, processes, etc.) and the development of a machine learning based prognostic model. 

 
1 Introduction 

Fuelled by the rapid evolution and introduction of new technologies and new philosophies such as Industry 

4.0, the manufacturing industry is quickly transforming. This new manufacturing era brings a lot of 

possibilities to an industry that is under constant pressure for cost reduction and better quality caused by a 

global competition [1]. In the specific context of machining; automation and methodologies such as lean 

manufacturing were the go to solutions to decrease process cost and improve quality output. However, in this 

new age, possibilities brought by artificial intelligence, more affordable technologies such as sensing 

technologies and collaborative robotic offer new improvements directions. 

 

In this context, the objective of our research project is to see if we can connect the operational information 

of a machining process to the physical phenomenon happening during the machining of a workpiece on a CNC 

machine in order to be able to predict the quality of this workpiece in real-time. Thus, the objective of this 

paper is to propose a data acquisition system architecture based on the prototype we built, showcase that it is 

now possible to do the diagnostics of a cutting operation with this system and that we are now able to put in 

relationship the quality, in terms of the conformity towards a workpiece’s G&DT specifications, and the 

physical phenomenon happening during the machining process. 

 

In a general manufacturing context, attempts have been made to try to predict the quality of a production 

process. For instance, Wang [2] tried to predict the quality of a chemical batch process operation. However, 
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their results are based on simulated data and not industrial data such as what we propose. Closer to the 

machining industry, through our exploration of the literature we have not yet found authors who have proposed 

a methodology to predict the quality of a whole machining process and the produced workpiece. Nevertheless, 

we can find articles related to the prognostic of some aspect of a machining process such as predicting the 

surface roughness. In that context, Benardos, Vosniakos [3] propose a review of the works that have been done 

in that domain and more recently, Balamurugamohanraj et al. [4] used a machine learning approach and data 

from an accelerometer to predict the surface roughness in terms of its Ra value. 

 

Even though we have not found many publications with industrial application of prognostic methodology 

related to the quality of a workpiece, we clearly see an interest for the concept of prognostic in the 

manufacturing industry. Reviews and publications by authors such as Vogl et al. [5], Wang [6], Peng et al. 

[7],Lee et al. [8] are all dedicated to the state of the prognostic concept or the proposal of a framework related 

to manufacturing. Thus, we are not the only one with interest in applying these concepts to a manufacturing 

context. Still, one of the biggest challenge to the industrial application of such concept and the development 

of prognostic methodologies is the access to data of good quality and in sufficient quantity. The foremost 

challenge is addressed in this article. 

 

We also see that, in our research domain, the interest related to applying prognostic methodologies is strong 

in fields related to tool wear prediction and condition-based maintenance. For instance, Proteau et al. [9] 

showed that it is possible to predict the tool wear with a Long Short-Term Memory (LSTM) neural network. 

Balan, Epureanu [10, 11] and Aghazadeh et al. [12] also proposed different methodologies based on artificial 

intelligence approaches to monitor and predict the cutting tool condition. Related to condition-based 

maintenance, Waqar, Demetgul [13] and Aydin, Guldamlasioglu [14] also suggested methodologies based on 

artificial intelligence to predict the state of an equipment or a component (e.g. bearing, gears, etc.). 

 

To improve the state of this research domain and to make a step toward the industrial application of 

prognostic methodologies, this paper will present our most recent work to show that it is now possible to put 

the workpiece quality in relationship with the physical phenomenon happening during the machining process. 

We also want to prove that we are now making a step forward to go from being able to diagnose a cutting 

operation toward being able to predict the quality of that process. To do so, this article is structured as follows: 

section 2 will introduce our research partner as well as our research environment and equipment. Then, in 

section 3, we propose a data acquisition (DAQ) system architecture and describe the dataset built. In section 

4, we present our signal processing methodologies and the different features that we extracted from the 

acquired signals. In section 5, we detail our results and show that it is now possible to do the diagnostic of a 

cutting operation as well as working toward the prognostic of the quality of a workpiece. Finally, in section 6, 

we make our conclusions. 

 

2 Research environment 

To pursue this research project, we are collaborating with an industrial partner: APN Inc.1 APN is a leader 

of the machining industry as well as at the forefront of the Industry 4.0 movement in Quebec, Canada. They 

are specialized in the machining of complex products in exotic material (i.e. titanium, Inconel, etc.) for the 

aerospace and high-tech industry. 

 

In our research context, our work was done on a 5 axis CNC machine made by GROB, model G352 (see 

Figure 1). This machine was acquired in 2017. 

 

                                                 
1 More information here : http://apnglobal.ca/en/apn/ 
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Figure 1 GROB G352 CNC machine2 

 

It is also important to state that, to be able to acquire a vibration signal, we worked with the GROB 

employees to have access to the accelerometer already installed into the machine’s spindle. Thus, the signal 

was acquired through an IFM VSA0043 accelerometer on which the signal was amplified with a Phoenix 

Contact signal conditioner model MACX MCR-UI-IU4. From Figure 2, we can see where the accelerometer 

was installed by the manufacturer (as indicated by the bubble #1). This information was provided by the GROB 

documentation available at APN Inc. In the next section, we present our DAQ system architecture. 

 

 
Figure 2 Accelerometer location in the spindle 

 

3 Data acquisition system architecture 

One of our hypothesis is that, in order to be able to predict the quality of a workpiece based on the physical 

information of the CNC machine, we must contextualize the signals acquired from sensors. Therefore, we 

developed a data acquisition system to automatically execute this operation. Figure 3 shows the 

contextualization of the data in terms of its relationships. 

 

                                                 
2 Picture source : https://www.grobgroup.com/en/products/product-range/universal-machining-centers/milling-

centers/g350/ 
3 Specifications : https://www.ifm.com/ca/en/product/VSA004 
4 Specifications : https://www.phoenixcontact.com/online/portal/ca?uri=pxc-oc-

itemdetail:pid=2811446&library=caen&tab=1 
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Figure 3 Relationships between data sources 

 

Whit this figure, we can see that, through this system, it is possible to create a relationship that goes from 

the workpiece requirements (including the actual measurements made on a finished workpiece) up to the 

vibration signature of a specific cutting operation. This means that at every moment during the machining 

process, we can know which cutting operation was being executed, its vibration signature, what was the cutting 

tool and its cutting parameters as well as which GD&T was influenced. To achieve these relationships, multiple 

data sources must be integrated. Table 1 shows the source of each data types. 

 

Data types Sources 

Workpiece Requirements APN Quality System (From the technical drawing) 

Actual Measurements APN Quality System 

Material Properties APN Quality Documents System 

CNC Machine information Machine controller through OPC Protocol 

Cutting Operation CAM Software 

Cutting Tool CAM Software 

Vibration signal Accelerometer and National Instruments Card 

Table 1 Data sources by data types 

 

To automatically integrate these data sources and create the relationships between the data, we developed 

an acquisition system that had to take into account the state of the machine (cutting or not, on idle, etc.). To 

illustrate our acquisition system, Figure 4 shows an overview of the acquisition process. On this figure, we can 

also see the isometric view of the workpiece as well as the quality data flow. 

 



5 

 
Figure 4 DAQ System architecture 

 

We worked with our industrial partner to modify their post-processor program to add four variables: when 

the NC Program start/stop, when a cutting operation start/stop, the cutting operation name and the NC Program 

name for reference. This modification allowed us to control the behaviour of the National Instruments data 

acquisition card by sampling the signal only when the machine was actually cutting the workpiece. However, 

since we are in a production environment, different machine states can also arise: the machine is in idle during 

a cutting operation, an alarm is raised, etc. Therefore, in our acquisition rules, we added some logic based on 

variables extracted in real-time from the CNC machine controller through the OPC communication standard. 

The reader can refer himself to the Siemens Sinumerik 840D SL documentation for a complete list of all 

available variables. 

 

During the acquisition process, the raw signal is thus contextualized and attached to the current workpiece 

and the current cutting operation being executed on the CNC machine. This, consequently, gives us a 

contextualized vibration signal suited to model the relationships between the physical and operational data (the 

model input) and the actual measurement in terms of GD&T (the model output). The next section presents an 

overview of the data collected. 

 

3.1 Dataset overview 

To prove the concept and functionalities of our proposed system, we conducted a first acquisition process. 

The acquisition was made during the machining of an Inconel 625 (AMS5666) workpiece intended for the 

aerospace industry. During our acquisition process, we were able to cover the entirety of the machining process 

which means: 

 22 different cutting tools; 

 140 cutting operations of multiple types; 

 135 GD&T to be respected for a workpiece to be considered conform. 

 

The acquired data covers five finished workpieces which represents approximately 13 hours of machining 

process. Unfortunately, due to industrial constraints, we were not able to gather more workpiece. However, 

this information is sufficient to prove our concept and start our analysis. In this article, we focused on one 

specific operation where measurements were made for every workpiece to showcase our results. Information 

related to this operation can be found in Table 2. Information regarding the cutting tool used during the cutting 
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operation can be found in Table 3. The cutting tool was new at the beginning of the machining process and 

was not changed during the machining of the five workpieces. For visualization, Figure 5 shows the cutting 

operation strategy obtained from the CAM software and Figure 6 shows the difference between the finished 

workpiece and the raw material used. Due to confidentiality, the 3D model shown in this paper have been 

redesign to showcase the overall shape of the workpiece and not the actual geometry. 

 

 
Figure 5 Cutting operation OP_510 

 

 
Figure 6 Difference between the raw material and the finished workpiece 

 

Name Type 
Spindle 

speed [RPM] 

Feed 

[mm/s] 

Est. cutting 

time 

[min] 

Volume 

removed [cm3] 

Coolant 

pressure 

[MPa] 

OP_510 Face Milling 1047 233.934 2.5 0.078 6 

Table 2 Cutting operation information 

 

Name Type Diameter 

[mm] 

Radius 

[mm] 

Number of 

flutes 

EMR0.500R0.125L4LG1.100 Radius End Mill 12.7 3.175 4 

Table 3 Cutting tool information 

 

By connecting our system to the quality system of APN, we are able to associate the cutting operation with 

the specifications (GD&T) influenced by that operation. These associations are made by expert employees at 

APN. Thus, for this project, we assumed that the associations are good. Through these associations, we know 

that the OP_510 operation influences the specification #15. Details about this specification is found in Table 

4. 

 

Number GD&T type Minimum 

value [µm] 

Maximum 

value [µm] 

Severity Illustration 

[µm] 

Inspection 

tool used 

15 Flatness 0 25.4 Critical  CMM 

Table 4 Details of the GD&T specification #15 
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The interpretation of this type of GD&T was made according to the standard Y14.5 [15]. The reader can 

refer to ASME [15] for further details. 

 

For the five workpieces, Figure 7 shows each actual measurements made by the operator after each 

workpiece was produced. 

 

 
Figure 7 Actual measurement per workpiece for the specification #15 

 

The next section will present the signal processing methodology applied to the data acquired. 

 

4 Signal processing methodology 

We have shown in the previous section that we can now acquire a signal that is well contextualized. The 

objective of this section is to describe our signal processing methodology in order to be able to do the diagnostic 

of the machining process as well as the production equipment itself; taking a step toward a predictive 

methodology. 

 

Our methodology is segmented in two sections: a time domain methodology and a frequency domain 

methodology. Once acquired, each signal sampled file is cleaned and has several features extracted. The signal 

features used are described below and are chosen according to the work of Lei et al. [16], Elattar et al. [17] 

and Abellan-Nebot, Romero Subirón [18]. 

 

4.1 Time domain 

To describe the signal in the time domain, we used equation (1) to equation (5) which refer respectively to 

the Root Mean Square (𝑅𝑀𝑆), the Kurtosis (𝐾), the Peak value (𝑃𝑒𝑎𝑘), the Peak-to-Peak value (𝑃𝑇𝑃) and the 

Crest Factor (𝐶𝐹). 

 

 𝑅𝑀𝑆 =  √
1

𝑁
∑(𝑥𝑖 − 𝑥)2

𝑁

𝑖=1

 (1) 

 

 𝐾 =  
∑ (𝑥𝑖 − 𝑥̅)4𝑁

𝑖=1

1
𝑁 [∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1 ]
2
 (2) 

 

 𝑃𝑒𝑎𝑘 =  max (𝑥) (3) 

 

 𝑃𝑇𝑃 = max(𝑥) − min (𝑥) (4) 
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 𝐶𝐹 =
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 (5) 

 

Where 𝑥 is a signal of 𝑁 samples, 𝑥𝑖 is the value of 𝑖th sample and 𝑥 is the average of 𝑥. 

 

4.2 Frequency domain 

In the frequency domain, we are interested in following the evolution, through time, of the cutting tool 

frequency (𝐴𝐶𝑇). This is because the degradation of the tool is one of the major cause of the degradation of a 

machining process. To do so, we used equation (6). This equation is similar to the 𝑅𝑀𝑆 equation in the sense 

that we could interpret its result as being the energy content of the signal around a specific frequency. 

 

 𝐴𝐶𝑇 = √∑ 𝐴𝑖
2

𝑏

𝑖=𝑎

 (6) 

 

Where 𝐴𝑖 is the amplitude of the signal at the 𝑖th frequency and 𝑎 and 𝑏 are the two corners of the window. In 

our case, we assigned 𝑎 = 64 Hz and 𝑏 = 75 Hz, which correspond to ±5 Hz around the frequency of interest 

(𝑓𝑖). We are also interested in making the same measurement at the different harmonics of the cutting tool 

frequency, thus we also applied the same equation at the 2nd, 3rd, 4th and 5th harmonics (2𝑓𝑖, 3𝑓𝑖, 4𝑓𝑖 and 5𝑓𝑖). 

 

To improve the physical meaning of this feature we use the work of Proteau et al. [9]. In Proteau et al. [9], 

the authors proposed an adaptation of the specific cutting energy (SCE, 𝑘𝑐) metric first established by 

Debongnie [19]. In their work, the authors used their version of the SCE to show that it can adequately 

represents tool wear degradation. Their version is defined by equation (7). 

 

 𝑘𝑐 =
𝑃𝑇𝑜𝑜𝑙[W]

𝑄[cm3s−1]
=

[Js−1]

[cm3s−1]
= [Jcm−3] (7) 

 

Where 𝑃𝑇𝑜𝑜𝑙 is the power [W] consumed by the cutting tool and 𝑄 is the material removal rate express in 

cm3s−1. 

 

SCE is therefore defined in terms of the energy required to remove and keep a certain rate of material 

removal in a specific material (aluminum, Inconel, etc.). The reader can refer himself to Proteau et al. [9] for 

the details. Since we do not have the actual power transmitted to the cutting tool, we can estimate this value 

by using the energy contained in the signal at the frequency related to the cutting tool (𝐴𝐶𝑇). For the same 

material and a constant material removal rate, 𝑘𝑐 should be constant. In case of tool wear, 𝑘𝑐 increase through 

time. The next section will present the results of our analysis. 

 

5 Results and discussion 

We first present the results of our analysis in the time domain. Figure 8 shows the values of the 𝑅𝑀𝑆, 𝑃𝑒𝑎𝑘 

and 𝑃𝑇𝑃 values through time for each workpiece. 
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Figure 8 𝑅𝑀𝑆, 𝑃𝑒𝑎𝑘 and 𝑃𝑇𝑃 values through time per workpiece 

 

Then, Figure 9 presents the average values for the 𝑅𝑀𝑆, 𝑃𝑒𝑎𝑘 and 𝑃𝑇𝑃 value per workpiece. We also 

included the evolution of the actual measurement per workpiece for the specification #15 to see if there is a 

direct relationship between the evolutions of the two phenomenon that could be visually witnessed. 

 

 
Figure 9 𝑅𝑀𝑆, 𝑃𝑒𝑎𝑘 and 𝑃𝑇𝑃 values per workpiece and actual measurement per workpiece 

 

We did the same analysis with the kurtosis and the crest factor. Results are shown in Figure 10 and Figure 

11. 
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Figure 10 𝐾 and 𝐶𝐹 values through time per workpiece 

 

 
Figure 11  𝐾 and 𝐶𝐹 values per workpiece and actual measurement per workpiece 

 

We then did the same analysis in the frequency domain. Results of the SCE values for each harmonics are 

shown in Figure 12 and Figure 13. 

 



11 

 
Figure 12 𝑘𝑐 values for each harmonics of 𝑓𝑖 through time per workpiece 

 

 
Figure 13 𝑘𝑐 values for each harmonics of 𝑓𝑖 per workpiece and actual measurement per workpiece 

 

Finally, we also did a time-frequency analysis where we looked at the frequency domain of the signal 

through time. Figure 14 presents the spectrogram we obtained. The white lines represent the separation 

between each workpiece; starting to the left with workpiece 1 up to the right with workpiece 5. In a) we gave 

the spectrogram for the frequencies between 0 and 400 Hz and in b) for the frequencies 400 to 1000 Hz. Most 

frequencies of interest are located in the range of 0 to 1 kHz. 
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Figure 14 Time-frequency analysis for all the workpiece 

 

From Figure 8, we can see that, for all workpieces, most values are comprised between an amplitude of 0 

and 6 m/s2; with some peaks during the machining process of each workpiece. However, we cannot clearly see 

that there was either a degradation or an improvement regarding the machining process in a part-to-part point 

of view. Also, when we look at the average values per part in Figure 9, we cannot clearly state that there is a 

direct relationship between the actual measurement and the evolution of the 𝑅𝑀𝑆, 𝑃𝑒𝑎𝑘 or 𝑃𝑇𝑃. 

 

We could conclude the same thing regarding the evolution of the 𝐾 and 𝐶𝐹 through time with the results 

shown in Figure 10 and Figure 11. However, it is interesting to also use these results to do the diagnostic of 

the machine health state. Based on these results, we could conclude that the machine is in a good health state. 

From Thomas [20], a kurtosis value around a value of 3 means a random signal, hence a machine in good 

health where no spike or impact were recorded. Values higher than that would start to indicate that impacts are 

being recorded. This is also supported by the values of the crest factors which are low and near the value 

indicating a good condition (𝐶𝐹 = 1.41). We also tried to look at the fundamental frequencies related to the 

bearings installed in the spindle. However, since the machine and its component are relatively new, the 

amplitudes related to the typical fault (FTF, BPFI, etc.) do not stand out. This could indicate that they are in 

good condition and that their signal is lost in the noise of the machine during the machining process. A 

diagnostic when the machine is not cutting could probably help us identify with better accuracy these 

frequencies. 
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From Figure 12, we can see that the variation in terms of amplitude seems to increase between the 

workpiece 1 and workpiece 5. This would seems to be consistent with the claim of Proteau et al. [9] that the 

energy required to keep a material removal rate is increasing with tool wear. When we look at Figure 13, we 

can see that the values are increasing with every workpiece; for the first and third harmonics (𝑓𝑖 and 3𝑓𝑖). The 

2nd, 4th and 5th harmonics (2𝑓𝑖, 4𝑓𝑖 and 5𝑓𝑖) seems to have a low amplitude throughout the data we collected. 

 

Moreover, when we look at the scale of the amplitude of the data, we can see that they are pretty low. This 

is somewhat counter intuitive to our belief. We believed that because the Inconel 625 is a very hard and difficult 

material to work with, we would have seen very high amplitudes due to the force required to remove the 

material. It was not possible to get the exact depth of cut used in this operation, therefore, maybe the engineers 

responsible of this product at APN used a very low depth of cut parameter in order to create less friction 

between the material and the cutting tool in order to facilitate the machining process. 

 

When we look at the spectrogram shown in Figure 14, we can quickly see that the overall frequencies’ 

amplitudes are consistent with our previous claim; it is low across most frequencies. We can still detect some 

frequencies of interest such as the spindle rotation (1047 RPM = 17.45 Hz), the cutting tool frequency (with 4 

flutes: 69.8 Hz) and its harmonics (139.6 Hz, 209.4 Hz, 279.2 Hz and 349 Hz). 

 

Aside from these specific frequencies, this low amplitude claim seems to hold true except for some 

spontaneous peak between 600 and 700 Hz. In fact, if we look at the graph in b), we see a phenomenon where 

we have not yet found the source. No video recording was made during the acquisition process. This kind of 

data would surely help us to correlate such phenomenon with actual events during the machining process. 

Additionally, this phenomenon is not consistent across all workpiece. Cutting parameter and overall machining 

strategy were not changed between the workpieces, hence we would have expected a similar pattern for each 

workpiece. However, we can denote two patterns: one related with workpiece 1, 2 and 4 and the other with the 

workpiece 3 and 5. The peaks in amplitude are also related to the first pattern for workpiece 1, 2 and 4. 

 

In a diagnostic point of view, our conclusion related to the kurtosis and crest factor values seems to hold 

in the frequency domain since we do not seem to detect traces of impact during the utilization of the equipment. 

 

The objective of this paper was to demonstrate that we can now have access to data allowing us to describe 

and diagnose a machining process and its cutting operations as well as making a step toward being able to do 

the prognostic of the overall quality of a workpiece. With the results shown in this section we can conclude 

that the propose data acquisition architecture enable us now to adequately contextualize, in real-time and 

automatically, signals acquired through sensing devices. However, when we look at the final objective of our 

project; that is the prognostic of the quality of a workpiece in term of the respect of its GD&T requirements, 

we have not seen a clear linear relationship or pattern between the cutting operation vibration signal and the 

evolution of the actual measurement of the specification #15 neither in the time and frequency domain. 

Throughout this article, we have been looking at one operation influencing the specification #15; in fact, there 

is a total of 11 cutting operations influencing this specific requirement. In other words, we conjuncture that a 

clear linear relationship cannot be establish between only one operation and the evolution of a specific 

requirement. On the contrary, it is maybe the “sum” or sequence of all these operations that could influence 

the conformity of a workpiece specific requirements. In other words, all the variations across all these 

operations could explain the evolution of a specification. Consequently, we believe that only through a machine 

learning approach we could be able to predict the quality of a workpiece. Our strategy to apply such approach 

to this research project still hold to this point. 

 

6 Conclusion 

To conclude this article, we wanted to showcase our data acquisition system architecture and demonstrate 

that we can now adequately contextualize a vibration signal to better do the diagnostic of a cutting operation 

to, in the end, facilitate the development of a prognostic methodology for the quality of a workpiece. We 
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believe that we have successfully achieve these objectives by showing multiple results related to the cutting 

operation OP_510. However, we have not yet been able to showcase a linear relationship between the vibration 

signal of this operation and the evolution of the quality of the workpiece. The use of a machine learning 

approach could probably help us achieve this objective. Further work in order to close the gap between our 

current status and our final objective to predict the quality of a workpiece will include adding sensors to the 

GROB CNC machine: a tri-axial accelerometer, an acoustic emission sensor, current and voltage sensors to 

the motor of the spindle as well as the ones of the three main working axis of the CNC machine and try to 

apply cyclostationarity analysis based on the work of Lamraoui et al. [21]. We will also expand our system 

capacity to have it works in a more autonomous way and we will finally use and apply multiple machine 

learning approaches to perform sensors fusion and the actual prediction of a workpiece quality. 
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Abstract
One of the most important aspects of machine fault prognosis is the selection of sensors and features to represent
the degradation process of a faulty component. Several approaches in the literature have used features extracted
from vibration signals to estimate the future condition based on time series forecasting. Another technology
that has been used increasingly for this task are the acoustic emission (AE) sensors, which have frequency
measurement ranges much higher than vibration sensors. On gearboxes some studies have shown that the AE
technology can be used effectively for fault diagnosis, but its use for fault prognosis is still a relative new field
of research that offers encouraging opportunities. One downside of the application of the AE technology in
gearboxes is the strong dependence of the AE on the oil temperature, which may lead to difficulties during the
forecasting of an AE-based feature. Thus, in this study a novel feature based on a relative counting of the AE
bursts is proposed and tested with data from a planetary gearbox with a ring gear fault. The proposed feature
reduces the influence of the temperature on the generation of AE when it is compared to the counting based
on a fixed amplitude threshold. Therefore, it can then be more suitable for fault prognosis than traditional AE
counting. In this case study the forecasting of the proposed feature is carried out using an artificial neural
network (ANN), whose hyperparameters were selected using a genetic algorithm. The results are promising
and constitute a basis for further research.

1 Introduction

Machine diagnosis is defined as the examination of symptoms to detect and determine the nature of faults
or failures, while machine prognosis is defined as the evaluation of the actual condition of a machine, forecast
of the future condition and estimate the remaining useful lifetime (RUL) before a catastrophic failure based on
the symptoms of faults [1, 2]. As it is well established for machine diagnosis, the type of fault that is going to
be examined must be correctly represented by the monitoring data. A feature is a specific representation of the
data in a lower dimension, which can be easier to relate to a specific fault. For instance, a misalignment can be
examined using the vibration data and a feature related to the amplitude of the rotational speed harmonics can
represent it in a better way than the RMS value. For prognosis purposes the same principle applies, but rather
than only represent a fault the features should also be capable to represent the degradation process of the faulty
component [3].

Prognosis models can be categorized into experience-based models, physical-based models or data-driven
models. Experienced-based models use component failure history to predict the future condition. Physical-
based models are based on physical principles of the failure process, which are modelled by mathematical
equations. Data-driven models use historical monitoring data to generate a model capable of predicting the
future condition of the machine. Within data-driven models artificial neural networks (ANN), hidden Markov
and support vector machine models have been used for feature forecasting [2, 4, 5].

Condition monitoring data from vibration sensors have been extensively used for diagnosis purposes and to
a lesser extent for prognosis purposes. Another type of sensor that has been used increasingly for these tasks
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are the acoustic emission (AE) sensors, which have frequency measurement ranges much higher than vibration
sensors. AE is defined as elastic stress waves generated by rapid release of strain energy due to changes in
the internal structure of a material [6]. Many sources of AE are damage-related such as: crack initiation and
growth, crack opening and closure, dislocation movement and others [7]. One important feature to represent
the AE data consists of the rate of generated AE bursts. This is adressed by many studies that have for example
correlated the rate of AE bursts with crack propagation [8, 9].

In the case of gearboxes the AE technology has been effectively used for fault diagnosis [10, 11]. For
the case of prognosis it is a relatively new field of research that offers encouraging opportunities [12]. It has
been reported that during cyclic loading of a single tooth, the amplitude and energy of the AE bursts increase
intermittently because of the accumulated damage and crack propagation [13]. Thus, it makes sense to evaluate
the rate of AE bursts as a possible feature suitable for fault prognosis in gearboxes. However, one downside of
the application of the AE technology in gearboxes is the strong dependence of the AE on the oil temperature
[14], which may lead to difficulties during the forecasting of an AE-based feature. Therefore, in this study a
novel feature based on a relative counting of the AE bursts that minimizes the effect of temperature is proposed
and tested with data from a planetary gearbox with a ring gear fault. Then, a data-driven model is generated
with an ANN and the progression of the feature is predicted.

2 Experiment

The test bench consisted of a planetary gearbox connected to an electric motor on its input side (high speed)
and to a generator on its output side (low speed). The gearbox had the following number of teeth: Zs = 18 for
the sun gear, Zr = 72 for the ring gear and Zp = 26 for each of the planet gears. The number of planet gears was
Np = 3. The outside diameter of the ring gear was 144 mm. The speed reduction ratio was 1:5. A localized fault
was produced in one tooth of the ring gear using a grinding tool. An AE sensor VS375-M was fixed under the
gearbox case using a magnetic holder. The surface under the sensor was previously polished and copper paste
was applied between the sensor and the surface to improve the acoustic coupling. The test bench and the fault
can be seen in Figure 1.

(a) (b)

AE sensor

Gearbox

Coupling

Motor

Bearings

Ring gear fault

Figure 1: Planetary gearbox test bench (a) and ring gear fault (b)

AE signals were measured using an input rotational speed of 1300 r/min and a load of 112 Nm in the
output shaft. Thus, the sun gear rotating frequency was fs = 21.67 Hz and the carrier rotating frequency was
fc = 4.33 Hz. For all measurements a sampling frequency of 1 MHz and acquisition time of 5 s for the AE
signals were used. The AE signals were measured continuously in eight measurement campaigns (MCs), of
which seven consisted of approximately 75 min of continuous operation and one of approximately 120 min.
During this eight MCs neither planetary gearbox nor sensor were disassembled. Aditionally in each MC the
same instrumentation for the measurement of the AE signals was employed. Summing the MCs, the planetary
gearbox cumulated approximately 10.5 h of intermitent operation. After the 8th MC the planetary gearbox was
disassembled for inspection, which revealed no visual growth of the fault. Despite this observation, damage
progression at a microscopic or subsurface level could not be discarded.
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The external temperature of the planetary gearbox case was used to represent the temperature of the oil. It
was measured every two minutes for each MC. The result is shown in Figure 2, where the end of each MC is
indicated with a dashed line. As expected the temperature increases during each MC. The rate of temperature
increase is higher at the beginning of each MC and is then progressively reduced.

Figure 2: Planetary gearbox temperature during the tests.

As discussed in the previous section, the temperature affects the generation of AE in gearboxes. Therefore,
the detection of AE bursts is expected to be affected by this phenomena. In the next section this topic is
adressed.

3 Counting of AE Bursts

3.1 Fixed counting of AE bursts

The traditional approach to detect AE bursts consists of the definition of a fixed amplitude threshold Ta.
When the amplitude of the signal exceeds this value an AE burst is detected (see Figure 3). The end of the
AE burst is determined when after a hit definition time (HDT) there are no more threshold crossings. The
beginning of the next AE burst can only be detected when a hit lockout time (HLT) has elapsed. The value for
the threshold Ta is established empirically after inspection of the AE signals.

Threshold T a

TimeA
m
pl
it
ud
e

Beginning

End

HDT HLT

Figure 3: AE burst detection with fixed amplitude threshold

For this case study a threshold Ta = 0.8 mV was selected together with a HDT and a HLT of 300 µs each.
The number of detected AE bursts is counted every 5 seconds in each signal, so the obtained result expresses
the rate of detected AE bursts every 5 seconds. In order to minimize small fluctuations and concentrate the
analysis on the global trend, a moving average filter of width 60 s was applied to the rate of AE bursts. Figure 4
shows the result of this analysis with fixed counting approach. It is observed that the rate of AE bursts rises at
the beginning of each MC and then decreases as the MC continues. Although the same behavior occurs in each
MC, the maximal rates of AE bursts have different values for different MCs. Moreover, the maximal values
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reached do not take place necessarily as the accummulated operating hours increase. However, when only the
last parts of each MC are analyzed, it is observed that the rate of AE bursts increases as the hours of operation
cumulate.

Figure 4: Rate of AE bursts during tests calculated with a fixed counting

The aforementioned observations make the fixed counting approach inappropiate for prognosis purposes
in this study case, since the obtained rate of AE bursts has very low monotonicity. Therefore, it is required to
explore other approaches as follows in the next subsection.

3.2 Relative counting of AE bursts

In this subsection an approach to make a relative counting of the AE bursts is proposed. The relative
counting consists of taking into account only the AE bursts that should take place when the fault of the ring
gear interacts with each of the planet gears. Knowing the theoretical temporal positions of the bursts originated
by the interaction between fault and planet gears within a signal requires the use of an encoder that provides
angular position. However, this requirement can be avoided by considering only the spacing between the
detected bursts instead of their absolute position. Thus, the relative counting will be maximum if in the signal
there are detected bursts equally spaced at the inverse of the ring gear fault frequency f f r. This corresponds to
the frequency at which the planet gears interact with the fault and corresponds to the rotational frequency of
the planet carrier fc times the number of planets Np as expressed in equation 1:

f f r = fc ·Np (1)

Mathematically the relative counting can be achieved by taking the maximal cross-correlation between a
binary signal x̊(t) that represents where the bursts are actually detected, and another binary signal z̊(t) that
represents where the AE bursts should take place, if they are always originated by the interaction between the
damaged ring gear tooth and the planet gears.

Figure 5 shows schematically the path of each planet gear across the fault and the originated AE bursts.
Some of them overpass the threshold Ta and thus are detected. Accordingly, the binary signal x̊(t) is constructed
with its high value at the position of the detected bursts and its low value everywhere else. On the other hand,
the binary signal z̊(t) is constructed with its high values equally spaced at the inverse of the ring gear fault
frequency f f r. Thanks to the cross-correlation it is not necessary that the high values of the binary signal z̊(t)
are in phase with the path of the planet gears across the fault. By taking the maximal cross-correlation the phase
difference can be corrected. Therefore, only the spacing between the high values of the binary signal z̊(t) are
considered in its construction.

The proposed relative counting gives values between zero and one. A value one means that all expected
bursts have a maximal amplitude higher than the threshold. Analogously, a value zero means that none of the
expected bursts have an amplitude higher than the threshold. This is schematically illustrated in Figure 6. Here,
the binary signal x̊1(t) has a maximal cross-correlation of 1 with the binary signal z̊(t), since they can match
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Figure 5: Binary signals representing actual x̊(t) and hypothetic z̊(t) time location of AE bursts

in all their high values. The binary signal x̊2(t) has a maximal cross-correlation of 0.5 with z̊(t), since they
can match in two out of four high values. The binary signal x̊3(t) has a maximal cross-correlation of 0.25 with
z̊(t), since they only can match in one out of four high values. Finally, the binary signal x̊4(t) has a maximal
cross-correlation of 0 with z̊(t) since it does not have any high values. Notice that this figure points out the
aforementioned observation that z̊(t) does not have to be in phase with the signals x̊(t).

Cross-correlation

x (t)1

x (t)2

x (t)4

1/ffr

max{                } = 1z(t) x (t)1

max{                } = 0.5z(t) x (t)2
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Figure 6: Relative counting of AE bursts based on cross-correlation with the signal z̊(t)

For the analysis of the case study the same values for Ta, HDT and HLT used for the fixed counting are
now used for the relative counting. In the same way, a moving average filter of width 60 s is also employed
to eliminate too small fluctuations in the rate of AE bursts. Figure 7 shows the result of this analysis with the
relative counting approach. It is observed that the rate of AE bursts (now represented by the maximal cross-
correlation) is much more monotonous than for the fixed counting approach. The large fluctuations due to the
beginning of each MC are also considerably reduced.
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Figure 7: Maximal cross-correlation during tests calculated with a relative counting of AE bursts

In account of this observations the rate of AE bursts calculated with the relative counting approach is much
more suitable to be uses as feature for failure prognosis. The forecasting of this feature is addressed in the
following section.

4 Prognosis

4.1 Time series forecasting with an ANN

There are multiple possible architectures to build an ANN suited for forecasting a time series. One of the
most straightforward architectures consists of using the observations x0 to xn from a time series {x} as input
features to predict the observation xn+1. In the following prediction step (PS) the ANN uses the observations
x1 to xn+1 to predict the observation xn+2 and so on. Another possible architecture consists of using the obser-
vations x0 to xn to predict the observations xn+1 to xn+m. In the following PS the ANN uses the observations
x1 to xn+1 to predict the observation xn+2 to xn+m+1 and so on. Thus, although m observations are predicted in
each PS, only the first of them is used as input feature to make the prediction in the next PS. One variation of
such an architecture consists of using only the last predicted observation rather than the first one to make new
predictions. By using these types of architectures a higher stability in the forecasting is expected. The training
and test of such ANN are illustrated schematically in Figure 8. It shows how the training examples (TE) are
constructed from a time series considering values n = 4 and m = 3. Each of the TE is used to iteratively adjust
the weights of the ANN using the backpropagation algorithm. After the ANN has already been trained with all
the TE, it is now capable to forecast the time series in successive PS and its performance can be evaluated with
the test data.

During the building of the ANN the dataset is divided into two groups: training and test. Within the training
group a datasubset is left aside to validate the results of the training process. One key objective of the training
process is to find the most suited hyperparameters for the ANN. They include: number of nodes in input and
output layers (n and m, respectively), number of nodes per hidden layer, regularization term α , number of
mini-batches and number of epochs. More information regarding the hyperparameters can be found in [15].
Initially the most suited values for the hyperparameters are selected using grid search. This consists of selecting
possible values for each hyperparameter and calculating which combination of hyperparameters achieves the
best performance overall. For each combination of hyperparameters an ANN is trained without including the
validation data. Then, the forecasting performance of the ANN is calculated in the data used for its training and
then in the validation data. This division is carried out with the aim of minimizing the bias and variance errors
of the ANN model as much as possible. A performance calculated only in the data used for training can cause
higher variance since the model could over fit the training data. On the other hand, a performance calculated
only in the validation data can cause higher bias since the model could under fit the training data. In this study
a global performance is calculated as the average between the training and validation performances.

The performance of the model is measured with the use of the mean squared error (MSE) between prediction
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Figure 8: Training and prediction scheme of the ANN for time series forecasting

and real data. The MSE is calculated as follows in equation 2:

MSE =
1
N

N

∑
i=1

(xi− x̂i)
2 (2)

, where xi represents the i-th observation of the time series {x} and x̂i represents the i-th observation of the
predicted time series {x̂}.

Due to computational restrictions the grid search can only consider a limited number of values for the
hyperparameters. One way to increase the efficiency of the search is to set an initial group of values for the
hyperparameters and determine the best combinations. After that, the search continues but considering only
variations of the already determined best combinations. This can be achieved by using a genetic algorithm,
which is explained in the following section.

4.2 Genetic algorithm

The genetic algorithms are computational procedures to find a sufficiently good solution to an optimiza-
tion problem. They are inspired by the mechanism of natural selection and emulate biological processes such
as mutation, crossover and selection. In this study a genetic algorithm is employed to guide consecutive grid
searches and find the best possible combination of hyperparameters for the ANN model. First, an initial pop-
ulation of hyperparameters is evaluated using a fitness function. The best combination of hyperparameters are
called parents and are used to generate children through crossover and mutation techniques. The crossover
combines information from parents to generate the children, while the mutation consists of random alteration
of the information traspased to the children. In this study, the information corresponds to the hyperparameters
for the ANN model. The parents together with the children constitute a new generation. This new generation
is once again evaluated with the fitness function to create new parents and new children in an iterative process.
The procedure is repeated until a stoppage criterion is met. When this is accomplished, the best solution in the
last generation is selected as the best solution of the whole iterative process. Two possible stoppage criteria are:
a fixed number of generations to iterate or a fixed number of consecutive generations for which the best fitness
score does not improve more than a pre-defined percentage.

Figure 9 shows schematically how the genetic algorithm works. Let us consider four hyperparameters
to optimize: α , β , γ and δ . The initial population contains five possible combinations of hyperparameters,
which are evaluated with the fitness function. The best two combinations are selected as parents and are used
to generate three children. The employed crossover corresponds to a single-point crossover, which randomly
selects at which single point (star marker) the information from the parents is divided. Then, in the mutation
some information of the children is randomly altered. One important aspect is that the percentage of mutation
must not be so high as to completely vanish the result of the crossover.

In this study single-point crossover, maximum 10% of mutation and a total of 5 generations are considered.
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Figure 9: Schema of the genetic algorithm for hyperparameters optimization

The employed fitness function corresponds to the calculation of a fitness score (FS) that is the inverse of the
MSE as it is shown in equation 3. Thus, higher values of the FS correspond to best performance of the model.

FS =
1

MSE
(3)

4.3 Results

Table 1 shows the hyperparameters considered for the initial population. The values for the number of
nodes in the input layer n and in the output layer m expressed as percentages refer to a fraction of the data used
to train the ANN models. Two configurations for the hidden layers are initially tested: one hidden layer with a
number of nodes equal to the mean value between n and m, and two hidden layers with number of nodes equal
to 0.75(n+m) for the first layer and 0.25(n+m) for the second layer.

Hyperparameter Values
n 50%; 32%; 16%
m 13%; 6%; One

Nodes per layer 0.5(n+m); 0.75(n+m) - 0.25(n+m)
α 1.e-1; 1.e-3

Mini-batches 32; 128
Epochs Until 100

Table 1: Initial hyperparameters considered to generate ANN models

The total of 7512 observations of the relative counting of AE bursts was divided into 80% for training
and 20% for test. For the process of hyperparameters estimation 25% of the training data was left aside for
validation. Table 2 shows the fitness scores for the initial population and 5th generation during the search for
the most suited hyperparameters. The FStraining is highly improved from the initial population until the 5th

generation, while the FSvalidation only decreases marginally. As a consequence, the overall FSaverage is highly
increased. Table 3 shows the corresponding best values for the hyperparameters for the initial population and
5th generation that achieve the aforementioned fitness scores. It is observed that the number of nodes in each
layer tends to increase. So does the regularization term α , while the number of epochs decreases. The number
of mini-batches remains approximately constant.

Best score For initial population For 5th generation
FStraining 6.12e4 1.83e5

FSvalidation 2.25e3 2.00e3
FSaverage 3.17e4 9.25e4

Table 2: Fitness scores of the best models from the initial population and 5th generation in validation phase

Figure 10 shows the result of the forecasting for the maximal cross-correlation with the best hyperparame-
ters of the initial population in (a) and for the 5th generation in (b). It is observed that for the initial population
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Hyperparameter Best values for initial population Best values for 5th generation
n 50% 63.481%
m 13% 15.053%

Nodes per layer 1836 - 1002 1858 - 1014
α 1.0e-1 1.3085e-1

Mini-batches 32 33
Epochs 64 21

Table 3: Best combination of hyperparameters for the initial population and 5th generation

the prediction (test) deviates considerably from the real data. However, for the 5th generation the prediction is
very close to the real data, which confirms the improvement produced by the genetic algorithm. This is also
confirmed by the calculation of the fitness scores in Table 4. The FS calculated on the training data indicates
how good the model fits the training data. Thus, it can be only considered as an estimation of the performance
of the ANN model. The FS calculated on the test data indicates how good the model can predict unseen data.
Both scores should be as high as possible and have a as low as possible difference between them. It is also ex-
pected that FStraining is higher than FStest, since the model should perform better on data that it has already seen.
For the initial population both fitness scores FStraining and FStest have low values. Moreover, FStest is higher than
FStraining. For the 5th generation this deviation is corrected and both fitness scores reach much higher values.

(a) (b)

Initial population 5th Generation

Figure 10: Forecasting of the maximal cross-correlation for the initial population (a) and 5th generation (b)

Best score For initial population For 5th generation
FStraining 9.39e1 3.64e4

FStest 3.06e2 6.37e3

Table 4: Model fitness scores from the initial population and 5th generation in the testing phase

5 Conclusions

A novel approach for counting of AE bursts in gearboxes was presented and compared with the traditional
approach with measurements from a planetary gearbox. In conditions where the gearbox accummulated several
hours of intermittent operation with a localized fault in the ring gear, the proposed approach was able to provide
a rate of AE bursts represented by a cross-correlation value suitable for prognosis purposes. The forecasting
was carried out with an ANN, whose performance was enhanced through a genetic algorithm for the selection
of its hyperparameters. With basis on the obtained results the authors conclude that:

• In presence of a localized fault in the ring gear of a planetary gearbox, the rate of detected AE bursts
increases as the hours of operation cumulate.
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• For intermittent operation the approach to detect AE bursts using a fixed amplitude threshold provides a
rate of AE bursts highly affected by the temperature, which is not suitable for prognosis purposes.

• In comparison the proposed approach for a relative counting of the AE bursts provides a rate of AE bursts
with higher monotonicity, and thus it is more suitable for prognosis.

• The rate of AE bursts, in this case represented by a cross-correlation value, can be effectively predicted
with the use of an ANN for time series forecasting if its hyperparameters are correctly selected.

• The proposed way for selection of hyperparameters was an initial grid search followed by a genetic al-
gorithm for hyperparameters optimization, which was capable to provide good results.
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Abstract 
Mass production of quality equipment in the automotive industry requires controls throughout the production 

line. These controls are done through monitoring and validation tools for both production and finished 

products. The use of signal processing methods, applied to acoustic and vibratory recordings collected during 

the operating cycle, aims to ensure that they are in good working order, to maintain them and to guarantee the 

quality of the service provided by a manufacturer to its customers. However, sometimes the techniques used 

do not reach the expected performance, which of course depends on the defect to be recognized but also on the 

conditions under which the measurements were made. This paper introduces a preliminary study on machine 

diagnosis by combining both signal processing methods and artificial intelligence. This work is dedicated to 

develop a system which allows us to measure several high frequency channels and to transmit them to a 

computer via USB interface. 

 

 Introduction: 

In a production environment many parts are unfairly detected as defective when monitoring is based on 

indicators from the literature. The causes of these errors are often related to the not conducive noisy 

environment to such a diagnosis by records sensitive to disturbance. Moreover, from one production site to 

another, it is not possible to apply the same default detection thresholds because of a different environment 

involving a variation of the structures and of the product frequency responses. Therefore, today it remains 

difficult to do a relevant diagnosis in a noisy environment and particularly on non-stationary signals. The aim 

of the study is to improve this diagnosis by first using a microphone antenna and then operating an artificial 

intelligence process on a database acquired on production benches. The microphone array leads to the 

provision of a spatial map of the acoustic field generated by the monitored system. An acoustic imaging 

approach allows the addition of a new spatial dimension in the data representation. The preliminary study 

presented consists in differentiating several states of the system to be monitored from the simultaneous 

exploitation of information expressed in the time-frequency-space domain. 

 

 Rotating Machine 

The system considered for the study is a starter. A starter is an electric motor used to rotate a thermal engine 

until the self-combustion in the engine takes over. It is composed by several subassemblies such as a planetary 

gear reducer, a drive shaft, an armature permitting under the effect of a magnetic field the rotation of the motor 

and a current transmission subassembly allowing the current to flow to the armature by brushes.  
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Each subset radiates its own acoustic signal which, by interactions, contributes to the overall signal emitted 

by this motor. These interactions associated to the resonance phenomena in the transient operating phases of 

the machine make the diagnosis more difficult. Indeed, this diagnosis allows to focus the acoustic measurement 

on the rotating machine by a beamforming process while freeing of the disturbing sources coming from other 

directions. First results of comparisons will be presented. 

 

There are three states of the electric motor to recognize: 

- Healthy state 

- Armature imbalance 

- Gear defect 

 

 

 

 

 

 

 

 
 

Figure 1: Electric motor 

 

 Classification 

Automatic classification is a branch of artificial intelligence. Artificial intelligence, commonly known as 

AI, is defined as the set of theories and techniques used to make machines capable of simulating human 

intelligence [1]. This field was born in the middle of the 20th century with the development of computer science 

and the ambition to create machines with the ability to think in a similar way in their functioning to the human 

mind in terms of perception, understanding and even in taking decision. 

Automatic classification is used in all pattern recognition systems. A pattern in the broad sense is an object 

of very varied nature. It can be a bar code, a face, a fingerprint and more generally a digital data suite that will 

constitute the signature of the belonging of an object to a family. 

Indeed, these systems allow the algorithmic characterization of objects and consist of assigning an object 

to a class or category based on prior learning. 

Learning is the process of constructing a general model based on particular observations of the real world 

in order to predict a behaviour or a decision in front of new unseen data. The second definition of learning, 

taking more the sense of training, consists of improving the performance of the model in a progressive way by 

being confronting to the exercise of an activity. 

This idea of improving the accuracy of models through training is easy to perceive for humans since the 

ability of a person to perform a certain task is often judged by his experience in the field. 

 

 Experimentation 

 Simple sensor analysis 

2.1.1  Machine learning 

Supervised Machine Learning requires expert know-how in the intended field application. Indeed, it is a 

question of being able to label the samples correctly on the one hand but also to define relevant indicators to 

characterize samples regarding the classification to be carried out in the sense that these indicators must be 

representative for class distinction.  
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Here the chosen features are indicators coming from signal processing such as: 

- RMS value 

- Peak to peak 

- Kurtosis 

- Partial levels around kinematic frequencies  

- Global level 

- Energy in one-third octave band  

In order not to bias the classification for the algorithms used in this part, a step of standardization of these 

different parameters is necessary. This consists in subtracting a value of a parameter by the average of the 

values of this parameter and then by dividing the obtained value by the standard deviation of the parameter. 

For most classification algorithms it is also important to use the same number of samples per class, i.e. to have 

a balanced dataset. Indeed, Bayesian algorithms introduce the probability of belonging to a class in the 

calculation of the conditional probability that a sample belongs to a class knowing its characteristics. 

In this part we are primarily interested in a diagnosis of the electric motor based on a single microphone 

recording. The setup consists on the analysis of a signal coming from a single omnidirectional microphone 

located at 50 centimeters from the electric motor. The dataset is composed by 25 starters per class. 

 Bayesian Neural Network Decision Tree 
Support Vector 

Machine 
Random Forest 

True Healthy 24 21 21 21 25 

False Healthy 2 5 2 7 1 

True 

Imbalance 
25 23 25 21 25 

False 

Imbalance 
0 1 1 2 0 

True Gear 23 22 22 22 24 

False Gear 1 3 4 2 0 

# Error 3 9 7 11 1 

Performance 96% 88% 90.67% 85.33% 98.67% 

Table 1: Classification results 

 

The classification mode used for the results obtained above is the so-called cross-validation mode. Cross-

validation consists in dividing the population into N groups of constant size. Then, N-1 groups are randomly 

selected and used to learn and create a model while the Nth group is used as a test population. This step is 

repeated N times so that all samples are used for learning and testing in order to create N models. 

The global performance is an average of the N classification results created. Cross-validation thus makes it 

possible to obtain a faithful and global performance of the tested algorithm but has the disadvantage of non-

negligible cost in terms of computing time.  

Table 1 indicates a very good fault recognition performance for all algorithms, particularly for Bayesian 

and Random Forest, which respectively achieved 96% and 98.67% of recognition. These results confirm the 

interest of using such methods for machine diagnosis. However, these measurements were carried out in a 

healthy environment without external disturbance. 



4 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Acoustic pressure signal of the electric motor in unload condition 

 

In the first case, the Mel Frequency Cepstrum Coefficients (MFCC) are extracted from the time signal. This 

extraction of the coefficients is developed using the Fast Fourier Transform (FFT) and the Discrete Cosine 

Transform (DCT) on the Mel scale which is a perceptual parametric model. These are the most used criteria 

in Automatic Speech Recognition (ASR) systems. 

First, the signal is split into N windows of a few milliseconds with overlapping (usually in ASR the length 

of the window is 25 ms and the overlap is 10 ms). A Hamming window is then applied to the signal to limit 

the spectral distortion (appearance of parasitic high frequencies) related to the overlap and the disturbance at 

the beginning and the end of the window before passing to the frequency domain via the FFT.  

A conversion of the frequency scale f to the Mel scale is performed according to  

  

 𝑚𝑒𝑙(𝑓) = 2595 ∗ log⁡(1 +
𝑓

700
). (1) 

 

A triangular response filter bank with variable frequency bandwidth is applied to simulate the response of 

the human ear in the best possible way. This band variation represents the capacity of the human being to be 

able to easily distinguish two near frequencies at low frequencies than at high frequencies. For each triangular 

filter, the sum of the energies is calculated so we get as many coefficients as filters. 

Finally, we convert the logarithmic spectrum of Mel obtained to the time domain with the DCT, and then 

we usually keep the first 12 coefficients for each of the windows. 

The coefficients are calculated according to 

 

 𝐶𝑘 = ∑ log(𝐸𝑖) ∗ cos⁡[
𝜋𝑘

𝑁
(𝑖 − 0.5)]𝑁

𝑖=1  (2) 

 

- 𝑁:  number of filters. 

-  𝐸𝑖: energy calculated with the ith filter.  

- 𝐶𝑘: kth Mel Frequency Ceptsrum Coefficient. 

 

Short windows are used for the transient operation phases of the motor while longer windows are used on 

the stationary phase (this phase is not used in its entire duration; an average and a standard deviation are 

calculated to take into account any variation of the remaining signal). In addition, to add more information and 

thus improve the signal recognition, the differential coefficients Δ and acceleration ΔΔ are implemented. These 
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coefficients, calculated directly from the MFCC coefficients taking respectively the derivative of the first and 

the second order, make it possible to consider the dynamics of the signal. 

According to [2], the addition of these differential coefficients and accelerations increases the recognition 

by about 20%. At least 702 features were extracted from each time signal. Here the dataset is reduced to 15 

starters per class. 

 

 Bayesian Decision Tree Support Vector Machine Random Forest 

True Healthy 13 11 11 14 

False Healthy 7 7 4 3 

True Imbalance 14 14 15 14 

False Imbalance 0 2 2 0 

True Gear 9 9 10 13 

False Gear 2 2 3 1 

# Error 9 11 9 4 

Performance 80% 75.56% 80% 91.11% 

Table 2: Classification results using MFCCs 

Table 2 shows the performance achieved by algorithms. Random Forest remains more efficient than the 

other algorithms with a recognition performance of 91.11%. However, the overall performance achieved with 

this approach is less than the performance obtained previously in Table 1.  

  

2.1.2 Deep Learning  

The aim here is not to extract previously mentioned indicators, but rather to provide complete acoustic data 

to the algorithms. Spectrogram as input was studied. 

The classification consists in identifying the class of each starter by recognizing the spectrogram of the 

acquired signal. For this study, an image processing approach based on a pre-learnt Convolutional Neural 

Network (CNN) AlexNet is used. AlexNet was developed at Toronto university [3] for the ImageNet LSVRC-

2010 contest, a competition for which it is proposed to classify 1.2 million images into 1000 different classes. 

The authors achieved a winning top-5 test error rate of 15.3% for the ILSVRC-2012 contest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Acoustic signal spectrogram of the electric motor in unload condition 

 

Transfer learning consists in using a trained Neural Network to extract features, which achieved very good 

performance in recognition on a specific field with thousands of samples for the learning phase, and to transfer 

the knowledge learnt in that field to another field. This is what we have done here, AlexNet has been trained 

on 1 million images and performs very well on object recognition in images.  
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This allows us to extract relevant features for image recognition even if we only have a low amount of data. 

A modification of the final layers and a training phase are necessary in order to adapt the classification to our 

field by changing the number of outputs and the weights of each neuron.  

 

  

Figure 4: Acoustic pressure by time of the electric motor in unload condition 

 

We achieved a good validation accuracy of 93.33% with this method compared to results obtained by 

MFCCs. However, it is possible that the model overfits the data because of a large number of parameters (60 

million features) compared to the number of samples. In statistics, overfitting corresponds to a model or an 

analysis which fits perfectly with a dataset. In machine learning, overfitting is one phenomenon to avoid 

because these models perform very well on the data used to create the model but cannot generalize on new 

data which means low performances.  

 

 Acoustic localization 

Unfortunately, it is not possible to obtain such a recognition rate in a production environment. Indeed, the 

random ambient noise generates ambiguity perturbing the recognition of defects. This is why we have chosen 

to introduce acoustical imaging to our work in order to locate the sound sources in a space, focus the 

measurement towards a privileged direction and thus filter the signal emitted by the electric motor from the 

ambient noise.  

An acoustic antenna represents a distribution of microphones according to a specific geometry and number 

of sensors. The resulting geometry formed by the repartition of these microphones as well as their number 

condition the performance of the system, which is characterized by the frequency range of use, the resolution 

and the capacity of localization. For this project, we made the choice of digital MEMS (Micro electro-

Mechanical Systems). 

This technology introduced for the first time in 1967 [4] corresponds to miniaturized sensors or actuators 

which couple several physical principles including mechanics and electronics. The miniaturization allowed by 

this technology responds to a growing need related to congestion, sensitivity, mass production and to the 

complexification of systems by allowing the addition of new functions in a non-intrusive way.  

The method used to represent the acoustic field is a Beamforming-based method. 
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2.2.1 Acquisition System 

The acquisition system is composed of MEMS microphones. The working of these systems remains faithful 

to those of conventional microphones because in a general way the physical laws governing the different 

domains are unchanged. A MEMS consists of a fixed substrate (a semiconductor generally made of silicon) 

and a moving part.  

In the case of the MEMS microphone, the moving part is represented by a membrane. A conductor measures 

the impedance variation induced by the deformation of the membrane and this allows to obtain a minimum 

size while not skimping on the performance of the sensor. 

 

 

 

 

 

Figure 5: Block diagram of the I2S digital mic 

 

- The charge pump (in red) allows the supply voltage to be raised to a level necessary to polarize the 

transducer. 

- The MEMS is responsible for converting the measured pressure into a voltage. 

- The amplifier (in yellow) stores the voltage from the MEMS and amplifies the signal.  

- The Sigma Delta converter (in green) converts the analog signal in memory into a pulse-density 

modulation (PDM) signal on 1-bit resolution. 

- The decimator (in orange) converts the PDM signal into a 24-bit pulse coded modulation (PCM) signal 

by down-sampling with a factor of 64. 

- A low pass filter (in blue) removes the remaining high frequency components. 

- The three-state mode (in gray) makes it possible to associate two MEMS on the same I2S line for a stereo 

recording. 

Pre-assembled I2S digital MEMS microphones with welds on PCB plate already made were chosen for 

convenience because the size of the microphone involves a high precision in the welding process.  

 

 

 

 

 

Figure 6: I2S MEMS microphone 

 

An I2S output format MEMS implies that the microphone integrates a large part of the acquisition chain 

and a MiniDSP acquisition board is used to measure up to 8 synchronous I2S channels by board. 

 

2.2.2 Beamforming 

Beamforming [5] is a signal processing tool used in the field of antennas for the directional signal 

transmission or reception. The main principle of this method is to combine the elements of a sensor array in 

such a way that in a particular direction signals interfere constructively whereas in other directions the 

interferences are destructives. It is a question of measuring and applying a delay on the signals acquired by the 

microphones. 
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Beamforming is used with radio or sound waves and has many applications in radar, sonar, seismology and 

acoustics. It allows a representation of a wave field by an estimate of the directions of arrival. 

Let an antenna formed by 10 microphones (red stars in FIG. 6), a sinusoidal source (green circle in FIG. 6) 

with a frequency of 2500 Hz and a white noise (blue circle in FIG. 6). The sources are both placed 0.20 meters 

from the plane of the antenna and spaced from each other by 0.05 meters. 

Through a Beamforming algorithm, we are able to distinguish these two sources. 

 

Figure 7: Measurement of the pressure field at 2500 Hz on the left, at a different frequency in the 

middle 

Using an antenna makes the diagnosis less sensitive to disturbance and thus more reliable. We can from 

this observation reconstruct the acoustic signal coming only from the direction of the source in order to apply 

the diagnosis to a non-noisy signal. Therefore, we hope to find at least the results obtained in Table 1. An 

improvement in these results will then be considered from a more advanced imaging diagnosis. 

 

Conclusion and further works 

 The results introduced above show that the use of classification algorithm is relevant to diagnose electric 

motors. However, even if these results seem good it is not possible to consider an implementation of these 

tools in a production bench because 1.33% of False Positive misclassification, achieved with Random Forest 

in 2.1.1, on a production of 5000 starters per day first means that 67 electric motors are misclassified and in 

this particular case 67 electric motors are in a bad condition but classified as healthy could be sent to customers.  

We will first focus the work on collecting data with the microphone array in a production environment and 

then improve the recognition by using classification algorithms developed on time signals and spectrograms. 

By using algorithms near from our application field and adding spatial informations with Beamforming, we 

hope increase the recognition tasks.  
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Abstract
In the mechanical transmission system, the bearing is one of the most widely used transmission components. The
failure of the bearing will cause serious accident and huge economic loss. Therefore, the remaining life prediction
of the bearing is greatly important. In order to predict the remaining life of the bearing, a prediction method
combining macro-micro attention, long-short-term memory neural network and isometric mapping is proposed.
First, some typical time-domain and frequency-domain characteristics of the vibration signal are
calculated .respectively, such as the the mean frequency, the absolute mean value, the standard deviation, the RMS
and so on. Then, the principal component of these characteristics is extracted by the isometric mapping method.
The importance of fusional characteristic information is filtered via a proposed macro-micro attention mechanism,
so that the input weight of neural network data and recursive data can reach multi-level real-time amplification.
With the new long short-term memory neural network, the characteristic of the bearing vibration signal can be
predicted based on the known fusional characteristic. The experimental results show that the method can predict the
remaining life of the bearing well and has higher prediction accuracy than the conventional LSTMs.

1 Introduction

Bearing is widely used in mechanical equipment and is one of the most universally used mechanical parts[1].
Under the complex working condition and environment, bearings are easily subject to failures, which may result in
the catastrophe of the machine running and even threaten the personal safety [2]. Bearing remaining life prediction
is beneficial to determine the equipment maintenance time reasonably, improve the production efficiency, reduce
the accident rate, and prevent the sudden accidents, which is significant for engineering production [3].Recently,
with the rapid developments in sensing, signal processing and artificial intelligence technology, Prognostics and
Health Management (PHM) technologies based on data (experience) have gradually become the mainstream
solution either in fault diagnosis or remaining useful life（RUL）estimation, instead of physics-based methods which
can be expensive and tedious to develop[4]. Neural network is one of the most advanced models for the study of
sequence classification and prediction in data driven methods. Zhao et al. [5] introduced the application of deep
learning in machine health monitoring system, mainly from the perspective of automatic encoder (AE) and its
variants, restricted boltzmann machine and its variants, including deep belief network (DBN) and deep boltzmann
machine (DBM), convolutional neural network (CNN) and recursive neural network (RNN). Qin et al. [6] proposed
a model for fault diagnosis of wind turbines’ gearboxes based on deep belief networks (DBNs) with improved
logistic sigmoid units via extracting impulsive features. Gebraeel et al. [7] used the amplitude of the bearing
vibration decay signal as the criterion to assess the life, and used the BP neural network to predict the life.

Based on particular design, RNN is suitable for processing timing-related information [8]. However, RNN also
has its own drawbacks, e.g. the excessive recursion time is indirectly equivalent to increasing the depth of neural



network and the training time; the vanishing gradient problem usually [9]. In order to solve these problems, long
short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber in 1997 [10]. It can avoid the long-term
dependence problem of RNN, thus it has been widely used. Yuan et al. [11] investigated three RNN models
including vanilla RNN, LSTM and GRU models for fault diagnosis and prognostics of aero engine. They found that
these advanced RNN model based on LSTM and GRU performed better than the convetional RNN via a number of
experiments. Elsheikh et al. [12] proposed the bidirectional handshake network which solved the problem that
bidirectional LSTM could not be well utilized in the prediction field, and proved the superiority of the method in
the life experiment of turbine engines.

Attention mechanism can be regarded as a kind of contribution screening of information which improves the
efficiency of neural network by selecting key information for processing. Attention-based recurrent networks have
been successfully applied to a wide variety of tasks, such as handwriting synthesis[13], machine translation[14],
image caption generation[15] and visual object classification[16]. In the prediction field, attention-based LSTM is
getting more and more attention. Ran et al. [17] substituted a tree structure with attention mechanism for the
unfolding way of standard LSTM to construct the depth of LSTM and modeling long-term dependence for travel
time prediction. Fernando et al. [18] combined two kinds of attention and used LSTM for human trajectory
prediction and abnormal event detection. Filtering key information can reduce computing resources, but it can also
cause some degree of information loss. Differential treatment of input data according to the screening of attention
mechanism can not only reflect the focus to important information, but also retain useful information as far as
possible.The importance of fusional characteristic information is filtered via a proposed macro-micro attention
mechanism, so that the input weight of neural network data and recursive data can reach multi-level real-time
amplification. With the new long short-term memory neural network, the characteristic of the bearing vibration
signal can be predicted based on the known fusional characteristic. The experimental results show that the method
can predict the remaining life of the bearing well and has higher prediction accuracy than the conventional LSTMs.

2 Related work
2.1 LSTM

The LSTM neural network is a special RNN neural network which also consists of an input layer, a hidden
layer, and an output layer. The difference lies in using an LSTM structure that includes the input gate, the output
gate, the forget gate, and the memory cell as the hidden layer, as shown in Figure. 1.

Figure. 1 Hidden layer structure of LSTM neural network

The forget gate is used to determine whether to keep the historical information stored in the current memory
cell. If the door is opened, the historical information stored in the current memory cell is retained, otherwise the
historical information is forgotten. The input gate is used to determine whether to allow the input layer information
to enter the current memory cell. The open door allows the input layer signal to enter, and the closed door does not
allow. The output gate is used to determine whether to output the current input layer signal to the next layer, the
open door allows signal output and the closed door does not allow.

An LSTM network computes a mapping from an input sequence ( )
1 2 n
x ,x ...xx to an output sequence ( )

1 2 n
y ,y ...yy

by calculating the network unit activations using the following equations iteratively from t = 1 to T:
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where, i is the input gate, o is the output gate, f is the forgetting gate, c includes cell activation vectors,
and h is the memory cell outputs. w represents the weight matrix (for example, the weight

ix
w matrix

representing the input x to the input gate), and b represents the threshold ( i
b which is the threshold of the input

gate).  is the sigmoid activation function, tanh is the tanh activation function, represents dot product.

3 Macroscopic-Microscopic Attention in LSTM
The structure of MMALSTM neural network is in Figure. 2. The number of input cells and the number of output cells in
MMALSTM are respectively set as 60 and 1, and the learning rate is set as 0.05. The number of hidden layer cells is set
as 17 in this study. The initialization method of neural network employs the standard initialization. And the recurrent
neural network based on MMA is deduced as follows.

Figure. 2 structure of MMALSTM neural network

Firstly, we deal with the data matrix and calculate its macro and micro attention coefficient by the macro -micro
attention mechanism. The input information  1 2 t tX x x x at time t is defined as ,1 ,2 ,   t t t t nx x xx
and the recurrent information at time t-1 is defined as 1 1,1 1,2     t t t t-1,mh h hh . Macro attention mechanism is
to process the data in the whole time interval by attention mechanism. Micro attention mechanism is to process the
data ,1 ,2 ,   t t t t nx x xx and 1 1,1 1,2     t t t t-1,mh h hh in each time instant by attention mechanism. Thus
the operation of attention mechanism on data in the whole time dimension and each time dimension is called
macro-micro attention mechanism. In this paper, the macro -micro attention mechanism of input matrix and the
micro attention mechanism of recurrent matrix are processed (The recurrent data in the whole time dimension is not
known before input into the network, so it cannot be processed at the macro level). In the training process, 1Tx is
set as query vector Mq at the macro level, 1,t nx is set as query vector mq at the micro level. In the prediction
process, Tx , ,t nx represents Mq and mq separately. And then the attention coefficients are calculated by:
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where  i ， i are micro attention coefficients corresponding to input data and recurrent data respectively, i

is macro attention coefficients corresponding to the whole input data, ix represents the mean value of ix .And
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Secondly, according to the macro -micro attention coefficient and Eq. (4), the weight of input data is amplified
in real time at multiple levels. And the weight of recursive data is amplified in real time based on the micro
attention coefficient.
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From the above, the flow chart of MMA, MA, ma are depicted in the follow figures. Figure. 3 represents the
flowchart of MMA, Figure. 4 (a)represents the flowchart of MA, Figure. 5(b) represents the flowchart of ma.

Figure. 3 The flowchart of MMA

(a) (b)

Figure. 4 The flowchart of MA and ma.

With the weight amplified based on MMA, a new variant of LSTM is proposed, which is named as
MMALSTM. Via Eq. (1), we can derive the calculation formula of MMALSTM as follows:
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where g is the linear activation function.

4 Prediction method based on MMALSTM
In summary, the steps of the proposed method for predicting the bearing remaining life based on the

combination of the isometric mapping algorithm [19] and MMALSTM neural network are given below:
1. During the bearing life cycle, collect the bearing vibration samples according to the interval Ts between two

adjacent samples. Suppose that the number of sample is n .
2. Calculate the 5 kinds of time-frequency characteristics （time-domain :mean absolute difference，standard

deviation and root-mean-square, frequency-domain: mean of frequency distribution, envelope spectrum: mean of
frequency distribution）of these vibration samples separately, then the eigenvalue matrix X of the size 5n can
be obtained.

3. Select the eigenvalue matrix 1X of the 1n samples from X as the training matrix.
4. The training matrix 1X and original matrix X are respectively processed by the ISOMAP algorithm and

Savitzky-Golay filtering, and the obtained eigenvectors with the largest eigenvalues after filtering
 1 2 11 1 1 1 

T
nV v ,v , ,v and  1 2 

T
nV v ,v , ,v are used as their principal components respectively. The matrix X

and the vector V are only used to verify the validity of this method, which don’t participate in neural network
training and prediction.

5. Since the size of the matrix X is larger than that of the matrix 1X and both the sums of V and 1V are
equal to zero according to the characteristic of ISOMAP algorithm, the two vectors may have different starting
value, even though their trends are same. Therefore, it is necessary to unify them. By minimizing
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a and b can be computed, and then all the elements of V are unified through the following equation
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6. Linearly normalize the vector 1V to obtain the normalized vector  1 2 1 
T

nW w ,w , ,w .
7. Reconstruct matrix U :
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where p is the cell number of input layer and

1 1 1      i i i n p iw w wu (13)

8. Set the first p vectors of the matrix U as the input of the MMALSTM neural network and the last vectors as
the output respectively, then train the MMALSTM neural network.

9. With the trained MMALSTM neural network, the mapping function f for prediction is defined. By
inputting the last p vectors of the matrix U into the trained MMALSTM, the output 2pu at the first prediction
time (FPT) can be calculated as

 2 2 3 1  p pf , ,u u u u (14)

Then U is updated by
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10. Repeating step 9 several times, we can obtain the predicted data series iu .
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When the predicted characteristic data 1 1  n p iw ( 1 1   n p i iw u ) exceeds a preset threshold, the bearing remaining
life can be calculated by  1  si n T . Then we anti-normalize the predicted data series and get iv
( 1 1 1 2   i n ,n , ,n ), which can be compared with the actual vector  1 1 2  

T' ' ' '
n p nV v ,v , ,v to verify the validity of

this method.

5 Experimental signal analysis
The experimental data come from PRONOSTIA in the IEEE PHM 2012 Data Challenge [20]. The platform

mainly contains three major parts: a rotatory part, a degradation generation part, and a signal acquisition part. To
accelerate the degradation of bearing, radial load force is applied with a controllable shaft speed. Two accelerated
sensors perpendicular to each other are installed on the key position for the test bearing. The sampling frequency is
25 600 Hz. Each sample has a duration of 0.1 s, which means each sample has 2560 points. The record interval is
10 s. The test is ceased once the amplitude of the collected signal surpasses a certain level to prevent damage. Our
proposed method is applied on the data set bearing1-1, which means that our method currently only considers the
operation condition with constant speed and load. The run-to-failure bearing1-1 contains 2803 samples. Moreover,
many samples were acquired under the steady stage, and their characteristics were almost the same, which were of
little significance to use these data for prediction. Therefore, only the last 1750 samples were used for bearing life
prediction.

The characteristic matrix of 1650 experimental samples is used as the training matrix to predict the 100
characteristic points corresponding to the next 100 time instants. Via the proposed method, the training, predictive
and actual curves are illustrated in Figure. 7. As can be seen from Figure. 5, the trend of the predicted curve is not
close to actual curves but both have down trend. It follows that the predicted value only exceed the threshold when
the MMALSTM neural network predict a large number of points. In such case, the predicted sampling points are
1736, which is 14×10s different from the actual life. In this study, to assess the performance of the proposed
approach, an error index is defined as

100
 

Rul RulEr %
Rul

(17)

where Rul denotes the actual remaining useful life, and Rul denotes the predictive remaining useful life. It
is easy to note that the prediction error Er is 9.3%.

Figure. 5 Failure threshold, training curve, predicted curve and actual curve for 370 experimental samples of real

bearing.



Then we add the number of known characteristic points to test the predictive power of the model, each group
was tested for 5 times, and the mean percentage error of predicted RUL was calculated, as shown in the Figure .6.

Figure. 6 The obtained prediction errors under the various numbers of the known characteristic point of data set .

Next, given 1690 characteristic points, MMALSTM, LSTM, deep LSTM (DLSTM) and LSTM with a
projection (LSTMP) are used for comparison under the same conditions, each method was tested for 5 times, and
the mean percentage error of predicted RUL was calculated, as shown in the Figure .7.

Figure. 10 Comparison of bearing remaining useful life prediction results obtained by the four types of LSTMs.
From the experimental results, it can be concluded that MMALSTM has not higher accuracy, while the four types of LSTMs
do not have the satisfactory performance when fewer samples are used. And the closer the prediction point is to the failure
point, the more accurate the prediction of bearing remaining life will be. Therefore, the proposed method is more suitable for
bearing life prediction with enough samples.

6 Conclusion
Modern manufacturing requires high reliability and high efficiency, which makes bearing health analysis and residual life
prediction an increasingly important research field. Advances in networked manufacturing and AI-oriented big data
analysis provide new opportunities for bearing health analysis and residual life prediction. In this paper, isometric
mapping algorithm is used to fuse 3 time-domain features,1 frequency-domain features and 1 envelope spectrum features
of bearing vibration signal into a new feature. Due to the information characteristics of life data, the input weight of
neural network and the weight of recurrent layer are all multi-amplified in real time by partial processing based on MMA.
We use the improved long and short term neural network(MMALSTM) to study the bearing degradation model and
predict the residual service life. The performance of the network model is verified by the data obtained from the bearing
lifetime experiment and compared with LSTM, DLSTM and LSTMP. Numerical experiment results show that the
proposed method not only has a higher accuracy of predicted. This will not only have certain reference significance and
help for the online detection of bearing residual life, but also have great significance for the determination of equipment
maintenance time and the prevention of unexpected accidents in engineering production.

In the future we will plan to study the performance of the proposed depth structure model in the field of bearing
residual life prediction. Furthermore, the prediction of the residual life of bearings under variable working
conditions by the deep learning model is also worth studying and working on
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Abstract 
The manufacturing industries more and more pay close attention to artificial intelligence (AI). For example, 
smart monitoring and diagnosis, real time evaluation and optimization of the whole production and raw 
materials management can be improved by using machine learning and big data tools. 
In this work, a smart milling diagnosis has been developed for composite sandwich structures based on 
honeycomb core. The use of such material has grown considerably in recent years, especially in the 
aeronautic, aerospace, sporting and automotive industries. But the precise milling of such material presents 
many difficulties.  
The objective of this work is to develop a data-driven industrial surface quality diagnosis for the milling of 
honeycomb material, by using supervised machine learning methods. In this approach cutting forces are 
online measured in order to predict the resulting surface flatness. 

The developed diagnosis tool can also be applied to the milling of other materials (metal, polymer, …). 

 
1 Introduction 

The manufacturing industries more and more pay close attention to artificial intelligence (AI). For 
example, smart monitoring and diagnosis, real time evaluation and optimization of the whole production 
and raw materials management can be improved by using machine learning and big data tools [1]. An 
accurate milling process implies a high quality of the obtained material surface (roughness, flatness) [2]. 
With the involvement of AI-based algorithms, milling process is expected to be more accurate during 
complex operations. 

T. Mikołajczyk et al. developed an Artificial Neuronal Network (ANN) for tool-life prediction in 
machining with a high level of accuracy, especially in the range of high wear levels, which meets the 
industrial requirements [3]. 

D. Pimenov et al. evaluated and predicted the surface’s roughness through artificial intelligence 
algorithms (random forest, standard Multilayer perceptron) [4]: in their investigation the obtained 
performance depends on the parameters contained in the dataset. 

M. Correa et al. compared the performances of Bayesian networks (BN) and artificial neural networks 
for quality detection in a machining process [5]. Even ANN models are often used to predict surface 
quality in machining processes, they preferred BNs for their significant representation capability and for 
the fast model building. 

The work of C. Zhang et al. [21] focused on monitoring the condition and life of the cutting tool in 
dry milling environment. From de-noised vibration signal they extract some relevant features such as the 
root mean square, the skewness and the kurtosis in both time and time-frequency domain. Based on 
Neuro-Fuzzy Network (NFN), they implemented a tool wear prediction model which performs the best, 
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with the smallest Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) compared 
with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN) algorithms. 

Z. Rui et al. [24] implemented a hybrid approach combining handcrafted feature design with 
automatic feature learning for machine health monitoring: local feature-based gated recurrent unit 
(LFGRU) networks. By comparison with some other methods such as the Support Vector Machine 
(SVM), the k-nearest neighbor (kNN), they verified the effectiveness and robustness of the proposed 
LFGRU model for tool wear prediction. 

D. Wu et al. [25] have worked on cloud-based machine learning for tool wear prediction in milling. 
The research was about the development of a novel approach for machinery prognostics using a cloud-
based random forest algorithm. Their experimental result have shown that despite the fact that random 
Forests give the best accuracy for large dataset, parallel random forest algorithm has the best ratio training 
time/accuracy. Future more, they will predict tool wear with other machine learning algorithms such as 
support vector machines as well as to make a comparison with their actual algorithms. 

For machining result prediction, similar algorithms could be used but the recurrent problem is how to 
increase the accuracy of those algorithms. K. Javed. et al. [26] have worked on an enabling health 
monitoring approach based on vibration data for accurate prognostics. They have shown that prognostic 
efficiency is closely related to the extracted features and by the same way proposed a method for enabling 
features that can lead to simple and accurate prognostics. 

K. Durmus [27], by using neuronal networks, worked on the prediction and the control of surface 
roughness in CNC lathe using artificial neural network. His study has concluded that artificial neural 
network (ANN) can produce an accurate relationship between cutting parameters and surface roughness. 
Based on the ANN training model, he could find the best machining parameters for obtaining a desired 
surface roughness. 

By also using neuronal artificial neural network M. Azlan [28] has developed a surface roughness 
prediction models for end milling machining, in the logic to find the best ANN network structure for 
surface roughness prediction. 

Another approach consists to measure and analyze the drive power (for example by current 
measuring) [31], which is not applicable in our experiment. In this paper few artificial intelligence 
methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and 
radial-based functions. 

In our work, a smart milling diagnosis has been developed for composite sandwich structures based 
on honey-comb core. The use of such material has grown considerably in recent years, especially in the 
aeronautic, aerospace, sporting and automotive industries. Recent development projects for Airbus A380 
or Boeing 787 confirm the in-creased use of the honeycomb material. But the precise milling of such 
material presents many difficulties. 

The objective of this work is to develop a data-driven industrial surface quality diagnosis for the 
milling of honeycomb material, by using supervised machine learning methods. Therefore, cutting forces 
are online measured in order to predict the resulting surface flatness. 

 

2 Description of the Experiments 
2.1 Workpiece material and tools 

The workpiece material studied in this investigation is Nomex® honeycomb cores with thin cell 
walls. It is produced from aramid fiber dipped in phenolic resin (Fig. 1).  
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Figure 1: Nomex® honeycomb cores and the main geometrical characteristics 

 

The honeycomb cores consist of continuous corrugated ribbons of thin foil bonded together in the 
longitudinal direction. The aim of such a process is to create a structure allowing lightness and stiffness 
together thanks to the hexagonal geometry of formed cells. Figure 1 illustrates the geometric 
characteristics of the honeycomb core. The use of honeycomb material in sandwich composite is limited 
by the fragility of each wall of the honeycomb, which influences the quality of obtained surfaces after 
machining [7, 8, 9]. 

The Nomex® honeycomb machining presents several defects related to its composite nature (uncut 
fiber, tearing of the walls), the cutting conditions and to the alveolar geometry of the structure which 
causes vibration on the different components of the cutting effort [10]. 

It is clear that the use of ordinary cutting tools and also the mechanical and geometrical characteristics 
of honeycomb cores will have a crucial effect on machinability and on the quality of the resulting surface 
[11]. In fact, ordinary cutting tools for machining honey-comb core produce generally tearing of fibers 
and delamination of cell structures. Subsequently, these cause a reduction of bond strength between the 
skin and the honey-comb core, and thus a weaker joint for composite sandwich structures. 

In our study, the used milling cutter is provided from our industry partner, the EVATEC Tools 
Company. As shown in figure 2, the used EVATEC tool is a combined specific tool with two parts 
designed to surfacing/dressing machining operation. The first part is a cutter body made of high speed 
steel with 16 mm in diameter and having ten helixes with chip breaker. This tool part is designated by 
Hogger. The second part is a circular cut-ting blade made of tungsten carbide with a diameter of 18.3 mm 
and having a rake angle of 22° and a flank angle of 2.5°. These two parts are mechanically linked to each 
other with a clamping screw. 

 

 
Figure 2: Milling cutter used for Nomex® honeycomb core ‘‘CZ10’’. 
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2.2 Milling experiments 

All experimental milling tests illustrated in this paper were carried out on a three-axis vertical 
machining center Realmeca® RV-8. 

For assessing the performance of the machining process of Nomex® honeycomb core we monitored 
and measured the cutting forces generated during cutting, by using the Kistler dynamometer model 
9129AA. The Kistler table is mounted below the Nomex sample in order to measure the three 
components of the machining force as shown in figure 3. During the measurements, the x-axis of the 
dynamometer is aligned with the feed direction of the milling machine and the longitudinal direction of 
the workpiece (parallel to core ribbons and the direction of honeycomb double wall). The three 
orthogonal components of machining force (Fx, Fy and Fz) were measured according to figure 3 using the 
Kistler table. 

 

  
Figure 3: Experimental test setup 

 

The milling experiment conditions are summarized in table 1. Four different speeds (high and low 
speeds) and four feed values were selected. 

Spindle 
speed (rpm) 

2 000 10 000 15 000 23 000 

Feed rate 
(mm/min) 

150 1 000 1 500 3 000 

Table 1 : Milling experiment conditions 

 

Two main modes of surface damage are observed (Figure 4): uncut aramid fibers along the machined 
surface and tearing of the walls. The appearance of the uncut fibers is a machining defect specific to the 
composite material which depends on the type of the fibers and their orientation. The tearing of Nomex® 
paper, linked to the cellular appearance of the honeycomb structure, occurs under the shear loading effect 
[28, 29]. 

Uncut fibers are observed on Figure 4 -a and -c. It is well known that the surface quality is of high 
importance for the use of the Nomex® honeycomb in sandwich materials. The machining defects cause a 
reduction of bond strength between the skin and the honeycomb core, and thus a weaker joint for 
composite sandwich structures. 

 

Cutting force 
measurement (Kistler) 

Mounting 
system 

Nomex® 
Honeycomb 
workpiece 
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Figure 4: Obtained honeycomb machining surfaces.  

The case (b) represents the best milling result 

 

2.3 Measured signals 

Many milling experiences have been made in our study. For example, figure 5 shows the milling 
forces measured for honeycomb at 2000 rpm spindle speed and 3000 mm/min feed rate. 

 

 
 

Figure 5: Milling force measurements for 2000 rpm spindle speed and 3000 mm/min feed rate:  
(a) during all process; (b) during 0.2s (zoom) 

 

Cutting forces are in the order of a few Newtons, they do not exceed 60 Newtons. Generally, the force 
in vertical direction (Fz) is quite small, thus, it is advised that to keeping vertical forces small in milling 
composite due to the delamination issue. In our case, the vertical cutting force component is greater than 
other forces components which can be attributed to the mechanical properties of the honeycomb structure 
where the honeycomb structure is characterized by a better out-of-plane compression behavior than its 
tensile and shear strength. The evolution of cutting forces shows significant oscillations. These 
oscillations are caused by vacuum in the cells of the honeycomb and the angle between the cutting 
direction and the honeycomb cell wall direction. 

Figure 6 shows the obtained evolution of the surface quality (flatness) for various combinations of 
cutting conditions (spindle speed and feed rate). The defect of shape is higher for low speeds. Thus, for 
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high feed rates that exceed the 1500 mm/min, the unevenness exceeds 500 µm which characterizes the 
severe tearing of the honeycomb walls. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Effect of cutting parameters on surface flatness 

 

Given the low level of cutting forces, the quality of the obtained machined surface allows to establish 
criteria for determining the machinability of the honeycomb structures. The appearance of the uncut fibers 
is a machining defect specific to the composite material which depends on the type of the fibers and their 
orientation. The tearing of Nomex® paper, linked to the cellular appearance of the honeycomb structure, 
occurs under the effect of shear loading [5, 12]. 

Alternatively a surface response [30] could have been built in order to predict the milling surface 
quality. But close milling parameters (such as splindle speed, feed rate, depth of cut) can lead to different 
results, depending on the material, the quality of the machining tool, etc. 

Therefore, in our approach supervised machine learning techniques (with labeled measurements for 
the model training) are used. These tools need the construction of features associated with the 
measurements. 

 

3 Milling diagnosis using machine learning techniques 
Machine learning techniques can be separated mainly in two categories [17, 23]: 

-Unsupervised approaches: based only on input data (data are unlabeled). The goal is to find groups 
and structures in the data set, in order to classify new observations (measurements) into the different 
groups. 

- Supervised approaches: based on input and output data (Now the data are labelled. 

The raw data (measurements) are firstly filtered, with low pass filters in order to eliminate high 
frequency noises, and labeled (“obtained signals for good surface quality”, “obtained signals for bad 
surface quality”). Then the features are calculated offline or online. 

All the experiments are then split into two groups: 75% for the machine learning model training, 25% 
for the obtained model evaluation also called test phase in the literature (another percentage can be 
chosen, for example 60% - 40%, depending on the number of experiments). This can be made randomly, 
but the ratio “good surface quality” and “bad surface quality” must be kept in each group. 
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3.1 Features calculation 

The features are calculated in the time domain and the frequency domain [6, 13] from the raw signal 
represented on figure 7, in steady state behaviour. In fact, transient zones (that means when the cutting 
tool entries or exits the honeycomb core) are not taken into account. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7:  Measured milling force in time domain:  
(a) total data plot, (b) signal during steady-state phase 

 

After a first data processing (low pass filtering), firstly 19 features are calculated in the time domain 
for the measured milling force signal (for example : maximum, minimum, amplitude range, median value, 
maximum of the absolute value of the signal, interquartile range, average value of the signal, energy of 
the signal, Skewness, Kurtosis, Shannon entropy, … ) 

Secondly another 19 features are calculated in frequency domain in a similar way for the measured 
milling force signal. Therefore, the Fast Fourier transform (FFT) of the signal has been calculated. 

All the calculated features (in time and frequency domains) are normalized and stored in a table 
whose lines and columns respectively represent the experimental number (also called instance) and the 
associated feature values. The description of the used features are indicated in [32] 

The reduction of the features is then be made by using PCA (Principal Component Analysis) [18]. 

 

3.2 Labeled data 

From the evaluation of the effect of the cutting parameters on surface flatness result, we defined two 
classes of surface quality applied to the output data of each observation (see table 2) 

 

Label Flatness (µm) Qualitative value 

'A‘ 0 – 600 Best surface quality 

‘B' 600 – …  Worst surface quality 

Table 2: Label table for the experimental observations 
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3.3 Applied supervised learning algorithms 

In this work, several classification algorithms have been implemented in the Matlab software 
environment [20, 21]: k-nearest neighbor (kNN), Decision trees (DT), Support Vector Machine (SVM). 
The different machine learning algorithms (with their adapted tuning parameters) are applied to the 
normalized labeled training data set (75% of the total experiments). The obtained trained models are then 
tested on the labeled test data set (25% of the total experiments). The objective is to find again the labels 
of the test data set: table 3 shows the obtained accuracy result of each algorithm. 

 
Algorithms Accuracy  

KNN         83.4% 
KNN k=2    81.3% 
Weighted KNN k=2       83.4% 
Chebychev KNN k=2     87.5% 
Tree          99% 
Pruned tree  66.67% 
Linear SVM         83.4% 
Gaussian SVM           66.67% 

Table 3: Prediction error for the normalized data set 

We used some news experimental data set in order to evaluate the performance of the trained model. 
The goal is to predict online (during milling) the surface quality. The results are presented here for the 
trained model by using the linear SVM classifier algorithm: 

 

 Predicted class  

Actual 
class 

A B  

A TP = 83% FN = 17% 100% 

B FP = 0% TN = 100% 100% 

(TP: true positive rate; FN: false negative rate; FP: false positive rate; TN: true negative rate) 

Table 4:  Performance of the prediction using SVM classifier 
 

The class B was the best predicted class. Despite the fact that linear SVM algorithm lost in 
performance for data set with large predictors (i.e. large number of features), it has been an accurate 
algorithm with a good prediction rate and the lowest training time. 

 

4 Conclusion 
The milling's performance is qualified by evaluating the roughness or the flatness of the resulted 

surface. In this work, different supervised machine learning algorithms have been implemented and 
compared. To do this, features were firstly calculated from measured milling forces and then each 
Artificial Intelligence (AI) based model has been trained by the labeled set of features. From the 
prediction results, SVM algorithm seems to be a good efficient diagnosis algorithm in this application of 
honeycomb material milling. The developed diagnosis approach can also be applied to the milling of 
other material. 
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Abstract 
The work presented in this paper aims at showing experimentally how an oval pulley can generate a corrective 

effect on a timing belt drive subjected to a 2nd order periodic excitation (fluctuating load torque). For that 

purpose, a simplified timing belt drive of a 4-cylinder car engine is reproduced on a test stand. The oval pulley 

is mounted on the crankshaft axis. Experiments are conducted for different phasing angles of the oval pulley 

at several driving speeds. Pulley angular vibrations and span tension fluctuations are monitored. The results 

obtained from these experiments are analyzed in the angular and angular frequency domains. The results are 

compared with experiments performed on a reference case (equivalent circular crankshaft pulley). The study 

focuses on the effect of the oval pulley phasing angle on the amplitude of the 2nd order harmonics governing 

the angular response of the transmission. 

 
1 Introduction 

In an automotive engine, the Timing Belt Drive (TBD) is a key component in charge of synchronizing the 

valve train system and the crankshaft (figure 1). This synchronization constitutes one of the essential functions 

of the engine. It ensures the correct timing of the valves opening and closing with respect to the piston 

movement. 
 

 
Figure 1: Principle of the valve train system of a car engine with a timing belt drive 

 

In running conditions, TBD are exposed to a very harsh vibratory environment. Various excitation sources 

such as crankshaft acyclism and fluctuating load torques applied to driven pulleys, generate vibratory 



2 

phenomena that may affect the TBD dynamic performances and life. In particular, two phenomena require 

careful monitoring and need to be minimized: 

• Rotational vibrations of the transmission axes. 

• Tension force fluctuations in the belt spans. 

If mishandled, these two phenomena may induce increased component fatigue, power losses, noise and in 

the most extreme case can cause desynchronization of the TBD that could result in engine failure (piston-valve 

clash). 

In response to ever-stricter requirements for engine efficiency and reliability, car manufacturers now 

commonly use TBD comprising innovative pulleys with Non-Circular (NC) pitch profile. When rotating, a NC 

pulley causes periodic elongations of its adjacent belt spans. Hence, it behaves like an exciter that may generate 

a corrective rotational excitation able to counteract the other excitation sources acting on the TBD. It is now 

known that for optimal profile shape and phasing in the transmission, the use of a NC pulley can improve 

considerably the vibratory performances of a transmission [1,2,3,4]. Nevertheless, determining the optimal 

design parameters of a non-circular pulley remains hard to accomplish. To achieve this, it is important to 

clearly understand and identify the impact of such pulleys on the dynamic behaviour of TBD. 

The literature on this subject is relatively poor. Most works concern kinematics and quasi-static analyses 

as reported in [5,6]. In recent papers, Zhu et al. [2] and Passos et al. [3,4] propose numerical models developed 

to predict the dynamic behaviour of a transmission comprising NC pulleys. Using these models, the authors 

perform numerical studies that show how an oval crankshaft pulley can significantly reduce the rotational 

vibrations of a camshaft pulley in a four-cylinder engine (2nd order periodic camshaft load torque). The models 

are based on a discrete approach (also called 0D/1D approach) similar to that implemented by Hwang et al. [7] 

for poly-V belt transmissions comprising circular pulleys only. In his model, Hwang considers the belt spans 

as linear spring-damper elements connected to the pulleys represented by rotational inertias. In [8], Passos et 

al. conducted an experimental investigation on a basic transmission comprising two pulleys. Two 

configurations of the basic transmission were studied: one with an oval pulley mounted on the driving axis and 

the other with an equivalent circular pulley. The experiments were done with no excitation source (constant 

driving speed and constant load torque applied to the driven pulley). Instantaneous angular speed and 

acceleration of the driven pulley, transmission error and transmitted torques obtained for the two configurations 

of the transmission were analyzed and compared. The comparison provided a rigorous description of the proper 

effect of the oval pulley on the rotational dynamics of the transmission. 

The present work aims at completing the studies presented in [3,4,8]. It shows experimentally how an oval 

pulley can generate a corrective effect able to counteract an excitation source such as a 2nd order periodic (H2) 

load torque. For that purpose, the oval pulley is mounted on the driving axis of a transmission whose 

architecture is similar to that of a 4-cylinder car engine timing belt drive. Usually, in this type of transmissions 

the camshaft pulley is subjected to a fluctuating load torque having a 2nd order periodicity. The test stand is 

presented in section 2. Experiments are conducted for different phasing angles of the oval pulley and at several 

driving speeds. Angular vibrations and span tension fluctuations are monitored. The results obtained from 

these experiments are analyzed and compared with those of a reference case (equivalent circular crankshaft 

pulley) in section 3. 

 

2 Test stand 

2.1 Studied transmission 

The studied transmission is represented in figure 3 and its geometrical characteristics are given in table 1. 

The transmission has been designed in order to reproduce a simplified TBD of a 4-cylinder car engine. It 

comprises four pulleys: one oval crankshaft pulley (driving pulley), one camshaft pulley and one idler pulley 

on each side of the transmission. All the pulleys are circular except the crankshaft pulley that has an elliptical 

pitch profile. Such a pulley has two design parameters: its eccentricity 𝑒 and its phasing angle 
0
 corresponding 

to the initial orientation angle between the oval pulley major axis and the y-axis (figure 3). In the present study, 

the eccentricity is imposed (marketed component) and the phasing angle is freely adjustable. 

 

 
0

= 𝜃𝐶𝑆(𝑡 = 0) (1) 

 

Three levels of stationary crankshaft speeds are considered ( 𝜔𝐶𝑆  {600 ; 1500 ; 3000 rpm} ). The 

camshaft pulley is subjected to a fluctuating load torque 𝐶𝐶𝐴𝑀 having a 2nd order periodicity with respect to 



3 

the crankshaft rotation 𝜃𝐶𝑆. The measured load torque is plotted versus the crankshaft angle for the three 

different driving speeds in figure 2 (a, c, e). The angular frequency content of the torque is shown in figure 2 

(b, d, f). Whatever the driving speed, the torque is governed by a dominant 2nd order harmonic and secondary 

even harmonics of 4th, 6th  and 8th orders. The torque is also modulated by harmonics of 0.5th and 1st orders due 

to geometry faults and misalignments affecting slightly the measurement. When the crankshaft runs at 3000 

rpm, order 9.5 appears due to dynamic effects occurring in the mechanical device that generates the load torque 

(see section 2.2). 

 

 

 Coordinates of the pulley centers 
Pitch profiles of the pulleys 

 X (cm) Y (cm) 

Crankshaft 0 0 

Ellipse: 

– Major axis 

𝑎 = 𝑅𝐶𝑆 + 𝑒 

– Minor axis 

𝑏 = 𝑅𝐶𝑆 − 𝑒 

with {
𝑅𝐶𝑆 = 3.19 𝑐𝑚

𝑒 = 0.07 𝑐𝑚
 

Idler 

(Tight side) 
17.3 -2.8 

Circle of radius 

𝑅𝐼𝑇 = 3 𝑐𝑚 

Camshaft 39.3 0 
Circle of radius 

𝑅𝐶𝐴𝑀 = 2𝑅𝐶𝑆 

Idler 

(Slack side) 
16.9 4.7 

Circle of radius 

𝑅𝐼𝑇 = 𝑅𝐼𝑆 

Table 1: Geometrical characteristics of the transmission 

 

 

 
Figure 2: Variations of camshaft load torque in the angular (a, c, e) and angular frequency (b, d, f) domains 
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2.2 Global architecture 

The global architecture of the test stand is illustrated in figures 3 and 4. It comprises two rotary shafts (one 

driving and one driven shaft) and two supporting parts for idler pulleys. The distances between the pulleys are 

freely adjustable, enabling a custom setting of the transmission geometry. 

The crankshaft pulley is mounted on the driving axis coupled to a speed-controlled electric motor. The 

driven axis that supports the camshaft pulley of the studied transmission is coupled to the camshaft of a cylinder 

head fully equipped. It enables applying a real camshaft load torque to the transmission (see figure 2). This 

load torque has already been discussed in section 2.1. 

 

      
Figure 3: Scheme of the global test stand architecture 

 

          
(a)                                                                                     (b) 

 
(c) 

Figure 4: Face (a), top (b) and global (c) views of the test stand 

𝑥Ԧ 
𝑦Ԧ 

𝑧Ԧ 
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2.3 Measurement devices 

The measurement system is very similar to that used for the works presented in [8]. The system comprises 

usual devices employed for experimental investigations on gear transmission error and belt transmissions 

[9,10,11]. It enables measuring all the quantities depicting the rotational dynamics of the transmission. 

Optical encoders with a resolution of 2500 pulses per revolution are mounted on the driving and driven 

axes for measuring their rotation angles and speeds. Torques transmitted by the driving and the driven axes 

are monitored. On the driving axis, a torque meter with a range of 200 N.m is placed before the driving pulley. 

On the driven axis, the camshaft is equipped with strain gauges for measuring the resistive load torque. The 

electrical connection for gauges is provided by means of a slip-ring assembly. The supporting parts used for 

idler pulleys are equipped with strain gauges so that to measure y-axis component of the hub load applied onto 

the idler axis. The belt span tension forces can be deduced from the hub load as illustrated in figure 5. On both 

sides of an idler, belt tensions can be considered equal (𝑇𝛼 = 𝑇𝛽 = 𝑇) and then: 

 

 𝑇 =
𝐹

sin 𝛼+sin 𝛽
 (2) 

 

where 𝐹 is the y-axis component of the hub load, 𝑇 is the tension force in both belt spans and 𝛼 and 𝛽 are 

the respective orientation angles of the spans. 

The data acquisition system is custom made within a N. I. PXI frame including counter boards for the 

optical encoders (pulse timing method [9]) and classical data acquisition boards for the other sensors. 

 
             (a)                                                                               (b) 

Figure 5: Idler supporting part used to measure the span tensions (a) and principle diagram (b) 

 

3 Experimental analysis 

The result analyses are performed by observing the following quantities in the angular and the angular 

frequency domains: 

 Instantaneous angular speed variations for the camshaft pulley (∆𝜔𝐶𝐴𝑀). 

 Tension force variations in the tight and the slack sides (∆𝑇𝑇 and ∆𝑇𝑡) 

These quantities are first studied for a reference case for which the crankshaft pulley is circular (section 

3.1). Then, the transmission equipped with the oval crankshaft pulley is considered (section 3.2). A comparison 

study is conducted showing how the oval pulley affects the levels of angular vibrations and tension force 

fluctuations depending on its phasing angle and the driving speed. 

 

3.1 Reference case: circular crankshaft pulley 

The fluctuations and the frequency content of the camshaft angular speed are shown in figure 6. For all 

driving speeds, the variations are periodic and dominated by a 2nd order harmonic due to the dominant 2nd order 

harmonic governing the load torque. The amplitude of the H2 harmonic fluctuation is about 4.5 rpm when the 

driving speed is 600 rpm and rises to approximately 15 rpm when the crankshaft speed reaches 1500 and 3000 

rpm. One can see also that the frequency spectrum contains secondary harmonics mainly due to the other 

camshaft torque harmonics (even orders and 9.5th order for 𝜔𝑠 = 3000 rpm) but also to some disturbing 

excitations such as resonances of the test stand and 0.5th and 1st order modulations due to misalignment and 

geometry faults on the crankshaft and camshaft pulleys. 



6 

 
Figure 6: Camshaft angular speed variations in the angular (a, c, e) and angular frequency (b, d, f) domains 

 

 
Figure 7: Tight span tension variations in the angular (a, c, e) and angular frequency (b, d, f) domains 
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Figure 7 and 8 show the variations and the frequency content of the belt tensions in the tight and slack 

spans of the transmission. The amplitude of the dominant H2 harmonic slightly increases with the driving 

speed. The H2 amplitude is of course always higher in the tight span than in the slack span. Moreover, one can 

note that the tension fluctuations in the tight and slack spans are out-of-phase, which is another common result 

for belt transmission subjected to fluctuating load torque. 

 

 
Figure 8: Slack span tension variations in the angular (a, c, e) and angular frequency (b, d, f) domains 

 

3.2 Oval crankshaft pulley: study of the corrective effect 

Results obtained for the reference case (section 3.1) have shown that the variations of the camshaft speed 

and the belt span tensions caused by the camshaft load torque are strongly dominated by a 2nd order harmonic 

(H2) for all the driving speeds. Thus, in the following, the analyses focus only on the amplitude of H2 

harmonics. A parametric study has been performed in order to show how the oval pulley phasing angle impacts 

the H2 amplitude. Considering that an oval pulley is symmetric along its major axis, the experiments are only 

performed for a phasing angle ranging between 0 and 180°. 

Figures 9, 10 and 11 show respectively the results obtained for the three driving speeds 600 ; 1500 and 

3000 rpm. Each figure comprises three graphs on which the amplitudes of the H2 harmonics that govern the 

camshaft speed and tension forces in the tight and slack spans are respectively plotted versus the phasing angle 

of the crankshaft oval pulley. On these graphs, the H2 amplitude evolution with the phasing angle is 

represented with a red solid line marked with circles. Horizontal blue solid lines represent the amplitude of the 

H2 harmonics in the reference case (circular crankshaft pulley). Green and red hatched areas correspond to 

phasing angle ranges for which the oval pulley respectively involves a reduction or an increase of the H2 

harmonic. 

When the crankshaft runs at 600 rpm (figure 9), a speed fluctuation reduction can be obtained for a phasing 

angle range [0,40°][150,180°] with a maximum reduction of nearly 82% for a phasing angle around 0°. In 

contrast, for a phasing angle in the range ]40,150°[ the amplitude is higher than in the reference case with a 

critical increase of 75% for a phasing angle equal to 90°. H2 amplitude of the tension forces in tight and slack 

sides are significantly reduced for non-overlapping phasing angle ranges, respectively [97,177°] and [0,82°]. 

Amplitudes of tension force variations are less impacted by the phasing angle of the oval pulley. For both 

spans, the maximum reduction and increase ratios are the same, respectively about 24 and 26%. 
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When the crankshaft runs at 1500 rpm (figure 10), the phasing angle ranges corresponding to an increase 

and a reduction of fluctuations are quite the same as for a driving speed equal to 600 rpm. The reduction and 

increase ratios are of the same order of magnitude and are obtained for very similar optimal and critical phasing 

angle values. 

For a driving speed of 3000 rpm (figure 11), the angle ranges and the corresponding reduction and increase 

ratios differ. The speed variations are reduced when the phasing angle belongs to the range 

[0,30°][170,180°]. The optimal and critical phasing angles are respectively 10° and 95° with a maximum 

reduction and increase ratios of 60% and 166% respectively. The tension force variations in the tight span are 

reduced for a phasing angle in the range [0,22°][137°,180°]. The maximum reduction is about 50% when the 

phasing angle is around 10° and there is a maximum increase of nearly 67% for an angle of 95°. The tension 

force fluctuations induced in the slack span are reduced for a phasing angle comprised in the range 

[0,45°][158,180°] with a minimum amplitude (-30%) and a maximum amplitude (+39%) for phasing angles 

of 10° and 105° respectively. It can be seen that if the phasing angle belongs to the range [0,22°][170°,180°], 

the fluctuations are reduced for the camshaft speed and the tension forces in both spans simultaneously. In 

particular, for a phasing angle equal to 10° all the fluctuations are significantly reduced. 

In the light of these results, one can finally note that it is possible to reach a compromise with a phasing 

angle around 0°. Whatever the driving speed, such a value ensures a strong reduction of the camshaft speed 

variations and limits the tensions variations in both spans. 

 

 

 

 

 
(a) 

 
(b)                                                                       (c) 

Figure 9: H2 harmonic amplitude of the camshaft speed (a) and tension forces in the tight (b) and slack (c) 

spans when the crankshaft runs at 600 rpm 
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(a) 

 
(b)                                                                       (c) 

Figure 10: H2 harmonic amplitude of the camshaft speed (a) and tension forces in the tight (b) and slack (c) 

spans when the crankshaft runs at 1500 rpm 

 

 

 

 
(a) 

 
(b)                                                                       (c) 

Figure 11: H2 harmonic amplitude of the camshaft speed (a) and tension forces in the tight (b) and slack (c) 

spans when the crankshaft runs at 3000 rpm 
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4 Conclusion 

The experimental results presented in this paper demonstrate to what extent, for a well-chosen phasing 

angle, an oval pulley has a corrective effect enabling a reduction of the H2 fluctuations affecting the camshaft 

angular speed and the span tension forces. These results also show how much, for wrong phasing angles, the 

pulley can degrade the dynamic behaviour of the transmission inducing a strong increase of speed and tension 

fluctuations. This is why transmissions comprising NC pulleys must be designed carefully. 

In addition, one can note that the impact of an oval pulley depends on the driving speed, which make the 

design of the transmissions more difficult. As already discussed in previous works [3,4], it is not so easy to 

reduce significantly and simultaneously speed and tension force fluctuations in belt spans using a NC pulley 

only. 

For completing the present work, it could be meaningful to extend the researches to more complex systems. 

Thus, future works could involve transmissions subjected to other excitation sources such as acyclism and/or 

transmissions comprising a dynamic tensioner. It could be interesting as well to study the case of a NC pulley 

having a different profile shape adapted to the correction of harmonics of other order. Also, the effect of NC 

pulleys on TBD acoustic radiation still remains to investigate (impact on belt meshing noise, span transverse 

vibrations, …). 
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Abstract
In this paper, robust optimization tool is proposed for nonlinear energy sinks used for the mitigation of friction-
induced vibrations due to mode coupling instability in braking systems. The study is based on a mechanical
system which is composed of two NESs coupled to the well-known two-degrees-of-freedom Hultèn’s model.
In such an unstable system coupled with NES, it is usual to observe a discontinuity in the steady-state am-
plitude profiles which separates the parameters space into two parts which contain mitigated and unmitigated
regimes respectively. We developed a methodology based on Multi-Element generalized Polynomial Chaos to
identify this discontinuity which allows us to determine the Propensity of the system to undergo a Harmless
Steady-State Regime (PHSSR). The objective of this work is, therefore, to maximize the value of PHSSR to
obtain an optimal design of the NESs. For that, several stochastic optimization problems are presented taking
into account the dispersion of the uncertain parameters.
Keywords: Brake squeal noise, Friction-induced vibrations, Nonlinear energy Sink, Uncertainties, Ro-
bust optimization

1 Introduction

Dynamic instability also named friction-induced vibrations is one of the important problem that the friction
system can confront. This phenomenon can appear by the generation of Limit Cycle Oscillation (LCO) induced
by dry friction. They are explained, in most studies of self-excited systems, by the coupling of the tangential
and normal modes [1, 2, 3]. As a way to model these dynamic instabilities related to friction, the well-known
two-degrees-of-freedom Hultèn’s model [4, 5] has been widely used and it is also considered in this paper.

The NES is a nonlinear spring mass damper with a strong cubic stiffness. It can adapt itself to the main
system that it is attached to without being tuned to a specific frequency. Its operation is based on the concept
of Targeted Energy Transfer (TET) which has become an important passive control technique for reducing or
eliminating unwanted vibrations [6, 7].

In this paper, two ungrounded NESs are used in order to mitigate or eliminate mode coupling instability in
the Hultèn’s model. In [8], the authors classified the steady-state response regimes in two main regimes related
to the dispersion of some uncertain parameters: the first are the mitigated regimes and the second are the un-
mitigated regimes. As usual in the context instability mitigation by means of NESs, the LCO amplitude profile
presents a discontinuity between these regimes which makes the NES potentially very sensitive to uncertainty.
For that, with a low computational cost, the aim is to maximize the performance of the NES (i.e. minimize the
region parameter of unmitigated regimes), by optimizing its design parameters taking into account uncertain
parameters.

NES has been extensively optimized in a deterministic context (see e.g. [9]), but there is very little work
performing optimization of NES under uncertainties in general [10] and for mitigation of self-excited vibrations
in particular [11]. In the latter, the authors have developed a methodology of optimization under uncertainties
of a NES attached to a two-degree-of-freedom airfoil. In the present work, a robust optimization tool based on
the Multi-Element generalized Polynomial Chaos (ME-gPC) is developed.

The article is constructed as follows: in Section 2, the two degrees-of-freedom Hultèn’s model coupled
to two NESs is presented. In Section 3, the steady-state of the system as well as the discontinued profile are
introduced. The optimization formulation under uncertainties is formulated in Section 4. Section 5 describes
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Figure 1: (a) Mechanical system with NESs. (b) Zoom on the NES1. (c) Zoom on the NES2.

the polynomial chaos theory and the used stochastic optimization algorithm. The results of the optimization
methods are presented in Section 6. Finally, conclusions are given in Section 7.

2 The mechanical system

The mechanical system considered in this work is composed by the two degrees-of-freedom (DOF) Hultèn’s
model [4, 5], which represents the primary system, coupled to two identical NESs with masses mh, damping
coefficients ch and cubic stiffnesses kNL

h . The NESs are attached on the primary system in an ungrounded
configuration as shown in Fig. 1.

The equations which describe the mechanical system are given by :

d2x1

dt2 +η1ω1
dx1

dt
+ω2

1 x1− γω2
2 x2 +ϕ1x3

1− γϕ2x3
2+

µω1

(
dx1

dt
− dh1

dt

)
+ξh (x1−h1)+ϕh (x1−h1)

3 = 0 (1a)

ε
d2h1

dt2 +µω1

(
dh1

dt
− dx1

dt

)
+ξh (h1− x1)+ϕh (h1− x1)

3 = 0 (1b)

d2x2

dt2 +η2ω2
dx2

dt
+ω2

2 x2 + γω2
1 x1 + γϕ1x3

1 +ϕ2x3
2+

µω1

(
dx2

dt
− dh2

dt

)
+ξh (x2−h2)

+ ϕh (x2−h2)
3 = 0 (1c)

ε
d2h2

dt2 +µω1

(
dh2

dt
− dx2

dt

)
+ξh (h2− x2)+ϕh (h2− x2)

3 = 0, (1d)

where h1(t) and h2(t) (respectively x1(t) and x2(t)) represent the NESs displacements (respectively the displace-
ments of the primary system), ηi = ci/

√
mki, ωi =

√
ki/m, ϕi = kNL

i /m (with i = 1,2), ε = mh/m assuming
0.01 < ε < 0.1 , ξh = kh/m, µ = ch/

√
mk1 and ϕh = kNL

h /m.
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(a) (b)

Figure 2: Numerical integration in the direction x1 of the Hult‘en’s model without NESs for two values of the
friction coefficient: (a) Times series; (b) Representation in the phase plane.

3 Preliminary results

3.1 Vibratory levels and possible steady-state regimes

A example of the numerical simulation of the system without NESs is plotted in Fig. 2 for two different
values of the friction coefficient: γ = 0.3 and γ = 0.4. The other parameters are

ω1 = 2π100, ω2 = 2π85,
η1 = 0.02, η2 = 0.06, ϕ1 = 105, ϕ2 = 0,
ε = 0.05, ξh = 0.001, µ = 0.02, ϕh = 1.4 ·105.

(2)

Moreover, the initial conditions are small perturbation of the trivial equilibrium position: x1(0) = x2(0) = 0,
ẋ1(0) = ẋ2(0) = 10. When γ = 0.4, Limit Cycle Oscillations (LCO) are observed. We focus our analysis on the
capacity of the NESs to suppress or mitigate these LCOs.

Four main types of steady-state regimes can be generated when two NESs is attached on the: complete sup-
pression of the instability, mitigation through Periodic Response (PR), mitigation through Strongly Modulated
Response (SMR) or no mitigation.

An illustration of these regimes is shown in Fig. 3 which plots the displacements x1(t) with respect to times
with and without the NESs. Hereafter, mitigated regimes referred to complete suppression, PR and SMR.

3.2 The objective function

We define the amplitude AwNES
1 of the variables x1 of the coupled system Eq. (1) and within a steady-state

regime as

AwNES
1 =

max
[
xSSR

1 (t)
]
−min

[
xSSR

1 (t)
]

2
, (3)

where xSSR
1 (t) is the times series of the variables x1 obtained from the numerical integration of the coupled

system Eq. (1) within the steady-state regime1.
The amplitudes AwNES

1 and AwoNES
1 (i.e. the amplitude of the system without NESs) are plotted as a function

of the friction coefficient γ in Fig. 4 for the set of parameters Eq. (2).
The figure highlights a jump (or discontinuity) in the amplitude profile AwNES

1 . This discontinuity cor-
responds, when γ increases, to the transition from SMR to no suppression regimes and separates mitigated
regimes and unmitigated regimes.The value of γ at the jump is called mitigation limit (with respect to γ) and
denoted γml .

1The calculation was performed on 4 seconds in order to be sure that the steady-state has been reached.
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(a) (b)

(c) (d)

Figure 3: Comparison between time serie x1(t) resulting from the numerical integration of the braking system
with and without NESs. (a) Complete suppression, γ = 0.16; (b) Mitigation: PR, γ = 0.18; (c) Mitigation:
SMR, γ = 0.2; (d) No suppression, γ = 0.22. The set of parameters Eq. (2) is used.

Then the Propensity of the system to undergo a Harmless Steady-State Regime (PHSSR) of the oscillation
by the NESs is estimated. We compute a set of Stotal samples of the uncertain parameters within the considered
uncertain space and following their distribution law. Then, the PHSSR is defined as follows

PHSSR =
SHSSR

Stotal
×100 (4)

where SHSSR is the number of samples within the region of uncertain parameters space in which the LCO of the
system is mitigated or the system is stable.

The PHSSR represents the objective function of the study.

4 Optimization Formulation under uncertainties

The sensitivity of the friction coefficient is such that the steady state of the mechanical system is discon-
tinuous and presents a jump. This jump induces areas in which the efficiency of the NES is either high or low.
In order to obtain a robust design of NES which is insensitive to the dispersion of the uncertain parameters, a
stochastic optimization problem is considred as follow:
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Figure 4: Amplitudes AwNES
1 and AwoNES

1 as a function of the friction coefficient γ .

Maximize PHSSR (AwNES
1 (xd ,xu))

Subject to x(min)
d 6 xd 6 x(max)

d (5a)

(5b)

where

• xd represents the design variables of the NES with lower bounds x(min)
d and upper bounds x(max)

d .

• xu represent the uncertain parameters of the primary system.

5 Optimization Algorithm

In order to solve an optimization problem under uncertainties, the determination of the LCO of the me-
chanical system need to use a stochastic method to take into account the uncertain parameters. In this work, the
Multi-Element generalized Polynomial Chaos is used as an alternative approach to reduce the computational
cost of the traditional methods (Monte Carlo or deterministic simulations).

5.1 Polynomial Chaos theory

5.1.1 generalized Polynomial Chaos

The gPC theory [12, 13] allows to express a random process X(ξ ) called also the Quantity of Interest (QoI)
with a truncated orthogonal polynomial function series such as

X(ξ )≈
Np

∑
j=0

x̄ jφ j(ξ ), (6)

where:

• x̄ j are the gPC coefficients of the stochastic process X(ξ ),

• φ j(ξ ) are orthogonal polynomial functions,

• Np =
(p+r)!

p!r! −1 where p is the order of the gPC and r is the number of the uncertain parameters,

• ξ (ξ1, ...,ξr) is a vector of r independent random variables within[−1,1]r.
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5.1.2 Multi-Element Generalized Polynomial Chaos (ME-gPC)

The ME-gPC consists to split ξ into a collection of m non-intersecting elements and to approximate the
stochastic process X(ξ ) using the gPC in each element [14]. It is given by

X(ξ )≈
m

∑
k=1

Xk(ξ̄ k)Jk, (7)

where

• Xk(ξ̄ k) =
Np

∑
j=1

x̄k, jφ j(ξ̄ k) where ξ̄ k is an uniform random variables corresponding to the kth element,

• Jk is the element size.

We denote by σ2
p,k the variance of the QoI estimated in the kth element directly from the gPC coefficients

as:

σ2
p,k =

1
2r

Np

∑
j=1

x̄2
k, j
〈
φ 2

j
〉
. (8)

5.2 Proposed algorithm

The ME-gPC metamodel would not be efficient in its initial configuration due to the presence of discon-
tinuities. In fact, the goal is not to obtain an accurate representation of the response of the system, but to be
able to locate the discontinuity. Figure 5 shows the different steps of the ME-gPC based method to detect the
jump. The method consists to split the stochastic parameter space into two equal non-intersecting elements and
to evaluate in each element the amplitude of displacement of the system. Then, the verification of the presence
or not of discontinuity is addressed according to the comparison of the variance σ2

p,k to a chosen threshold θ1.
The process stops either if the element size reaches a threshold

Jkmin = θ2 Jk0, (9)

where Jk0 represents the size of the initial element or if the number N′ of numerical simulations required with
the ME-gPC based method is smaller than the typical number N of simulations required with the reference
method. The mitigation limit is, therefore approximated by the upper bound of the last found element and then
the robust evaluation of the PHSSR is calculated.

6 Results

In this work, the friction coefficient γ is considred as the uncertain parameter (xu) and the damping rate of
the NES µ as the design variables (xd).

6.1 Reference study

In this section, the reference is evaluated with the deterministic model (1). In the first case, 50 deterministic
samples of the damping rate of the NES (µ ∈ [0,0.04]) are used. For each sample of µ , 1000 samples of
the friction coefficient (γ ∈ [0,0.4]) are used in order to determine the mitigation limit γml. The number of
simulations is therefore equal to 50000 (50 × 1000). Fig. 6(a) shows the variation of the mitigation limit as a
function of µ . Because of the presence of a plateau, we realize that the number of samples of γ is not sufficient
to determine the optimal design value of µ . For that, 10 added deterministic samples of the damping rate of the
NES (µ ∈ [0.02,0.03]) with now 10000 samples of the friction coefficient γ to determine the mitigation limit.
The total number of simulations required is now equal to 150000 (50000 + 10 × 10000). Fig. 6(b) shows the
new variation of the mitigation limit as a function of µ . In this case, the maximum (i.e. optimal) value of γml is
0.2004 which gives a maximum value of PHSSR equals to 50.1%. The corresponding optimal design value for
the damping rate is µRef

opt = 0.024.
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Figure 5: Algorithm of the ME-gPC based method to identify the mitigation limit.
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Figure 6: Variation of the mitigation limit as a function of the damping ratio of the NES (µ) by the deterministic
method. (a) 50 samples of µ ∈ [0,0.04]; (b) 10 added samples of µ ∈ [0.02,0.03].

6.2 Optimization using the ME-gPC based method

In this section, the algorithm presented in Fig. 5 is applied to estimate AwNES
1 (the considered QoI) and

then the mitigation limit and the PHSSR. The gPC order is p = 1 and the threshold θ1 = 2.10−3%. Fig. 7
shows an example, with a given value of µ , of the algorithm described in Section 5.2. As described above, the
mitigation limit is approximated by the upper bound of the last found element. Now, 50 deterministic samples
of the damping rate of the NES (µ ∈ [0,0.04]) are used. The samples of the friction coefficient γ are built
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Figure 7: Last step of the ME-gPC based method to identify of the mitigation limit (γml).

using the Latin Hypercube Samples (LHS) method. Fig. 8(a) shows the variation of the mitigation limit as a
function of µ with θ2 = 1%. In this case, the number of simulations is equal to 6547. The optimal value of µ
is in the interval Iopt,1 = [0.016,0.032]. In order to reduce the size of Iopt the threshold θ2 and the mitigation
limit is determined within Iopt,1. Fig. 8(b) shows the variation of the mitigation limit as a function of µ with
θ2 = 0.1%. The added number of simulations is equal to 2766 and the optimal value of µ is in the interval
Iopt,2 = [0.019,0.026]. Fig. 8(c) shows the variation of the mitigation limit as a function of µ with θ2 = 0.05%
used within Iopt,2. In this case, the added number of simulations is equal to 1395 and the optimal value of µ is
now in the interval Iopt,2 = [0.0208,0.0248] = 0.0228±8%. This interval has a midpoint equal to 0.0228 which
gives a relative error equal to 5% compared to the reference. The total number of simulations is equal to 10708
which represents 14 times less than the reference.

7 Conclusion

In this paper, the optimization of two NESs attached to the two degrees-of-freedom (DOF) Hultèn’s model
is presented. It accounts the discontinuity presented in the steady-state profiles using a stochastic optimization
method. The results show the efficiency of the ME-gPC based method to detect the discontinuity and therefore
the so-called mitigation limit. This allows us to provide an optimal design of the NESs with a low computational
cost compare to that the deterministic optimization reference method.

References

[1] J.T. Oden and J.A.C. Martins. Models and computational methods for dynamic friction phenomena.
Computer Methods in Applied Mechanics and Engineering, 52(1):527–634, 1985.

[2] Guillaume Fritz, Jean-Jacques Sinou, Jean-Marc Duffal, and Louis Jézéquel. Investigation of the rela-
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Abstract
The studied system is a planar pendulum coupled with a nonlinear absorber and parametrically excited at its
basis. The dynamical equations are treated with a multiple scale method. At fast time scale, a slow invariant
manifold represents the asymptotic behavior. At slow time scale, the equilibrium points and their stability are
investigated. Several phase portraits complete the analysis of the dynamical behavior of the system. Finally,
numerical examples are given to confirm analytic predictions.

1 Introduction

Vibrations may be problematic in mechanical systems. They can provoke abnormal wear, noise or discom-
fort especially in case of transportation. Some devices have been designed in order to control these vibrations.
Frahm [1] proposed a tuned mass damper i.e. a spring mass device coupled with the main system and able to
reduce the energy of one mode. Later on, Roberson [2] showed that a nonlinear behavior of the control device
can be more efficient. Since then, several nonlinear absorbers have been designed such as nonlinear tuned vi-
bration absorber (NTVA) [3] or the nonlinear energy sink (NES) [4, 5]. The latter is purely nonlinear i.e. there
is no linear term in the restoring force function. Whereas the tuned mass damper is efficient only for one mode,
the NES can be used on a wider range of frequency.
Here, the system is a pendulum subject to a parametric excitation corresponding to the vertical displacement
of its rotation axis. It corresponds to many industrial system, in particular to a rope-way vehicle excited by
the movement of the cable. Matsuhisa et al. [6] designed several linear and nonlinear tuned mass damper in
order to control the oscillations of a pendulum. Song [7] analyzed a parametrically excited pendulum used as
a nonlinear absorber with an harmonic balance method. Hurel et al. [8, 9] studied a NES coupled to a two-dof
pendulum excited by a generalized force with a multiple scale method. Here, the dynamical behavior of the
system is also analyses with a multiple scale method.
In the section 2, the system is presented and dynamic equations are written. These equations are analyzed at
two different scales of time in section 3. Then, in section 4, two numerical examples are given to illustrate
analytic developments. Finally, the paper is concluded in section 5.

2 Description of the studied system

2.1 Main system

The main system is a pendulum in the plan (~ex, ~ey) attached at the point P by a hinged joint characterized
by a viscous damping coefficient Cϕ as seen on Fig. 1. Its mass, moment of inertia and center of mass are noted
respectively M, J and G. The length L is the distance between the points P and G. The pendulum rotates around
the point P with an angle ϕ . A gravitational field of magnitude g and direction −~ey exists.

2.2 Nonlinear absorber

In order to control the oscillations of the pendulum, a nonlinear absorber is coupled to the main system at a
distance a from the point P. The mass m of the absorber is very small compared to the mass of the main system.
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Figure 1 – Parametrically excited pendulum coupled with a nonlinear energy sink.

The ratio of mass is called ε:
ε =

m
M
� 1 (1)

The nonlinear force function of the absorber reads:

s(u) = Ku3 +Cuu̇ (2)

where u is the relative displacement between m and the attached point with the main system and Cu is a viscous
damping coefficient.

2.3 Parametric excitation

The main system is subject to a parametric excitation: an imposed vertical displacement of the point P
called yP(t). We assume the displacement small (order of ε) and periodic with a frequency Ω. It can be written
as Fourier series:

yP(t) = ε ∑
n∈Z

yneinΩt (3)

where i is the complex number such as i2 =−1.

2.4 Dynamical equations

The coordinates of the center of mass G and the mass of the absorber m read:
{

xG = Lsin(ϕ)
yG = yP−Lcos(ϕ)

,

{
xm = asin(ϕ)+ucos(ϕ)
ym = yP−acos(ϕ)+usin(ϕ)

(4)

The kinetic K and potential U energies of the system became:

K =
1
2

Jϕ̇2 +
1
2

M
(
ẋ2

G + ẏ2
G
)
+

1
2

m
(
ẋ2

m + ẏ2
m
)

(5)

U = MgyG +mgym +
1
4

Ku4 (6)

The non-conservative internal forces of the system are:

Fϕ =Cϕ ϕ̇ (7)

Fu =Cuu̇ (8)
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We deduct from Eqs. 4, 5, 6, 7 and 8 with the Lagrange equations, the dynamic equations of the system:
{[

L+ j+ ε(a2 +u2)
]

ϕ̈ + εaü+ εcϕ ϕ̇ +2εϕ̇ u̇u+[Lsin(ϕ)+ ε(asin(ϕ)+ucos(ϕ))] (g+ ÿP) = 0

ε
[
aϕ̈ + ü− ϕ̇2u+ cuu̇+(g+ ÿP)sin(ϕ)

]
+ ku3 = 0

(9)

where j =
J
M

, cϕ =
Cϕ

M
, cu =

Cu

m
and k =

K
M

. The natural frequency ω0 of the main system alone at small angle
reads:

ω0 =

√
Lg

j+L2 (10)

3 Asymptotic behavior

We use a multiple scale method to understand the behavior of the system at several scales of time. To this
end, the time t is broken down in several scales τn, thanks to the small parameter ε:

τn = εnt, n ∈ Z (11)

The derivative operator can be redefined:
d
dt

= ∑
n∈Z

εn ∂
∂τn

(12)

We assume the angle ϕ and the displacement u are small. A change of scale can be performed:

ϕ =
√

εϕ (13)

u =
√

εu (14)

Then the complex variables of Manevitch [10] are introduced:

ΦeiΩt = ϕ̇ + iΩϕ (15)

UeiΩt = u̇+ iΩu (16)

In the following development, we keep only the first harmonics thanks to a Galerkin method. This is carried
out for an arbitrary function of the system h(τ0,τ1,τ2, ...) via:

H =
Ω
2π

∫ 2π
Ω

0
h(τ0,τ1,τ2, ...)e−iΩτ0dτ0 (17)

We assume the frequency of the first harmonic of the excitation Ω is closed to ω0:

Ω−ω0 = σε (18)

3.1 Slow time scale τ0

At fast time scale τ0, the Eqs. 9 of the system yield to:

∂Φ
∂τ0

= 0 (19)

∂U
∂τ0

+ i
aω2

0 −g
2ω0

Φ+
iω0 + cu

2
U− i

3k
8ω3

0
|U |U2 = 0 (20)

We conclude from the Eq. 19 that the amplitude Φ is independent of fast time τ0. We are looking for the
asymptotic state of the system at fast time: τ0 −→∞ and ∂U

∂τ0
= 0. By writing the complex variables in the polar

form Φ = Nϕeiδϕ and U = Nueiδu , the Eq. 20 gives:

(aω2
0 −g)2N2

ϕ =

(
3k

4ω2
0

N3
u −ω2

0 Nu

)2

+ c2
uω2

0 N2
u (21)
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The Eq. 21 describes the slow invariant manifold of the system (SIM). It is showed on Fig. 2 with the following
parameters: k = 0.15m−2 s−2, j = 10m, L = 1m, a = 1m, cu = 0.1s−1 and g = 9.81ms−2. By following the
method described by Ture Savadkoohi et al. [11] we find the following singular points:

Nu1,2 =
2ω3/2

0

√
2ω0±

√
ω2

0 −3c2
u

3
√

k
(22)

The zone of the SIM between these singular points is unstable.

10-1 100 101
10-2

10-1

100

101 Stable fix point
Unstable fix point
Singular point

Figure 2 – Slow Invariant Manifold of the system with stable and unstable zones and singular points.

3.2 Fast time scale τ1

We study now the system at fast time scale around the SIM. The analysis of Eqs. 9 gives:

Lg
∂Φ
∂τ1

+

(
i
2σLg+aω0(aω2

0 −g)
2

+
cϕω2

0

2

)
Φ+ i

ω0(aω2
0 −g)

2
U−2iy2Lω3

0 Φ?+ i
Lg |Φ|2 Φ

16ω0
= 0 (23)

The complex variable S can be expressed as a function of U thanks to the Eq. 20 of the SIM:

Φ =
U

aω2
0 −g

(
3k |U |2

4ω2
0
−ω2

0 +4icuω0

)
(24)

To find he equilibrium points, we consider no variation of Φ at fast time i.e. ∂Φ
∂τ1

= 0. By replacing Eq. 24
in Eq. 23 and by taking the norm, we obtain a polynomial of degree 9 in N2

u . The solutions are obtained
numerically and represented on Fig. 3 as a function of σ with cϕ = 50ms−1 and y2 = 20m.

The stability of the equilibrium points is determined by a perturbation method with Eqs. 23 and 24:

δu→ δu +∆δu, Nu→ Nu +∆Nu (25)

After linearisation, we can write:

A




∂∆δu

∂τ1
∂∆Nu

∂τ1


= B

[
∆δu

∆Nu

]
(26)

4



-10 -8 -6 -4 -2 0 2 4 6 8 10
10-2

10-1

100

101

N

Stable
Unstable
Without NES

(a) Nϕ

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-1

100

101

N
u

Stable
Unstable

(b) Nu

Figure 3 – Equilibrium point of the system with NES compared to the equilibrium points of the system without
NES (dashed line) as a function of σ .

where A and B are matrices. The stability depends on the signs of the eigenvalues of A−1B. On the Fig. 3,
the stability of the equilibrium points is represented with blue (stable) and red (unstable) colors. Note that
Nu = Nϕ = 0 is also an equilibrium point for every σ but is not represented because of the logarithmic scale of
the graph. Its stability depends on δu.

3.3 Phase portrait

The knowledge of the equilibrium points and their stability is not enough to predict the behavior of the
system. To complete the analysis, phase portraits are computed and plotted on Fig. 4 for two values of σ . In
each case, for a starting point of the system with Nϕ(0) < 0.2s−1, the system will evolute to stay below the
second singular point i.e. ∃t1,∀t > t1 Nϕ(t)≤ Nϕ1. This fact is illustrated with numerical examples in the next
section.

(a) σ =−5Hz (b) σ = 0Hz

Figure 4 – Phase portrait of the system for two values of σ . A blue point is a stable equilibrium point whereas
a red point is an unstable equilibrium point. Red lines correspond to singular points Nϕ1 and Nϕ2. The first
stable zone of the SIM (Nu < Nu1) is represented by green curves and the second stable zone (Nu > Nu2) by
black curves. The equilibrium point Nϕ = 0 is not visible because of the logarithmic scale.
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4 Numerical simulations

In order to illustrate the efficiency of the NES, two cases are shown with σ = 0Hz:

• case 1: the pendulum without NES with a very low initial amplitude Nϕ(0) = 0.1s−1 but with a particular
phase δϕ(0) = 0rad.

• case 2: the pendulum with NES with a relatively high initial amplitude Nϕ(0) = 0.4s−1 and an arbitrary
phase δϕ(0) = 1rad.

The results are shown on figure 5 and 6 with ε = 10−2. First, we note a good agreement between numerical
calculations and analytic phase portraits. In the first case, despite the initial amplitude is low, the system
moves toward an equilibrium point with high amplitude (Nϕ = 0.8). In the second case, the system goes to the
equilibrium point with zero amplitude while the initial condition was higher than in the previous case. This is
true for any initial phase angle δϕ(0).
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(a) ϕ as a function of time. (b) Phase portrait and numerical result.

Figure 5 – Case 1: numerical result without NES, Nϕ(0) = 0.1s−1, δϕ(0) = 0rad
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(a) ϕ and u as functions of time. (b) Phase portrait and numerical result.

Figure 6 – Case 2: numerical result with NES, Nϕ(0) = 0.4s−1, δϕ(0) = 1rad
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5 Conclusion

After a presentation of a system of a pendulum coupled with a nonlinear energy sink under parametric
excitation, the dynamic equations are written thanks to the Lagrange equations. The analysis with a multiple
scale method at fast time shows a slow invariant manifold of the system. At the next order, the equations give
the equilibrium points and their stability. They are traced as a function of the frequency of excitation. To better
predict the behavior of the system, phase portraits are drawn at different values of frequency. They show that
the nonlinear energy sink can help the system to stay below a value instead of going to an equilibrium point
with very high amplitude. This result is illustrated by two numerical examples. The first one shows that even if
the initial amplitude of the angle of the pendulum without absorber is very low, the system can reach very high
amplitude. As shown in the second example, this does not happen with a nonlinear absorber.
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Abstract
Rotative systems do not have a constant revolution speed. The problem is even more significant in internal
combustion engines, where the crankshaft is submitted to a torque that is far from being constant over a rev-
olution period. This matter causes unacceptable noises in the the gearbox and fatigues the shaft, and it can
be even further amplified by the shaft dynamics. This well-known problem is already tackled by numerous
passive systems, and some active devices are being introduced to further enhance their capabilities. However,
these ones are complex, not always fail-safe, need a control unit and consume high levels of energy.
In this paper, the authors introduce a hybrid self-fed damper for the so-called rotational irregularities, based on
a tuned massed damper controled through an electromagnetic coupling by the irregular behaviour itself. For a
better description, the whole behaviour of this non-stationary process is governed with an angular approach.

1 Introduction

In an internal combustion engine, the impulse initiated by the combustion of gas within the cylinders is able
to put the crankshaft into a rotating movement, thus transmitting a torque to the wheels through the drivetrain.
However, the movement of the piston is not uniform, and the transmitted torque is far from being constant at
a steady engine regime [1]. Indeed, the important pressure variations on the piston as well as the influence
of the alternating mass inertia create a periodic oscillation around an average value in torque. This creates a
similar oscillation in angular acceleration, speed, and position, which is commonly referred to as rotational
irregularities.
This oscillation tends to generate unacceptable noises, such as rattling noise in the gearbox, and fatigues the
drivetrain parts, shortening the operating lifetime. For these reasons, such irregularities need to be reduced,
which is traditionally done by a flywheel located between the crankshaft and the gearbox, while a viscous
Lanchester damper on the front end reduces the torsional magnitude through energy dissipation. However, due
to the downsizing of engines for fuel-consumption reasons, the simple flywheel is not enough anymore for
acceptable noise levels.
This rotational irregularity phenomenon can be further amplified when the critical frequency of the crankshaft
is a multiple of the current engine average speed. Here again, downsizing is a problem as a crankshaft length
reduction increases the critical frequency, enabling a larger spectrum of engine speeds to excite the resonance.
The presence of the viscous damper ensures that the crankshaft does not immediately break, but at the cost of
a dissipated power up to 1kW for heavy duty vehicles.

For those reasons, there is a continuous research for more efficient solutions tackling the two presented is-
sues : mitigation of the torsional levels in service and especially at the critical frequencies, and reduction of
the dissipated energy in the damper. A large amount of passive solutions have been introduced over the two
last decades in order to decrease the magnitude of torsional motions, typical examples being the Double (or
Triple) Mass Flywheel ([2],[3]), variable inertia flywheels ([4],[5]), planetary gear systems ([6]), or Centrifugal
Pendulum Vibrations Absorbers ([7],[8],[9]). These latter rely on the creation of an extra degree of freedom,
enabling an "escape way" during resonance. However, its behaviour is still dependent on the steady engine
regime, complicating a tuning process[10].
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Some active concepts have also been proposed ([11],[12],[13],[14]), as the control possibilities they offer
greatly enhance the capabilities of such dampers. Their limitation is the need for a power source.
Regarding the second issue, a promising way would be to collect the otherwise dissipated energy, and to store
it so that it can be used by other devices in the vehicle. Several possibilities exist for the conversion, based
on piezoelectricity - R-EHVTA [15] or pendulum harvester [16] - or on electromagnetic coupling, with some
concepts developped over the last years, such as [17] or [18].

In this paper, the authors introduce a concept for a new self-fed rotational hybrid damper, combining an
electromagnetic harvester with a hybrid Tuned Mass Damper (hTMD), that has already proved its capabilities
for translational motions applications [19]. It is based on the generation of a counteracting torque by a set
of permanent magnets and coils, similar to what happens in active dampers, coupled with the principle of the
TMD, efficient against resonance issues. The TMD embeds a permanent magnet that moves in a coil. Both
movements will change the local magnetic fields and generate an induced current in a common circuit, acting
on each other.
In order to tackle non-stationary operating conditions, the present model involves angular and time approaches
to describe the cyclic excitations and the frequency resonances.

2 Model building, important concepts and assumptions

The present concept can be applied to any rotating shaft submitted to rotational irregularities, no matter
their profile. However in this paper we consider a 6-cylinder crankshaft, each with a cubic capacity of 1,3L.

2.1 Mechanical model

The crankshaft is first reduced to a 2 DoF-in-torsion part, as only the first torsional mode is of interest in
this academic first application. As described in Fig.1, a regime-dependant cyclic excitation Cexc is introduced
on the front degree of freedom. This excitation is the sum of the the torque produced by the explosion in the
cylinders and of inertial effects. It is further described in the next section.
The measures are conducted on both ends, the second being the output of the shaft, connected to the gearbox.
On this one, a resistive torque Cc assumed constant is applied, so as to balance the system and enable a steady
speed. The actual interest is indeed the difference between both angles θ2−θ1 for a constant engine regime.
Numerical values of the introduced parameters are to be found in Table.1.

(a) Full crankshaft (b) Reduced model

Figure 1 – Model reduction

This model is governed by the system of equations :
{

I1θ̈1 + cTeq(θ̇1− θ̇2)+ kTeq(θ1−θ2) =Cexc

I2θ̈2 + cTeq(θ̇2− θ̇1)+ kTeq(θ2−θ1) =−Cc
(1)
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Parameter Value
I1 0.23 kg.m2

I2 1.65 kg.m2

kTeq 524 114 Nm/rad
cTeq 100 Nms/rad

Table 1 – Parameters of the 2-DoF model

In a perfect engine, the natural frequency is excited only by the orders that are multiples of the number of
cylinders, Ncyl , devided by two. To that extent, only the orders multiple of 3 are here taken into account.
According to Table 2, as our engine speed range is from 600RPM to 2600RPM and the natural frequency is
256,8 Hz, we can restrict the analysis up to the 24th order : higher orders will not excite the natural frequency .

Order Engine steady regime
3 -
6 2569 RPM
9 1713 RPM

12 1285 RPM
15 1028 RPM
18 857 RPM
21 734 RPM
24 642 RPM

Table 2 – The investigated orders and the corresponding engine regime at resonance

2.2 Excitation torque profile and non-stationary conditions

In a 4-stroke internal combustion engine, a complete period is accomplished in two revolutions, each stroke
corresponding to half a revolution. Among them, only the firing stroke produces a useful torque, with a non-
constant force over the revolution. However, the presence of the crank also causes it to be highly dependant
on the instantaneous position α , as it is depicted in Fig.2. Noting λ the ratio of the rod length LB to the crank
radius R, Fbg the projection on the rod of the gas-induced force and d its lever arm, a geometric projection of
Cg =−Fbg.d brings :

Cg(α) =−Fg(α) ·R · sin(α) ·
(

1+
cos(α)√

λ 2− sin(α)2

)
(2)

Figure 2 – Crankshaft, piston and rod
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The force Fg, created by the explosion in the piston, is also dependant on the engine steady regime. In this
expression, a constant part is the engine torque, and the oscillations around it are a first source of rotational
irregularities.

The second source originates from the motions of the masses around and above the axis : the sum of the
forces created by their inertias is not 0. Here again, there is a strong dependence on the instantaneous angular
position, and also on the instantaneous angular speed. We note malt the mass considered in a translational
motion when the shaft rotates. Assumed that the inertias do not change with speed and position :





Fi =−malt .
d2Z
dt2

Z = R
(

cos(α)+
√

λ 2− sin(α)2
)

Ci =−Fi.R.
(

cos(α)+
√

λ 2− sin(α)2
) sinα√

λ 2− sin(α)2

(3)

Which provides :

Ci =−malt .R2
((

sin(α)+
sin(2α)

2
√

λ 2− sin(α)2

)
α̈+

(
cos(α)+

λ 2cos(2α)+ sin(α)4

(λ 2− sin(α)2)3/2

)
α̇2
)

sin(α)
(

1+
cos(α)√

λ 2− sin(α)2

)

(4)
The final excitation torque Cexc is the sum of the inertial torque and the oscillating gas torque. Its process
is non-stationnary, though the simplifying stationary assumption α = ω.t with a constant ω is often made.
However, the instantaneous speed does not remain constant, since the input torque itself is harmonic : the
angular acceleration is not 0, and its magnitude is directly linked to Cexc. In order to prevent any hidden
behaviour to disappear in the analysis, and as the angular position θ1 appears as the natural variable for such a
rotating system, we use this variable instead of time for the resolution. The counterpart here is the introduction
in the equations of a non-linear behaviour when the variable is swapped, as there is now a division by the
instantaneous angular speed : dX

dθ1
= 1

θ̇1

dX
dt .

2.3 TMD model

First addition to the previous 2-DoF model is the mass damper, tuned on its resonance frequency according
to Den Hartog’s principles [20]. It consists in a magnet clamped on a mass, linked to the rotating shaft with a
spring set at a certain distance RT MD of the rotation axis. The resulting torsional stiffness kT MD depends on the
tuning. Around this magnet, a coil is set, clamped to the shaft, in such a way that the TMD can translate within.

Figure 3 – Reduced model of crankshaft including a TMD in front position

However, as we want to control the torsional behaviour, determined by the difference of the angles, both
degrees of freedom are potential candidates to host the TMD set, but the two will not act the same.
The front end has the greatest amplitude during vibration due to its lower inertia, and the lower the inertia, the
lower the efficient modal inertia Ieq. At a given RT MD, a lower mass for the TMD is then required, as the ratio
of its inertia I0 to Ieq is the key parameter of the tuning. To that extent, better performance can be achieved for
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Parameter Value
I0 0.013 kg.m2

µ 0.05
kT MD 29 617 Nm/rad
cT MD 7.36 Nms/rad
RT MD 0.2 m
mT MD 0.325 kg

Table 3 – Parameters of the 3-DoF model

a TMD on the front end and in the rest of the paper, this integration possibility is chosen, described in Fig.3. Its
absolute angle around the rotation axis is parameterized by θ0.
To bring what happens to the TMD in a more practical frame, let us define a relative variable for the new degree
of freedom : x = RT MD(θ0−θ1). This variable translates the torsional motion of the TMD around the axis of
rotation in regard to the disc to which it is clamped. The values for all introduced parameters can be found in
Table 3. The inertia ratio µ is chosen to 0.05, as this value allows a realistic mass and a realistic distance to the
shaft to be chosen.

2.4 Electromagnetic model

The electromagnetic model actually consists in two parts. One has already been introduced in subsection
2.3, and describes the interaction of the magnet on the TMD and its surrounding coil. Indeed, any motion of
the TMD creates an induced current in the coil, and conversely, any current circulating in the coil creates a
magnetic field interacting with the magnet.

The second part is located around the flywheel. It consists in a set of coils and another of magnets, one
being embedded in the flywheel and rotating with the shaft, the other being fixed in the vehicle, all around the
flywheel. Again, moving a magnet close to a coil will create a current, itself generating a magnetic field that
will slow down the motion, according to Lenz’s law, and eventually damp the rotational irregularities. We note
φ the magnetic flux.

The red arrows in Fig.4a show the different electromagnetic interactions that occur. The two parts are linked
to another through an impedance ZEM, as to be seen in Fig.4b. What this impedance covers depends on the
interaction scenario.

(a) Reduced model with EM interactions (b) Electromagnetic circuit

Figure 4 – Electromagnetic model

With the electromotive forces eFW at the flywheel and eT MD at the TMD, defined as:




eFW =−dφ
dt

eT MD =−T2ẋ
(5)
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and under the assumption that ZEM = 0, the total model can thus be described with a system of five equations,
three mechanical equations and two electrical ones :





I0ẍ+(1+
I0

I1
)(cT MDẋ+ kT MDx)− I0

I1
RT MD(cTeq(θ̇1− θ̇2)+ kTeq(θ1−θ2)) =−

I0

I1
RT MD.Cexc +R2

T MDT2i2(1+
I0

I1
)

I1θ̈1 + cTeq(θ̇1− θ̇2)+ kTeq(θ1−θ2)−
cT MD

RT MD
ẋ− kT MD

RT MD
x =Cexc−R2

T MDT2i2

I2θ̈2 + cTeq(θ̇2− θ̇1)+ kTeq(θ2−θ1) =−Cc +T1.Rext i1

L1
di1
dt

+R1i1 =−pT1θ̇2

L2
di2
dt

+R2i2 =−T2ẋ
(6)

Where T2 is the coupling factor depicting the electromagnetic interaction between the TMD and the surrounding
coil [21], p is a scalar and T1 is a coupling function linked to dφ

dt . Both are further described in the next
subsection.
In the case where the TMD is actually located on the flywheel, or depending on ZEM, these equations can be
slightly different.

2.5 The T1 function and p parameter

In subsection 2.2, we have stated that an angular approach is better suited to describe the rotation of the shaft
and the irregularities that occur. Moreover, Faraday’s law states that the electromotive force is proportional to
the time derivative of the magnetic flux, which itself is then a function of the instantaneous angular position,
here measured at the flywheel. Changing the variable t to θ2 provides eFW =−θ̇2

dφ
dθ2

.
On the other hand, the countering torque Ccount created at the flywheel by the current also depends on the
location of the various coils and magnets. It is able to mitigate the rotational irregularities when it and the
excitation torque Cext have the same main harmonics, but with a 180◦ phase shift. Assuming this torque and
dφ
dθ2

have a same sine shape involving the same harmonics, the introduced T1 function aims to bridge the gap
between them. To that extent, the torque exerted when a number n of coils and a number m of magnets interact
during the revolution can be described using the expression :

T1 =
n

∑
i=1

m

∑
j=1

Ki, jm jµ0
Ni

Lsol,i
sin(βi, j) (7)

and the relationship :
Ccount = T1.Rext i1 (8)

In (7), Ni is the number of turns in solenoid i, Lsol,i the length of the same solenoid, m j the magnetic moment
of magnet j, and K is a matrix describing the coupling coefficient between coil i and magnet j. βi, j is a local
variable standing for the angular position θ2 when a magnet interacts with a coil.
With this description, we also have the relationship :

eFW =−pθ̇2T1 (9)

the description of the harmonics being included in T1, except for their amplitude. To that extent, in order to
keep realistic values for the electromotive force eFW , we introduce an additional parameter, p, which purpose
is to adjust the magnitude of the harmonics.

3 Model results

3.1 Efficiency of the TMD

To display the efficiency of the concept in our model, let us first consider a decoupled electromagnetic
circuit, as modeled in Fig.5a. With a low value for T2, the created current is very low, and the natural motion
of the TMD is almost not impeded. Regarding the electromagnetic setup around the flywheel, there is also
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little impact on the overall rotation as the countering torque Ccount is four orders of magnitude lower than the
excitation torque Cexc. Such configuration is equivalent to actually no circuit at all, and enables to measure the
effect of a passive TMD.

As we can see on the Bode diagram in Fig.5b, the TMD flattens the peak at the natural frequency of the
torsional mode. The tuning parameters used are those detailed in Table.3. This enables a reduction of 15%
the amplitude in torsion, as displayed in Fig.6a for the response at 2600RPM. At this regime, the 6th order
excites a frequency which is very close to the natural frequency. At 2200RPM, situation displayed in Fig.6b,
the frequencies excited are further from the natural frequency, and the damping is smaller, even though still
present.

(a) Decoupled electromagnetic circuit (b) Bode diagram with the harmonics at 2600RPM

Figure 5 – Passive TMD scenario

(a) At 2600RPM (b) At 2200RPM

Figure 6 – Typical magnitude reductions

3.2 Coupling effect in the hybrid damper

Now let us consider a direct hookup between the two constituents of the electromagnetic circuit, a situation
depicted in Fig.7. The equations in (6) must then be changed, as it is now imposed i1 = i2. The parameters used
are listed in Table.4. In this situation, we still have ZEM = 0
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Parameter Value
L1 555mH
L2 185mH
R1 15.51Ω
R2 5.17Ω
T2 0.8
p 0.25

T1(θ) 0.01.sin(6θ)

Table 4 – Parameters for the coupled model

Figure 7 – Direct hookup electromagnetic circuit

(a) At 2600 RPM (b) At 2200 RPM

Figure 8 – Comparison with the previous case

As we can see in Fig.8a, at 2600RPM in that particular situation, the damping is slightly better, even though
the values considered are not tremendous. However, this results must be handled carefully, since no phase
effect has yet been taken into account in T1, effects that could make the hTMD ineffective or even worsen the
situation, which is what appears at 2200RPM in Fig.8b. Indeed, the hookup is equivalent to a modification of
cT MD and - to a lesser extent - of kT MD. A modification of the damping factor can thus be advantageous or
detrimental, and what happens is highly dependent on the involved harmonics and phases, and on the hookup
configuration. To that extent, it appears necessary to further investigate on the effect of each harmonic’s phase
and on the configurations for ZEM, in order to properly damp the torsional mode in all cases.

8



Discussion - Conclusions

In this paper, a new concept for a hybrid mass damper against rotational irregularities has been introduced
and described. The self-fed property avoids any exterior source of power, but also complicates the tuning of the
system due to the instantanous angular position and the steady regime dependence. The interaction between
the two parts of the electromagnetic circuit is not yet fully understood, whereas this is a major requirement to
have them work together properly. Indeed, it has been seen in 3.2 that a direct hookup can provide unexpected
behaviour if the phases are not carefully handled.
Further work will also be devoted to a check of the assumptions that are made. In particular, it is necessary
to prove the possibility to approximate the dφ

dθ2
function to a sine with given harmonics. There is also no

guarantee that any harmonic signal can be approximated by at least one particular coil-and-magnet spatial
layout. The tayloring is quite straightforward when only one or two harmonics are involved, though here
8 different harmonics are being investigated. However a truncation to the fundamental or to a predominant
harmonic could be sufficient to efficiently damp the rotational irregularities. In all cases, further work on the
damping possibilities of such a hTMD is expected, in order to present its capabilities in comparison to a fully
passive TMD.
The hookup of the full electromagnetic circuit in a real engine also matters. It has been stated in 2.3 that the
TMD is more efficient when mounted on the lower inertia, however the rest of the electromagnetic circuit is
necessarily mounted on the flywheel, which is the other end of the crankshaft. In this configuration, it is nessary
to embody the wires along the shaft in the rotating referential. The choice is left to equip the flywheel with the
TMD instead, in another configuration that provides a better integration rate at the cost of a lower performance.
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Abstract 
Torsional rotor vibration is always very difficult to control since the implementation of a control 
system is not an easy task while the machine is rotating. Excessive torsional vibration can lead to 
failures of many mechanical components. A common method for controlling vibrations involves the 
use of dynamic absorbers. Due to their variable properties, smart materials can be used to increase the 
frequency range in order to control vibration. This article is concerned with the application of 
Electrorheological Fluids (ERF) to the reduction of torsional vibrations of a rotor by controlling 
damping and stiffness of a rotational dynamic absorber. A cylindrical type of electrorheological (ER) 
torsional absorber is designed and manufactured according to the required damping force level and 
the critical velocity of the rotor system. This paper presents torsional vibration control performance of 
a smart ER dynamic absorber using a bang-bang (ON-OFF) control strategy.  The experimental 
results very closely approximate the simulation results. These results show that the ER dynamic 
absorber exhibits very good performances in terms of reducing the torsional vibration of rotor system. 
 
Key words: Electrorheological fluids, torsional vibrations, dynamic absorber, Bang-Bang control, 
smart material. 
 

1. Introduction 
Torsional rotor vibration is always very difficult to control since the implementation of a control 

system is not an easy task while the machine is rotating. Excessive torsional vibration can lead to 
failures of many mechanical components. Furthermore, in many industrial applications, torsional 
vibration problems may not be apparent until a failure occurs. For example, it is the case when the 
machine contains a gearbox which causes the torsional vibration to cross-couple into lateral vibrations 
[1]. A common method to control vibrations involves the use of dynamic absorbers [2]. However, 
when the physical parameters of dynamic absorbers are constant, their frequency range efficiency is 
tight and thus not really suitable for variable speeds systems. To remedy this, a damping could be 
added to the absorber, but this would lead to a loss of efficiency at the main frequency and increases 
the transmissibility on a large frequency range. On the other hand, due to their variable properties, 
smart materials may be used to increase the frequency range in order to control vibration. 
Electrorheological (ER) fluids are attractive materials that undergo very fast reversible changes in 
their rheological properties (mainly their yield stress and effective viscosity) upon the application of 
electric fields [3]. This fluid may potentially be applied in many industrial areas [4]. They may be 
used to control vibrations [5], to control valves [6] or rotor squeeze film dampers [7]. ER fluid may 
also be applied to control active suspensions [8] or seismic vibrations [9], through the application of 
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high electric fields. Previous studies conducted by the authors have allowed the development of a new 
very efficient Electro-Rheological (ER) fluid [10]. In this paper, we propose the design of a new 
dynamic torsional absorber by using ER fluid for a rotor system. The smart absorber is controlled by 
varying the electric field applied to the fluid.  


2. ER smart dynamic torsional absorber  

2.1 Model of ER fluid 
In general, most ER fluid exhibit Bingham rheological behaviors and shear-thinning. In previous 

studies, the authors developed a model call the Quasi-Bingham model to explain this complex 
phenomenon (Sun et al., 2009, 2010), which is: 
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where τ is the shear stress (Pa); γ is the shear rate; yQBτ is the elastic yield stress (Pa) which is 
dependent on the strain and on the applied electric field E.  
 

According to the dielectric loss model of Hao et al. [11], the yield stress yQBτ is a function of 2E ; 
0η is the zero shear viscosity; it is defined as the value at a very low shear rate and is a function of E; 

η∞ is the infinite shear viscosity; it is defined as the value at very high shear rate; the parameter "n" is 
known as the Cross Rate Constant [12]. It is a dimensionless factor and is a measurement of the 
degree of dependence of viscosity on shear rate in the shear-thinning region; "t" is known as the Cross 
Time variable and has a dimension of time. The reciprocal, 1/t, gives us a critical shear rate that is a 
useful indicator of the onset shear rate for shear thinning; 1γ , 2γ    are two critical shear rates. We can 
obtain the values by using the two equations: 

 

( )1 2
11 1;nt tγ γ+ ≈ 

2                               (2) 

This model can explain very well the rheological behaviors. An empirical equation (equation (3) 
of stresses was developed for a mixture called ETSERF40-20 as an example of the application of the 
Quasi-Bingham model. This equation is very useful for modeling a control system with the ER fluid 
[13].   

0( )
1 ( )yQB nt

γt t η γ ηη
γ∞ ∞= + + −

+
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                                              (3) 
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+
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
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       (4) 

The electric field E is expressed in kV/mm. 
Equations 3 and 4 may be replaced by Equation (5) accordingly with the following relationships: 
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 2
yQB Eτ α= ; 0 Eη β η∞= +        (6) 

Theα , β and η∞  are intrinsic values of the ER fluid to be experimentally determined. The field-
dependent yield stresses of these ER fluids were experimentally obtained by 3 227.04 10yQB Eτ −= ×  
Pa. The viscosity dynamic was experimentally obtained by 0 29.4 0.218Eη = +  for fluid ETSERF40-
20. This rheological model allows for the exploration of the suitability of ER fluids to control the 
torsional vibrations of rotors through simulations.  

 
2.2 ER torsional absorber design  

A cylindrical type of ER torsional absorber is designed and manufactured according to the 
required damping force level and a critical velocity of a rotor system. Figure 1 describes the prototype 
of the proposed ER torsional absorber, which consists in an outer cylinder for the rotor and an inner 
cylinder for the absorber with the ER fluid enclosed between both cylinders. The ER fluid is 
composed of diatomite (called ETSERF40-20) mixed into silicone oil and is used to study the effect 
of ER fluids on the dynamic absorber [10] , [13].   

 

 

Figure 1. Overview of the torsional dynamic absorber 

The positive (+) voltage is connected to inner cylinder and the negative voltage (-) connected to 
the outer cylinder. The proposed ER absorber is detailed accordingly with the following design 
parameters; electrode length (H)= 62.5mm and electrode gap (e)= 4.4mm. In the absence of electric 
field, the ER absorber produces a damping force only due to the fluid resistance when rotating. This 
damping (called C2) of ER fluid can be calculated from equation (7) [13]. It is inherent, and is not 
influenced by the electric field. 

3

2
2 R HC

e
π η∞=                                  (7) 

R is the internal radius of outer cylinder, η∞  is the viscosity at infinite velocity that is intrinsic 
value of the ER fluid to be experimentally determined. Applied to the considered fluid ETSERF40-20, 
we found C2 = 0.0092 N.m.s/rad.  
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If a certain level of the electric field is applied to the ER absorber, the ER absorber produces an 
additional damping force. This damping force can be continuously tuned by controlling the intensity 
of the electric field. This system is then called semi-active. 

 

2.3 Mechanical model of the smart system 
2.3.1 Dynamic mode of a rotor system with the ER absorber 

The vibration of the initial system may be described as a single degree-of-freedom (SDOF) 
damped rotating system, composed of the rotational inertia 1J = 0.116 kg.m2, the torsional stiffness 

1K = 801.51 N.m/rad, and the torsional damping 1C =2.192 N.m.s/rad. The theoretical natural 
frequency of this primary system is 13.23 Hz with a damping rate of 11.37%. It is the amplitude close 
to this frequency that must be controlled. 

 
This vibration control method in this system consists in adding another SDOF system, which is 

the torsional dynamic absorber. The smart ER dynamic absorber is composed of a rotational inertia 
2J = 0.0265kgm2 driven by the ER fluid, which can thus be modeled by a torsional spring 2K , a linear 

viscous dashpot 2C and a viscous dashpot ERC . The resulting mechanical system is a two DOF system 
which is illustrated in Figure 2.  

 

 

Figure 2. ER torsional dynamic absorber 

The torque MER which is due to the effect of the ER fluids is composed of a nonlinear torsional 
stiffness torque and a nonlinear viscous torque, which depend on the electric field. It is only active 
when the electric field is applied. It can be expressed as: 

 

ER ER 1 2 ER 1 2M C ( ) K ( )θ θ θ θ= − + −                        (8) 
 

The total torque of the proposed ER absorber can be obtained as F 2 ERM C Mθ= + , where C2 is the 
effective damping due to the fluid viscosity, θ is the excitation angular displacement, and MER is the 
field-dependent damping torque which is tunable as a function of the applied electric field. 

 
The rotor dynamic system could be described as follows:  

 
1 1 1 1 1 1 2 1 2

2 2 2 2 1

( ) ( ) ( )

( )
ER

ER

J M C K C

J C M

θ θ θ θ θ θ θ

θ θ θ

= − − − − − − −

= − − +

    

  

                                                (9) 
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2.3.2 Modeling of the system by state space formulation 

Equation 9 can be expressed as the following equations: 
 

ER1 1 1 1 1 1 2 1 2 1 1

ER2 2 2 2 1

J K C C ( ) K C M
J C ( ) M
θ θ θ θ θ θ θ
θ θ θ
+ + + − = + −

+ − =

    

  

                                        (10)            

 

ER1 1 1 1 1 1 1 2 1 2
1

ER2 2 2 1
2

1 ( K C M K C C ( ))
J
1 ( M C ( ))
J

θ θ θ θ θ θ θ

θ θ θ

= + − − − − −

= − −

    

  

                  
By modifying the variables as follows: 

1 1 0x hθ θ= − ;  
2 1 1 1 0 1x x h h hθ θ θ θ= − = − − 

                                                         
3 2x θ= ;          (11) 
4 3 2x x θ= =        

We can write: 
1 1 0x hθ θ= + ; 1 2 1x x hθ= +                              (12) 

We obtain: 
1 2 1x x hθ= +           (13)     

{ }

2 1 0 1 1 1 1 1 1 1 2 1 2 0 1
1

1 1 1 1 1 2 1 2 2 0 1
1

1 1 1 1 0 1 2 2 0 1 2 4 0 1
1

1 1 0
1

1 ( ( ))

1 ( ( ) )

1 ( ) ( )( )

1 (

ER

ER

ER

x h h K C M K C C h h
J

K C M K C C C h h
J

K C M K x h C C x h h C x h h
J

K K h C
J

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

= − − = + − − − − − − −

= + − − − + + − −

= + − − + − + + + + − −

= − −

        



    

   

{ } [ ]

{ }

1 2 1 1 1 2 0 1 0
1

1 1 1 2 2 2 4
1

1) ( )

1 ( )ER

C h C C C h h h
J

M K x C C x C x
J

θ θ θ
 

+ + − + − − 
 

+ − − − + +

 

  
    

Take 0 0h = and [ ]1 1 2 0 1
1

1 ( ) 0C C C h h
J

− + − = , we can obtain 1
1

1

Ch
J

=  

We have:  
1

1 2 1 2
1

Cx x h x
J

θ θ= + = +

                (14) 

{ } [ ]

{ }

{ }

2 1 1 0 1 2 1 1 1 2 0 1 0
1 1

1 1 1 2 2 2 4
1

1
1 1 2 1 1 1 2 2 2 4

1 1 1 1

1 1( ) ( )

1 ( )

1 1 1( ) ( )

ER

ER

x K K h C C h C C C h h h
J J

M K x C C x C x
J

CK C C M K x C C x C x
J J J J

θ θ θ

θ

 
= − − + + − + − − 

 

+ − − − + +

 
= − + − + − − + + 

 

 



 
3 4x x=  
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{ }1 2
4 ER 42 2 2

1 2 2 2

C C 1 1x M C x C x
J J J J

θ= + + −

 
 
By regrouping these equations under a matrix form, we obtain: 

1

1
1 11 1 2 2

1
1 1 12 2 1 1 2

1 1 1
ER3 3

4 42 2
1 2

2 2
1 2 2

C 00 1 0 0 J
x xK ( C C ) C0 C1 1J J Jx x K ( C C )

J J Jx x M0 0 0 1
0 0x xC C0 0 C C 1J J

J J J

θ

 
  

                                             
            

 

+
− −

− + −
= +

−









      (15) 

  ( )T41 2 3x x x x x=   

( )T41 2 3x x x x x=       

( )TERu Mθ=  

By calling these matrices as: 

( )
1

2

3

4

x
x

y 0 1 0 0
x
x

 
 
 
 
  
 

=

           (16) 

1 1 2 2

1 1 1

2 2

2 2

0 1 0 0
K ( C C ) C0
J J J

A
0 0 0 1

C C0 0
J J

 
 + − −
 

=  
 
 

−  
  , 

1

1

1
1 1 2

1 1 1

1 2

1 2 2

C 0
J

C1 1K ( C C )
B J J J

0 0
C C 1
J J J

 
 
 
  
 − + − =   
 
 
 
 
   

( )C 0 1 0 0=  

We obtain the classic state space formulation: 
x Ax Bu
y Cx
= +
=



 
 
We consider a simple and linear case, in order to establish an ON-OFF control. The block 

diagram is shown in Fig. 3. 
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Figure 3. Block diagram du system 

By defining 

( )ER ER ER ER1H K C K C= − − ; 
ER 1

2
1

C CH
J

=
;      (17) 

The controllable torque may be expressed as: 
1

ER ER ER 41 3 2
1

ER 1
ER ER ER ER ER 41 3 2 1 2

1

CM K ( x x ) C ( x x )
J

C CM K x K x C x C x H x H
J

θ

θ θ

= − + − +

= − + − + = +
   (18) 

1 2H and H can be controlled by the electrical field by checking the difference of the angular 
velocity between dy θ=    and m my θ=   . If the difference of the absolute value of is greater than zero, 
we must apply the electric field; otherwise we set the electric field to zero.  

 
3. Numerical simulation  

The control system with an Dynamic absorber (SERDA) has been numerically simulated 
by using Simulink (figure 4), in order to observe the reaction of the system, we use a linear 
chirp signal which is sine wave whose frequency varies linearly with time (figure 5),  the amplitude 
is 1. We select E = 0 and 1 kv/mm in this simulation, the results is showed in the figure 6. We can 
see that amplitude of the response varies with the frequency; the amplitude is very small 
when the frequency is down 13Hz or more than 13Hz, but it arrives the maximum value, 
when the frequency is around 13Hz without electric fields and with the electric field, the 
amplitude decreases to about half of the original amplitude when electric fields applied is 1 
kv/mm.      
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Figure 4. Block Simulink 

 

Figure 5. Linear chirp waveform 

 

Figure 6.Reponse of system under a chirp signal obtained by simulation (left figure: E=0kV/mm; right 
figure : E-1kV/mm) 
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4. Experimental verification 
 
In this system, the two cylinders J1 and J2 serve as electrodes for the ER effect in this study. The 

oscillation caused by the torsional vibration is measured by a triaxial accelerometer placed in the 
radial position as shown in Figure.6.  

 

 

Figure 7. Electrorheological torsional absorber 

We clearly see that vibration control performance in figures 8, 9 and 10, especially at 13 Hz, since 
the natural torsional frequency of the system is designed for this value as 13.24Hz, the critical angular 
velocity is 794 RPM. The two peaks as shown in Figure 8 are two natural frequencies, one is of 
flexible vibration, and the other is of vibration torsional. In fact, this absorber is designed only to 
attenuate the torsional vibration to determine the effects of the fluid ER in torsional vibration. Clearly, 
the torsional vibrations are attenuated in the range of 12.5 to 15Hz, but the peak which is at 12Hz does 
not change anything, it shows that this absorber is effective for torsional vibration, but not for flexible 
vibration. It can be noticed that the results of simulation are very comparable with the experimental 
results. 
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Figure 8.Response acceleration of system under different electrical field 

The measurement results in time and frequency domain are shown in figure 9 and 10 for 
different applied electric fields. The amplitude of sinusoidal vibration decreases when the 
applied field increases, but not for the high electric field as E = 1.36 kv / mm since there is an 
optimal value of electric fields that applies on ER fluid to attenuate the torsional vibrations 
when a simple On-Off control strategy is chosen to realize this control system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.Temporal response of system when the rotor rotates in 780 RPM under different electrical 
field (red: E=0kV/mm; green: E=0.68 kV/mm; blue: E=1kV/mm; pink: E=1.36kV/mm) 
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Figure 10. Frequency response of system when the rotor rotates in 780 RPM under different electrical 
field (red: E=0kV/mm; green: E=0.68 kV/mm; blue: E=1kV/mm; pink: E=1.36kV/mm) 

5. Conclusion    
This article is concerned with the application of Electrorheological Fluids (ERF) to the reduction 

of torsional vibrations of a rotor by controlling damping and stiffness of a rotational dynamic absorber. 
A cylindrical type of electrorheological (ER) torsional absorber was designed and manufactured 
according to the required damping force level and the critical velocity of the rotor system. This paper 
presents torsional vibration control performance of a smart ER dynamic absorber using a bang-bang 
(ON-OFF) control strategy.  The absorber efficiency is measured, and the results show that the ER 
dynamic absorber exhibits very good performances in terms of reducing the torsional vibration of 
rotor system. The experimental results very closely approximate the simulation results. By use of 
controlled damping one can reduce (minimize) unwanted torsional vibration not only in theory but 
also in practice, this study shown that ER fluid are useful smart materials to realize a controllable 
system.  
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Abstract
The objective of the PyDAMP project is to develop a hybrid mechanical suspension to reduce the
vibrations transmission on a wide frequency band. The undesired vibrations are generated by small
electric motors (few kilograms). A suspension with piezoelectric pillar developped by PYTHEAS
Technology is compared to a conventional viscoelastic suspension in terms of performances in the
audible frequency range. The principle and design of the piezoelectrical suspension are approached
through an electromechanical model and a finite element model. The electromechanical coupling of
the transducer allows the introduction of mechanical damping and electric damping with different
shunts based on resistor and negative capacitance.

1 The piezoelectrical suspension: principle and conception

The concept of suspension is inspired by a Class IV flextensionnel transducer [1, 2, 3] (figures 1).
Flextensional transducers are a class of mechanical amplifiers composed of an active part, usually
piezoelectric (bars, discs, rings), or magnetostrictive, and a shell that radiates in the surrounding
fluid[4, 5, 6].

(a) (b)

Figure 1: a) Sketch of various classes of flextensional transducers [1, 2]. b) Sketch of a Class IV
flextensional piezoelectric transducer. [3]

A finite element study has been achieved to ensure the validity of the concept in terms of maxi-
mum admissible Von Mises stress, maximum displacement and modes shapes. Figure 2 shows the
CAD view of the piezoelectric suspension.

1



Figure 2: CAD view of the piezoelectric suspension.

2 Electrical model and simulations

An electromechanical model of the piezoelectrical suspension has been developed. Mechanical
elements are converted in electrical components and an equivalent electrical circuit can be found.
The simulation and the shunt optimisation are facilitated with only one physic, taking into account
the whole dynamic behaviour of the piezoeletrical suspension. Figure 3 shows the schema of the
piezoelectrical suspension.

max1

x0 ka       Da                

CL RS

Famechanical

Ftrans

Figure 3: Schema of the piezolelectrical suspension.

The equivalent electrical circuit of the piezoelectrical suspension with mechanical excitation and
resistor shunt is shown on figure 4.

U_r

i_r 𝛼*i_a  

𝛼
*U

_r

U_x

i_a
 

Figure 4: Equivalent electrical circuit of the piezoelectrical suspension.

Figure 5 shows the displacement transmissibility functions in open-circuited, in short-circuited
conditions, with resistor shunt and with negative capacitance shunt. The damping (ξ) in open-
circuited, in short-circuited conditions is similar, equal to 0.3%. As expected, the surtension is re-
duced by the resistor shunt, the damping (ξ) is equal to 1.6%. The negative capacitance increases the
performances of the suspension to reach 2.9% of damping.
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Figure 5: Transmissibility functions.

3 Comparison with a conventional viscoelastic suspension

A comparison with a conventional viscoelastic suspension is done. The conventional viscoelas-
tic suspension is a classical spring (ka), mass (ma), damper (Da). Two damping values are tested
and compared with the piezoelectrical suspension namely ξ = 0.2% and 2.9%. Figures 6 show the
displacement transmissibility functions with negative capacitance shunt (blue curves) compared to
conventional viscoelastic suspension with damping equal to ξ = 2.9% (green curves) and 0.2% (black
curves). Figures 6 show the comparison with equivalent damping. Differences can be observe in high
frequencies from 10 kHz where the slope moves from−40 dB/dec to−20 dB/dec for the conventional
viscoelastic suspension. For the piezoelectric suspension, the change appears a decade later. For au-
dible perturbation between 10 kHz and 20 kHz, in this case the difference is between 2 dB and 6 dB.
Figures 6 show the comparison where the slope moves from −40 dB/dec to −20 dB/dec at the same
frequency. Differences can be observe around 700 Hz, for the conventionnal suspension, the maxi-
mum transmission level is twice as high compared to the piezoelectrical suspension.
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Figure 6: a) Comparison between the transmissibility functions of a conventional viscoelastic sus-
pension and the piezoelectrical suspension. b) Zoom.

4 Experimental setup

Figure 7 shows the experimental setup. Two accelerometers are used to obtain the transmissibility
functions. The mechanical excitation is provided by a shaker. The piezoelectrical suspension is glued
on the shaker. Different electrical conditions can be applied on the stack. Experimental results are
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under post-processing.

Accelerometer 1

Accelerometer 2

Piezoelectrical suspension

Shaker

Figure 7: Experimental setup

5 Conclusion

A suspension with piezoelectric pillar developed by PYTHEAS Technology has been studied.
An electromechanical model and a finite element model allowed the conception and the design of
the suspension. A resistor shunt optimisation has been performed and good results were observed
in order to reduce the surtension in the displacement transmissibility. Performances have been in-
creased using a negative capacitance shunt. A comparison with conventional suspension has been
conducted. For the piezoelectric suspension, no static problems are observed and there is no creep
behaviour. The slope modification from −40 dB/dec to −20 dB/dec appears a decade later and is not
sensitive to damping. It could be important for audible applications.
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Abstract
Periodic waveguides may be analyzed using dispersion diagrams, which plot the wavenumbers as functions
of frequency. Imaginary wavenumbers mean propagation is not possible and, therefore, normal modes cannot
build up. Muffler design has traditionally explored periodicity, but usually not using dispersion analysis. In this
work, we show how to model one-dimensional acoustic waveguides with plane wave assumption using spectral
elements (SE), how to obtain dispersion diagrams and, using semi-infinite elements, transmission loss from
an SE model. The technological challenge consists in opening band gaps at low frequencies with a limited
size muffler, and SE models are handy for low cost parameter optimization. For arbitrary shapes, this work
uses scaled SE models or, alternatively, a state-space formulation recently developed by the authors. Additive
manufacturing is an enabling technology for the implementation of the designed mufflers. In this work, we show
experimental results for simple periodic mufflers built using 3D printing. The proposed simulation methodology
is simple and can be used for quick design of 3D-printed polymer mufflers.

1 Introduction

Acoustic mufflers are usually characterized by their insertion loss (IL) or transmission loss (TL) [1]. The
latter is a more absolute characterization, as it does not depend upon the acoustic impedance of the system con-
nected to the muffler. Mufflers can be reactive, active of hybrid depending on the sound attenuation mechanism.
Reactive mufflers do not need to dissipate energy and attenuate using acoustic impedance discontinuities and
acoustic resonators that cause destructive interference. Active mufflers attenuate propagating sound by energy
dissipation. Mufflers may combine these two mechanisms. The design of reactive sound mufflers usually start
from a chosen geometry combining Helmholtz resonators, quarter length tubes and expansion chambers and
adjusting their parameters to maximize the TL at desired frequency ranges.

In recent years, inspired by the scientific advances in photonics [2], researchers started using wave dis-
persion diagrams of periodic elastic systems to investigate the existence of frequency stop bands created by
destructive interference (Bragg scattering) and local resonance due to resonators. This is exactly the effect
desired in reactive mufflers. Therefore, in this work, we investigate the use of dispersion diagrams to design
periodic reactive mufflers.

Dispersion diagrams are usually obtained using the Plane Wave Expansion (PWE) method [3]. Otherwise,
given a transfer matrix of a periodic cell, the Floquet-Bloch theorem can be used to obtain the wavenumbers
as a function of frequency. In this work we derive a spectral acoustic element to model the linear acoustics of
ducts using the plane wave assumption. It is straightforward to derive a semi-infinite acoustic duct element.
Using finite and semi-infinite spectral elements a model can be easily built to compute the TL and simulate the
forced responses.

We first introduce the acoustic spectral elements, show how to assemble these elements, how to reduce the
global matrix and transform it into a transfer matrix, and, finally, how to compute the dispersion diagram. Then

1



we show how to assemble a duct system consisting of source, uniform duct, periodic muffler and semi-infinite
duct that allows computing the TL. We show that with a small number of periodic cells a high TL is achieved.
Finally, experimental results obtained in an impedance tube for a 3D-printed periodic muffler are shown.

2 Analytical Formulation

2.1 Acoustic spectral element

The derivation of the acoustic duct spectral element is analogous to the spectral element for elementary
rods [4]. Assuming plane wave propagation, the spectral element for an acoustic waveguide starts from the
one-dimensional non-dissipative wave equation [5]

∂ 2 p
∂x2 −

1
c2

∂ 2 p
∂ t2 = 0 (1)

where p is the acoustic pressure at a position x along the waveguide and c is the speed of sound. In the frequency
domain, Eq. 1 becomes an ordinary differential equation

∂ 2 p̂
∂x2 +

ω2

c2 p̂ = 0 (2)

Equation 2 has a wave-based solution form given by:

p̂ =C1e−ikx +C2e−ik(L−x) (3)

where k is the wavenumber. For low sound levels, the acoustic pressure and the particle velocity u are related
by the linear Euler’s equation [5]

ρ
∂u
∂ t

=−∂ p
∂x

(4)

where ρ is the mass density of the fluid. Replacing the solution given by Eq. 3 into Eq. 4 and rearranging in
terms of the volume acceleration v̂ = S∂u/∂ t yields

v̂ =
S

ρc
(−C1e−ikx +C2e−ik(L−x)) (5)

where S is the cross-sectional area.
Considering a straight acoustic waveguide with length L, constants C1 and C2 can be determined for given

boundary conditions at x = 0 and x = L. Finding the solution for these constants yields the following matrix
system [4] [6]:

[
V̂l
V̂r

]
=

ikS
ρ(1− e−2ikL)

[
1+ e−2ikL −2e−ikL

−2e−ikL 1+ e−2ikL

][
p̂l
p̂r

]
=

[
Dll Dlr
Drl Drr

][
p̂l
p̂r

]
= D

[
p̂l
p̂r

]
(6)

where D is the spectral element matrix for the acoustic waveguide.

2.2 Dispersion diagram

An acoustic tube with periodically varying cross section ca be called a phononic crystal [2]. The band
structure of a phononic crystal may be represented by a dispersion diagram, i.e., a plot of the wavenumber
versus frequency (or vice-versa). A transfer matrix relates the acoustic pressure and the volume acceleration at
the left and right ends of a periodic cell as

[
p̂r

−V̂r

]
= T

[
p̂l
V̂l

]
=

[
−DllD−1

lr −D−1
lr

Drl−DllDrrD−1
lr −DrrD−1

lr

][
p̂l
V̂l

]
(7)

The transfer matrix of a periodic system with n cells can be obtained from the matrices of each cell T1,T2, ...,Tn−1,Tn
as

T = TnTn−1...T2T1 (8)
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The Floquet-Bloch theorem states the relation between the state vector at the right and left boundaries of
the unit cell as [

p̂r

−V̂r

]
= e−ikL

[
p̂l
V̂l

]
(9)

Equations 7 and 9 yield the following eigenproblem:

T
[

p̂l
V̂l

]
= e−ikL

[
p̂l
V̂l

]
= λ

[
p̂l
V̂l

]
(10)

The solution of the eigenproblem in Eq. 10 gives the normalized wavenumber kL for each angular frequency
ω using the relation

kL = i ln(λ ) (11)

2.3 Transmission loss

In this section we recall the two-load method for computing the TL with an impedance tube. The loud-
speaker is positioned at the left extremity, and measurements are performed with two different terminations at
the right end. The sample is positioned at the central position, with two microphones measuring the pressures
at each side. With the positions of the microphones and the pressures, the amplitudes of the transmitted and
reflected waves can be determined by

A = i
√

Grr
H1reikx2−H2reikx1

2sink(x1− x2)
(12a)

B = i
√

Grr
H2re−ikx1−H1re−ikx2

2sink(x1− x2)
(12b)

C = i
√

Grr
H3reikx4−H4reikx3

2sink(x3− x4)
(12c)

D = i
√

Grr
H4re−ikx3−H3re−ikx4

2sink(x3− x4)
(12d)

where Grr is the autospectrum of the loudspeaker signal (there is no need to use the actual loudspeaker velocity,
the voltage input signal is sufficient) and Hnr and xn are the frequency response functions (FRF) for input r and
output pressure measured with microphones n = 1,2,3,4. The pressures and particle velocities at the sample
extremities are given by

p0 = A+B (13a)

u0 =
(A−B)

ρc
(13b)

pd =Ce− jkd +De− jkd (13c)

ud =
Ce− jkd−De− jkd

ρc
(13d)

Denoting with subscripts a and b the measurements with two different tube terminations (e.g. open and closed),
the transfer matrix of the sample can be determined by

[
T11 T12
T21 T22

]
=

1
pdavdb− pdbvda

[
p0avdb− p0bvda p0b pda− p0a pdb
v0avdb− v0bvda pdav0b− pdbv0a

]
(14)

The transmission loss of the sample is obtained by:

T L = 20log10

∣∣∣∣
1
2

(
T11 +

T12

ρc
+ρcT21 +T22

)∣∣∣∣ (15)

In the cases where the sample is symmetric, another two conditions can be set, and only one load is neces-
sary to determine the transfer matrix. These conditions are the reciprocity and symmetry given by

T11 = T22 (16a)

T11T22−T12T21 = 1 (16b)
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With the conditions of Eqs. 16 the transfer matrix is determined by:
[

T11 T12
T21 T22

]
=

1
p0vd + pdv0

[
pdvd + p0v0 p2

0− p2
d

v2
0− v2

d pdvd + p0v0

]
(17)

where subscripts a and b are no longer necessary.

2.4 Insertion loss

The insertion loss is the difference between the acoustic power transmitted with and without the muffler,
denoted by the subscripts 2 and 1, respectively

IL = LW1−LW2 = 10log
(

W1

W2

)
(18)

If the temperature gradient is negligible and the source pressure is constant [1] it becomes simply

IL = 20log
∣∣∣∣

p1

p2

∣∣∣∣ (19)

where p1 is the pressure at the outlet without the muffler and p2 with the muffler.

3 Numerical results

Using the spectral element previously derived, the periodic muffler can be modeled by assembling the
element matrices by imposing continuity at the element connections. Two connected elements are assembled
as

D =




D(1)
ll D(1)

lr 0
D(1)

rl D(1)
rr +D(2)

ll D(2)
lr

0 D(2)
rl D(2)

rr


 (20)

After assembling all the elements composing the periodic cell, the resulting matrix can be condensed to the
nodes at the two ends, resulting in a 2 x 2 matrix

D̄ =

[
D11−D21D−1

22 D12 −D23D−1
22 D12

−D21D−1
22 D32 D33−D32D−1

22 D23

]
(21)

which can be transformed into a transfer matrix using Eq. 6 , in terms of D̄

T =

[
−D̄−1

12 D̄11 D̄−1
12

−D̄21 + D̄22D̄−1
12 D̄11 −D̄−1

12 D̄22

]
(22)

From the transfer matrix of the periodic cell the dispersion relation is computed as previously described. It
is shown in Fig. 2. Furthermore, using Eq. 15, the TL can be computed, as shown in Fig. 1. To compute the
FRFs for a volume acceleration input at one end and pressure outputs at the two ends matrix D̄ is inverted and
multiplied by vector V̂ = [1 0]T .

4 Experimental results

The two loads used in the impedance tube were a rigid and a nearly anechoic termination, implemented
using absorptive foam in the open tube end. Figure 4 shows the experimental setup.

The sample is a periodic muffler built using 3D printing (polyamide and selective laser sintering). Figure 5
shows the sample manufactured for the experiment.

Measurements were made with a commercial impedance tube with four-microphones. The loudspeaker was
driven with a Gaussian noise signal approximately white (flat spectrum) in the frequency range from 0 Hz to
5272 Hz. A single roving microphone was used to avoid the phase calibration required in the four-microphone
measurement [7].
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Figure 1: Simulated TL.

Figure 2: Simulated dispersion diagram.

Figure 6 shows a comparison between simulated and experimental results for the TL. The one-load method,
allowed by the symmetric muffler geometry in our case, yielded better results. Experimental background noise
did not allow to obtain TL values above approximately 20 dB.

Figure 7 shown a comparison between the predicted and measured IL. The measurements are less noisy, but
again background noise did not allow obtaining IL values larger than 20 dB. Measurements inside an anechoic
chamber are under way to try to get measurements with lower background noise in the case of the open tube.

5 Conclusions

We have shown how to use dispersion diagrams to predict band gaps in periodic mufflers, which result in
large transmission losses. Using acoustic spectral elements it is straightforward to obtain the muffler transfer
matrix, from which the dispersion diagram and TL can be computed. For arbitrary shapes, the periodic cell
can be computed by discretizing the cell with uniform spectral elements. Otherwise, as shown by the authors
[8], a state-space formulation and Riccati-type equation for the acoustic impedance can be used. Optimized
mufflers can be constructed using 3D printing. Different optimization strategies are under investigation by the
authors. The tools shown in this work set a framework for periodic muffler design optimization using dispersion
relations.
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Figure 3: Simulated FRFs.

Figure 4: Experimental setup.

Figure 5: Manufactured muffler.
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Figure 6: Simulated and experimental transmission loss.

Figure 7: Simulated and experimental insertion loss.
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