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A HORIZONTAL-AXIS WIND TURBINE IN YAW

Davide Astolfi!, Francesco Castellani!, Francesco Natili!, Matteo Becchetti!

!University of Perugia, Department of Engineering, Via G. Duranti 93 - 06125 Perugia (Italy)
davide.astolfi @unipg.it, francesco.castellani @unipg.it,
francesco.natili @collaboratori.unipg.it, matteo.becchetti @unipg.it

Abstract

The characterization of wind turbines in yawed conditions is one of the most important topics as regards the
latest advances in optimizing power production and mechanical behavior in wind farms. The classical wind
turbine control strategy consists in keeping the rotor constantly aligned with wind direction: whereas this
approach maximizes the power coefficient of each single turbine, it might not be the best solution when, in a
wind farm, upwind turbines generate wakes on downwind ones. Considering this, yawing the rotors gives a
steer to wakes, improving the flow on downwind turbines. This new kind of control strategy has been attracting
the scientific interest not only by an energetic point of view, but also as regards the mechanical behavior of
turbines operating not aligned with wind, in particular for what concerns generation of forces and vibrations.
On these grounds, the aim of this paper is to study in deep how a wind turbine works on yawed configurations.
In order to do this, wind tunnel tests have been performed with yaw angles that range over from —45° to
45° on a 2 m. diameter small scale wind turbine. Experimental measurements of forcespower and tower
vibrations are then compared with the results of simulations from two different codes. The first, called BEM,
is internally developed following the principles of Blade Element Momentum theory and it is used to estimate
forces and torque acting on the rotor. The second implemented model is developed using the FAST (Fatigue,
Aerodynamics, Structures and Turbulence) software, developed at the National Renewable Energy Laboratory
(NREL). FAST simulations provide in output forces, torque and vibrations of tower and blades. Simulations
are set up with similar conditions as the wind tunnel tests, with many yaw angles and steady wind speed. One
of the main results of this study is that there is a remarkable agreement between simulations and measurements
as regards the estimate of the power coefficient Cp in yawed and non-yawed configurations. In spite of this,
thrust coefficient Cr is not faithfully estimated when the yaw angles is vanishing. This matter of fact is then
explained by the fact that low-fidelity numerical models are not capable in reproducing reliably the effect of
the tower blockage, slowing down the air stream in its proximity. As a consequence, when a blade passes close
this area of reduced flow speed, the generation of aerodynamic forces decreases. In yawed configurations, this
phenomenon is less relevant because of the increased distance between blades and tower on air flow direction.

1 Introduction

The optimization of power production and mechanical behavior of wind turbine through advanced control
strategies [1, 2] has been recently becoming one of the main topics in wind energy research. The blade pitch
[3, 4] and the yaw management are two very fertile fields of investigation for the research in wind turbine
control optimization [5, 6].

The classical approach to control wind turbines nacelle orientation consists in continuously following the
wind direction, in order to maintain the rotor axis constantly parallel to air flow. This method guarantees that
the single turbine has always the maximum tip-speed ratio and so the maximum energetic production. In spite
of this, in wind farm configurations an aspect that has to be considered is that upstream wind turbines generate
wakes affecting the downstream ones and this affects the power production [7] and the mechanical loads [8].
By this point of view, new methods for active wind farm control are oriented: the general idea is that a slight
decrease of the power produced by the single upwind turbine can optimize the total production of the entire
farm. Haces-Fernandes et al. [9] states that a selective turbine deactivation allows an enhancement on wind



farm production and found that improvement is more prominent as the size of the turbines, and so rotor diame-
ter, increases. Another method is the derating [10], that consists on running some turbines with a non-optimal
rotational speed in order to catch less energy from air stream but generating less wake effect on downwind
turbines: in this case the increase of energy production can range from 1.86% to 6.24%. A novel approach,
instead, called wake steering [11, 12, 13], consists in keeping the upwind turbines not aligned with wind direc-
tion with the purpose to deviate the wakes and let the downwind turbines to be invested by an air stream with
a more energetic content. For a single wind turbine, the power is related to ¢, the yaw angle between the wind
flow and the rotor, with a cosine cube law [14]: as a consequence, the energy production decreases as the yaw
angle increases. To understand the net increase of generated power at wind farm level, Archer et al. [12] found
that yawing the first row of a turbine array of 20°, the power of the following rows increases profitably (more
than the losses of the first row).

To have a wider outlook on wake steering wind farm control, it is necessary to consider not only the effect on
energy production, but also the possible side effects on wind turbine structural integrity. For example, Bakshi
[15] estimated the reliability of blades in yawed asset, performing a stress analysis in different yaw configura-
tions.

On these grounds, the present study aims at providing a contribution to the experimental analysis and
numerical characterization of horizontal-axis wind turbines in yawed conditions. Wind tunnel measurements
on a 2 m. diameter turbine are performed, with yaw angles ranging from 0 to +45°: forces generated by
the rotor, nacelle accelerations, rotational speed and generator power are monitored. Experimental data are
then compared to numerical results of simulations performed with two different algorithms. The first is called
BEM and has been internally developed according to Blade Element Momentum theory. This code allows
an estimation of forces generated by the rotor. The second code, FAST, is developed by NREL, National
Renewable Energy Laboratory, Colorado, and is one of the most used software for aeroelastic wind turbine
modeling. In FAST, it is possible to obtain in output information concerning power, forces, moments, torque,
accelerations and deformations. This software is frequently used to simulate large size wind turbines: by this
point of view, one of the purposes of this study is to investigate the reliability of the FAST environment for
small wind turbine simulation too. Actually, the critical point is that small wind turbines are strongly affected
by fatigue, as a result of their size and the variability of loads , induced by the unsteady wind conditions
(especially in urban environment [16]), and modulated by a very high rotational speed [17]. It is therefore
interesting to understand the capability of simplified numerical models in reproducing reliably the dynamical
behaviour of this kind of devices, especially in yawed conditions.

This paper is organized in the following sections: Section 2 presents the methods and facilities and a
discussion on the equipment used. In section 3 the results are presented and examined. Finally Section 4 is
devoted to conclusions and future developments.

2 Experimental Set Up and Numerical Models

In this study, experimental tests in wind tunnel and numerical tools are used to characterize the behaviour
of a small wind turbine in yawed configuration.

2.1 Wind Turbine and Wind Tunnel for Experimental Tests
The HAWT prototype selected for this work has these main features:
e 40 kg nacelle mass;

e rotor diameter: 2 meters;

hub height: 1.2 meters;

hub radius is 0.13 meters;

e minimum chord of the profile: 5 cm. Maximum: 15 cm;

angle of attack variable between 1.7° and 32°;



the prototype is equipped with three polymer reinforced with fiberglass blades;

fixed pitch angle;
e operative rotational speed between 200 and 700 RPM;
e 3 kW of maximum power;

e clectric control based on experimental optimal power curve.

In Fig. 1 the test case wind turbine placed inside the wind tunnel is represented; the configuration in the
Figure is at 0° of yaw angle but many tests have been performed with yaw angles of up to +45°.
The wind tunnel used for this research is located at the Department of Engineering at the University of Perugia,
Italy (www.windtunnel.unipg.it). The facility consists on a closed loop, open test chamber wind tunnel with a
squared cross section of the ducts of 2.2 m. per side. The recovery section is about 2.7 m. x 2.7 m. A 375 kW
electric motor puts in rotation a fan that is able to produce variable wind speed in the test section up to 45 m/s.
A peculiar characteristic of this tunnel is the extremely low turbulence of the air flow that can be quantified in
0.4%. The wind speed is measured by a Pitot tube and a cup anemometer placed at the inlet section. In Figure
2 a scheme of the wind tunnel is reported.

Figure 1: The small HAWT in the wind tunnel open test section.

windtunnel

honeycomb

Figure 2: A sketch of the wind tunnel.



As the test section of the wind tunnel is not a free field, it has to be considered a confined environment
where the airflow gets modified by the presence of the turbine itself: this phenomenon is called blockage. To
consider the blockage, in this discussion wind velocities and thrust or power coefficients will be scaled by a
corrective factor, BF (Blockage Factor), estimated following Kinsey and Dumas [18] as in eq.1:

U
= ﬁ?
where U is the free stream wind speed in the wind tunnel with the rotor and U’ without the presence of the
rotor. Using the blockage factor, it is possible to correct both power and thrust coefficients as expressed by eq.2
and eq. 3:

BF (D

U 3
c;:Cp-<lﬂ> = Cp-BF? 2)
2
U
C’T=CT'<U,> =Cr-BF?, 3)

where Cp and C7 are the corrected power and thrust coefficient. Previous experimental and numerical
studies, in particular Eltayesh et al. [19], have been devoted to the analysis of the blockage factor of the wind
tunnel of University of Perugia and the results have been employed for the purpose of this study to correctly
estimate the reference free wind speed. According to this, to reliably compare numerical and experimental
tests, it should be intended that the Cp and Cr factors obtained from simulations are the corrected ones.
The HAWT has been subjected to steady wind time series having duration of 60 s. During each time series, the
yaw angle has a fixed value. The tested yaw angles are:

o 0°
o 1+22.5°

o +45°

The selected wind intensity is 10 m/s and some tests have been performed at 8 m/s too.

2.2 The FAST Software

FAST (Fatigue, Aerodynamics, Structures,and Turbulence) is an open-source aeroelastic software devel-

oped by NREL (National Renewable Energy Laboratory) and it is used to perform simulations of energetic and
mechanical behaviour of horizontal axis wind turbines.
This software offers many alternatives to customize the modeling of turbine components. Electric generator,
yaw controller, pitch controller and shaft brake can be modeled in many ways; the most used includes the use
of subroutines, look up tables and the interface with external software environments. The number of input files
depends on the characteristics of the simulation. In this test the employed input files are:

e Primary: is the main file where simulation parameters can be setted and contains the link to the other
files.

o InflowWind: this file describes the wind characteristics. Data about wind speed magnitude,vertical and
horizontal components has to be implemented in this file. In addition, it contains the spatial discretization
resolution.

e AeroDyn: it includes environment air condition, links to the table of blade airfoils polars, and tower
aerodynamic properties.

e ElastoDyn: in this file, the wind turbine mechanical design (pre-cone, tilt angle, masses and inertia) is
described. Links to blades and tower shape modes are also included.

e ServoDyn: it manages the behavior of the controllers. Through this file it is possible to implement gener-
ator, pitch, yaw and braking models.



Figure 3 is a block chart representing how the files interact during the simulation running.

L Blades

Wmd
Aerodyn Prlmarv Time Series
J Input Fne
Atrfcn s

Tower

Figure 3: A flowchart of the FAST simulation.

As usual for small wind turbines, the model studied in this paper does not have an active pitch or yaw

control, as discussed for example in Scappaticci [20]. To meet market requests and in consideration of the lack
of adequate spaces to house actuators, small wind turbines are typically not equipped with advanced control
systems. For this reason, in ServoDyn, only the electric generator is modeled. FAST offers many solutions to
set up the simulation of generator, in this case, a look up table is considered the best solution. The of external
software (like Simulink) is a better choice when PID (Proportional, Integrative, Derivative) controllers have
to be implemented, especially for unsteady simulations. In the present paper, instead, simulations are always
performed in steady conditions. Neither the default generator model, present in FAST, can be profitably used
because it is arranged for large wind turbines. According to this, the choice of look-up table is the most suited
among all the possibilities.
Look-up table creates a relationship between the instant rotational speed of the shaft and the resistant torque
that has to be applied. Electric generator response is tested experimentally in wind tunnel steady runs with
variable wind speed. In this way, once the system reaches the equilibrium, shaft speed and the corresponding
torque is collected and than used to create the look up table. It has to be noticed that turbine power controller
works according to MPPT (Maximum Power Point Tracking) in order to always find the best performance in
terms of power production. FAST allows to impose and keep fixed the the yaw angle in ElastoDyn file. The
tested yaw angles are the same as the experimental ones: 0°, 22.5° and £45°.

2.3 The BEM Algorithm

The second numerical framework used to estimate mechanical loads on wind turbine is internally developed
on the grounds of the BEM (Blade Element Momentum) theory. Many handbooks on wind turbine aerodynam-
ics explain this mathematical approach; in the following, we refer to a summary by Burton[21]. Drag and lift
coefficients are defined in eq.4 and eq.5:

L
Ciifp=2———— 4
lift A U2 4

D
Crpp—=2— " 5
drag PArer°%7 ( )

where L and D are the aerodynamic lift and drag forces; p the air density; A,y the area of wind turbine
rotor and U, the free stream wind speed. Moreover, labeled as U, the wind speed at the disk, it is possible to
introduce the axial induction factor d’, eq.6:
U — Uy

U ©

To keep in account the rotation effect that the disk imparts to the downstream flow, the @’ coefficient is
introduced, eq.7
1
/

a=—= 7
0% (N
labeled as @ the angular velocity of the wake imparted by the rotor, whose velocity is Q. Using the a factor,

it is possible to rewrite the axial and tangential speeds as eq.:

Ve =Us(1—a) V, = QR(1+a). (8)



After the calculation of speed components, the angle of attack(¢) on each section of the blades is obtained
using polar charts available from aerodynamic simulation software (i.e. Xfoil). Knowing ¢, the C, and C,
coefficients (eq. 9) can be computed:

Cy =Cjcos(9)+Cysin(9) Cy, =C;sin(¢) +Cycos(9). )

As stated by Ning[22], it is possible to obtain tip and loss coefficients using eq.10 and eq.11:

fiip = 129 (f;;q)r) Fip= %acos(eff”'”) (10)
b 129 ghu_b |I; zh;:fp) Fhuy = %aCOS(e*f’”’”), (11)
where:
e F;p: tip loss correction;
e B: blade number;
e R: rotor radius;
e r: distance from center of the rotor to root blade section;
e Fj,p: hub loss correction.
Introducing the solidity o as eq.12: 8
c
o= o (12)
with ¢ representing the chord length, then one can write eq13:
k= élsinZE;n(])F K= 4stSos¢F (13)

considering F = f,%p. Many formulations of a are available according to the values of ¢ and k; in particular for
¢ > 0and k > 2/3 equations 14 and 15 can be used:

10 4 25
}/1:2Fk—(?—F) y2:2Fk—F(§—F) yZ:ZFk—(?—ZF) (14)
a= L\/% (15)
&}
If ¢ < 0and k > 1, the axial induction factor has the following formulation:
k
— ) 16
4= (16)
Instead, if ¢ > 0 and k < 2/3, one obtains
k
- 17
Tkt ("
For d’, a unique formulation is obtained:
k/
= 18
Tt (19

From the aforementioned equations, induction flow factors can be estimated in each solution region. When a
turbine is yawed, otherwise, it is necessary to consider additional corrective factors: in this case the induction
factor with yaw correction is eq.19:

Gy = (14K sin(y)), (19)



where V¥ is the azimuth angle and K, from Shen[23], is given in eq20:

15
K= 5man%. (20)

x is known as skew angle and it is obtained from eq.21:

x = (0.6a+1)y @D

In literature, different formulations for correcting the induction factor considering yaw are available [24]. For
example Coleman[25] proposed eq.22:

K= tan(%). (22)
For White and Blake [26] one has eq.23:
K =+2tan(y). (23)

Moreover Shen[23] proposed eq.24:

157 [1—cosyr
=a|l+— —Ksi . 24
Gyaw =@ | L 32 \/ 14 cosyR sml//] @4
Different, additional formulations have been proposed by Ackermann [27] and Bianchi [28]. All these

formulations have been compared but noticeable differences that may cause substantial changes to the algorithm
have not been found.

3 Results

3.1 Analysis of Power and Thrust Coefficients

In this section, results from simulation codes and experimental measurements are shown. Figure 4 compares
the measured and simulated C, values in different yaw configurations. C), is computed using eq. 25:

P
Cp=

= (25)
%PAreri

where P is the generator power. Physically C, measures the ratio between the power that is produced and the
kinetic energy of the flow. The maximum theoretical limit of this coefficient is indicated by the Betz law [29].

=@= numerical (FAST)
-‘- experimental
=l BEM code

0.5~

0.4 -

—40 =20 0 20 40

(%)

Figure 4: Power coefficients at 10 m/s: experimental vs numerical results.



Similarly to power coefficient, thrust coefficient is used to characterize turbine behavior. Its definition is
given in eq.26:

Cr=1—— =4a(l—a), (26)

where F is the thrust force acting on the rotor in the flow direction. In figure 5, the measured and simulated
behavior of Cr is shown.
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Figure 5: Thrust coefficients at 10 m/s: experimental vs numerical results.

It can be seen that both numerical models reproduce the power coefficient fairly but they largely overesti-
mate the thrust one. The maximum percentage error for Cp is about 5% for the BEM code and 8% for FAST.
In spite of this, for Cr errors are up to 25% for BEM and 20% for FAST. In numerical simulations a 95% of
generator efficiency has been considered and the small errors on Cp for vanishing yaw angles shows that it can
be considered a reliable estimation.

The mismatch between measured and simulated Cr coefficient can be imputable to multiple causes: the
most important can be supposed to be the fact that the numerical models do not take into account blades
deformations. In section 3.2, it will be discussed how the combined effects of blade deformation and tower
blockage are linked to yaw configuration. In fact, the aerodynamic thrust generation depends on the distance
between blade and tower in stream direction. When the turbine is yawed, this distance tends to be increased
and the blades are affected by a lower tower blockage effect producing more thrust: in this case, the mismatch
as regards the Cr, where blockage is not implemented, is negligible.

The slight asymmetry, visible in experimental tests, can be related to wind tunnel layout. In the open test
chamber the lateral walls are placed at different distances respect the air stream and the turbine rotor. Because
of this, the flow that impacts the rotor at negative or positive yaw angles is slightly different. Anyway, the
discrepancies are estimated to be 3% on Cp and 8% on Cr.

3.2 Study of Thrust Cyclic Variation

Because of the critical issues revealed by the previous analysis, it has been considered useful to set up a
study devoted to the cyclic variations of the aerodynamic forces during a complete rotation of a blade. The ref-
erence angle is denoted as azimuth. From Figure 6, it arises that there is periodic component in correspondence
of the first blade passing frequency 3P. This phenomenon is well known and can be interpreted as due to the
interaction between tower and airflow, causing cyclic decrease of acrodynamic forces. As previously explained,
the intensity of the fluctuations is lower for increasing yaw angles because the blade passes farther from the
low velocity air situated close to the tower.
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Figure 6: The rotor thrust variation(N), with respect to the average value, as a function of the azimuth angle.
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Figure 7: The rotor thrust relative variation(N), with respect to the average value, as a function of the azimuth
angle.

The curves of thrust as a function of the azimuth angle have been scaled with respect to the corresponding
mean value in fig. 7. It can be seen that there is a consistent overlap: this means that the amplitude of oscillations
is not dependant on the yaw angle.

Additional experimental tests with a wind speed of 8m/s has been performed to discover the dependence
of thrust oscillations with flow characteristics at 0° yaw value. The results are reported in fig. 8.
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Figure 8: The rotor thrust coefficient cyclic variation in different wind tunnel tests with a wind speed of 8 m/s
and 10 m/s.

From the comparison between the 10m/s and the 8m/s tests, it results that the Cy fluctuations at 10 m/s
are more than doubled with respect to 8 m/s. According to this, it can be stated that the tower interference
has a less relevant effect as the wind speed tends to be lower. Blade deflections in facts are strictly dependant
on the aerodynamics loads and, since they decrease when the wind speed decreases, the space between the
deflected blade and the tower increases and therefore the thrust is less affected by blockage. To quantify the
blade deflection, it has to be considered that in previous measurements campaigns the blade deflection at the
tip has been measured to be around 7% with a wind speed of 32m/s, so it is expected that at 10 m/s it is of the
order of 1% of the rotor radius: it is remarkable that this small value can induce such large tower interaction
effects.

3.3 Analysis of Tower Interference on Accelerations

The above results indicate that the tower inference is a non-negligible aspect of the dynamical behavior
of the small scale wind turbine considered in this study. Wind tunnel tests have been useful to deeply under-
stand how tower interference effect gets modified by the yawing the turbine: this has been possible thanks to
the triaxial accelerometer located on the nacelle, recording the aerodynamic induced vibrations. Fast Fourier
Transform (FFT) theory has been used to analyze the spectrum of vibrations and making a comparison between
0° yaw and +45°, fig.9.
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Figure 9: Experimental normalized order spectrum of the acceleration (fore-aft component normalized on the
amplitude of the 3P component with zero yaw).
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Figure 10: Experimental normalized order spectrum of the forces (fore-aft component normalized on the am-
plitude of the 3P component with zero yaw).

Figure 10 is the FFT of the thrust force measured by load cell placed between tower top and nacelle.
Spectral analysis shows that order 3P, related to tower blockage, undergoes a substantial decrease passing from
0° yaw to 45°. This is an additional proof that gives consistency to the thesis that tower inference is more
prominent for vanishing yaw angle and that justifies the thrust overestimation obtained with numerical codes,
where it is not possible to account for tower blockage.

4 Conclusion
The objective of this study was the characterization of the mechanical behavior of horizontal axis wind

turbines in yaw configuration. This field of study is attracting the scientific interest because yawing turbines
allows several types of wind farm cooperative control, as for example the wake steering, that is useful to
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optimize the energy production.

A small scale horizontal axis wind turbine, with 2 m. of rotor diameter has been tested at the wind tunnel
facility of the University of Perugia. The prototype has been equipped with accelerometers, load cell, electric
power meter and tachometer in order to collect information about its operative conditions when undergoing
different yaw angles. Experimental tests have been performed with a wind speed of 10 m/s and +45°,422.5°
and 0° of yaw angle; additional tests have been carried out with 8 m/s of wind speed at 0° yaw. In addition, two
numerical models have been adopted with two different software: an internally developed BEM algorithm and
the open source FAST code. The numerical models have been set up in order to reproduce the conditions of the
experimental test: the results are then compared in therms of power coefficient Cp and thrust coefficient Cy.

The main result is that the numerical models fairly reproduce the Cp coefficient. There are more critical
points as regards the thrust coefficient: whereas for the cases of yawed configurations, the simulations fairly
agreed with experimental test, for vanishing yaw angle the discrepancy is remarkable. This fact has motivated
further analysis of the experimental data and the interpretation is that the mismatch between simulation and
measurements is given by the fact that the tower blockage is a relevant phenomenon that the numerical models
employed in this work do not take into account. The tower blockage is related to the streamwise distance
between blades and tower, and so it is related to blade deflection too.

The cyclic variation of the thrust as a function of the azimuth angle has been analyzed for different yaw
configurations, confirming the presence of a 3P periodicity which testifies the presence of a tower induced
blockage effect variable respect to yaw angle. Under this circumstance an experimental test, with a wind speed
of 8 m/s has been useful to confirm that with lower aerodynamic loads also the blade deflections decrease and
so they do the lower thrust oscillations.

In addition, FFT analysis has been used to compare order spectra of nacelle accelerations and thrust for
the 0° and 45° yaw configurations. The accelerations and thrust at 3P order appear diminished when the rotor
is yawed. As this order is characteristic of tower interference effect, the order analysis brings an additional
argument is support of the fact that blockage phenomenon is strictly correlated to the yawing behavior and
cannot be neglected when yaw angle tends to vanish.

The results of this study can be useful to increase the knowledge of the behaviour of small wind turbines
in yawed configuration and to evaluate the ability of low-fidelity numerical models predicting loads on yawed
rotors. Future improvements of this study regard the possibility of better characterizing the interactions between
blade tip and turbine tower, possibly using CFD codes. This study can also be useful for the implementation
of wake steering wind farm control where it is expected that turbines will runs in yawed configuration for long
periods and so an accurate estimation of loads is a crucial step to guarantee best performances and to assess the
fatigue loading of the machine.
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Gears and bearings, used in many industrial areas are subject to failure that may lead to costly
shutdowns. The current trend is to detect failures (cracks, spall, pitting ...) and to identify and control
their evolution. Such monitoring leads to a huge amount of data. With a double skill in test and
simulation, Vibratec proposes an approach based on measurements coupled with Machine Learning
(ML) processing.

This presentation defines the fault detection global approach used by Vibratec, from signal acquisition
to the classification of indicators. The methodology is firstly applied on a specific HMS test bench.
Then, the machine learning strategy is deployed on a database. The numerical simulations are in good
agreement with the measurement results obtained on the test bench, and the machine learning indicators
provides encouraging results. In the upcoming months, this complete methodology will be applied on a
collaborative project aiming to improve the maintenance of aircraft engines.
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Abstract

Transmission error (TE) has long been thought to be a major contributor to gear vibration and noise, but
insufficient consideration has been given to the different types of TE and how they generate vibrations. TE is
defined as the difference in torsional vibration of two meshing gears, scaled so as to represent linear motion
along the line of action. There are three distinct types of TE; 1) Geometric TE (GTE) given by deviations of
the (combined) tooth profiles from ideal involute; 2) Static TE (STE) including elastic deformation of the
teeth and therefore being load dependent; 3) Dynamic TE (DTE) including inertial as well as stiffness
effects, and thus being speed as well as load dependent. It has long been recognized that TE can be measured
very accurately by phase demodulation of the signals of shaft encoders rigidly attached to each of the gears
in mesh, but only recently realized that all three types can be measured; GTE at low speed and low load, STE
at low speed and higher load, and DTE at higher speed and higher load. This paper demonstrates that TE has
several advantages over vibration acceleration (or even the raw torsional vibrations) as a diagnostic
parameter, being close to the source (the gearmesh) and with “common mode rejection” from the two gears,
thus being much less sensitive to operating conditions and rig parameters, including the much greater
number of transfer paths, modulations, and resonances in the casing vibration measurements. The
measurements in this paper were made on a single stage gearbox, over an input gear speed range from 2 — 20
Hz, and input shaft torque range from 0 — 20 Nm. Earlier measurements on the same gearbox were for soft
gears which developed distributed pitting over an operating period of many hours. Unfortunately, the
encoders used at that time (actually included in slip rings) had a low torsional resonance frequency, which
precluded obtaining TE at higher than 2 Hz shaft speed, so only GTE and STE could be estimated. New
results are presented here for ground, hardened gears with a simulated tooth root crack on one tooth. Not
only does this illustrate the differences with a local fault, but new encoders were mounted, valid up to a shaft
speed of 20 Hz, so that DTE could also be measured.

1 Introduction

Gear transmission error (TE) is defined as the difference in torsional vibration of two gears in mesh,
scaled so as to represent linear motion along the line of action, this being common to the two gears. Already
in 1996 [1], it was shown that TE could be measured simply and accurately by phase demodulation of the
pulse signals from high quality shaft encoders on the free ends of the shafts on which the gears are mounted.
The measured torsional vibrations, in terms of angular displacement, are scaled by the respective base circle
radii, and subtracted to give relative motion along the line of action. The accuracy of the encoders
themselves corresponds to fractions of a micron of TE, and virtually no further error is introduced by the
phase demodulation processing by Hilbert transform techniques (as compared with the earlier use of
analogue phase meters, or polynomial interpolation between pulses). It is often possible to mount the
encoders on the free ends of the gear shafts (the section not transmitting torque) so that they follow the gear
motions up to a very high frequency. The proposed application in [1] was to the measurement of TE in
design, development and manufacture, to add to information gained from measurements using gear
metrology machines, but it has also been proposed as a tool for gear diagnostics in [2]. However, at the time,
that was limited by the necessity to mount encoders on the machines.

It is now becoming more common for encoders to be built into machines, to provide valuable information
for both control and monitoring of, for example, variable speed machines such as wind turbines, and this will
presumably increase with the adoption of the Internet of Things, so it is likely that measurement of TE will
become more available as an indicator of gear faults.



Transmission error (TE) has long been thought to be a major contributor to gear vibration and noise, but
the relationship between them has not been fully understood. For a start there are three distinct types of TE:
1) Geometric TE (GTE) given by deviations of the (combined) tooth profiles from ideal involute; 2) Static
TE (STE) including elastic deformation of the teeth, and therefore being load dependent; 3) Dynamic TE
(DTE) including inertial as well as stiffness effects, and thus being speed as well as load dependent.

Measurement and application of these three types of TE as a diagnostic tool were discussed in [3], but it
was found that the encoders used there (actually included in slip rings) had a low resonance frequency,
which precluded measurements at high enough speed to give DTE. The same test rig has now been equipped
with high quality encoders, and the current paper uses new measurements with that system. Another
difference is that the old measurements were made with soft gears, run for an extended period so that
(uniformly distributed) pitting developed, but no distinct local faults. The current paper uses measurements
made with hardened ground gears, but with a simulated tooth root crack seeded in one tooth on the pinion, to
give information on local faults, and tooth root cracks in particular, this being one of the most critical faults,
and most important to distinguish from less critical faults such as local spalls.

2 Test rig and measurements

The overall layout of the spur gear test rig is shown in Figure 1.
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Figure 1: The spur gear test rig at UNSW. (a) photo; (b) schematic diagram

For the original measurements in [3] the reduction ratio was 19:52, and the gears were of mild steel. The
original encoders were also slip rings, and had a low frequency resonance so that the highest valid input
speed was 2 Hz.

For the new measurements, the reduction ratio was changed to 27:44 (same centre distance) and the gears
were of hardened steel to avoid surface distress. The encoders were replaced by Heidenhain type RODA426,
with 1000 pulses per rev, as well as a one per rev tacho pulse as a phase marker, and they gave valid results
up to at least 20 Hz shaft speed. An EDM-generated half-tooth root crack (a 45° slot across the entire
facewidth, 2.86 mm deep, extending to the tooth centreline, and 0.35mm wide) was seeded on one pinion
tooth (input gear). Measurements were made at speeds 2, 5, 10, 15, 20 Hz, and loads 0, 5, 10, 20 Nm (all
referenced to the input pinion). In addition to the encoder and tacho recordings, accelerometer measurements
were made in the vertical direction on the casing above the input shaft at the motor end, and above both
shafts at the brake end.



3 Results and discussion
3.1 Earlier results from the spur gearbox

A short summary is given here of the results published in [3], because they contain some findings which
are different from those of the more recent measurements, published for the first time here. As mentioned,
the gears were of mild steel and were run for a long period (nearly 50 hours) during which time they
developed surface pitting fairly uniformly distributed around the gears. This was much more pronounced on
the 19 tooth pinion than on the 52 tooth gear, because each tooth had a much greater number of contacts in
inverse ratio to the tooth numbers, so only the pinion is discussed here.

Wear was monitored by trending the amplitude of the TE gearmesh harmonics (and the corresponding
component of the synchronously averaged TE signal) in two conditions: low speed-low load (GTE) and low
speed-high load (STE).

The effect of wear on GTE and STE showed an unexpected trend. The growth of the gearmesh harmonics
was more pronounced on GTE during the first 6 hours of operation (mild pitting), and on STE later (severe
pitting). The greater sensitivity of GTE in the initial phase was interpreted as being due to the fact that the
unloaded GTE would have been dominated by (a few) local high spots at the edges of the pits, which would
be easily deformed under relatively light load to give a reduced STE. On the other hand, with severe pitting
more continuously distributed along the contact line, high spots would reduce the visibility of wear in GTE,
and increased load would tend to give an increase in TE. Figure 2 shows a schematic representation of this
interpretation, together with snapshots of the surfaces after about 2.5 and 42.5 hours of operation. For a
detailed description of this test campaign the reader is referred to [4].

Mild pitting (few isolated pits with ridges)

Smaller STE due to
[ N 4 deformation of high-spots

Theoretical GTE T

Unworn surface

Severe pitting (covering most of the area)

Unworn surface

Theoretical GTE

Figure 2: Schematic example of the interpretation of the effect of mild (top) and severe (bottom) pitting on
GTE and STE, with corresponding example images of the gear surface.

In simulation models it is quite common to have GTE as a fixed value in series with the toothmesh
stiffness. The latter is not always constant, but any nonlinearity is usually taken to correspond just to the
extra compliance of the Hertzian component at low load, which still does not give a large difference in the
overall stiffness, since the Hertzian component typically only represents about 25% of the total compliance,
with the dominant bending stiffness component being almost linear. The above experience with “high
points” does seem to indicate that, to obtain a reasonable match between such a simplified model and



experiment, it would be better to use a value of GTE measured at a low, but non-zero, load sufficient to
negate the effect of the high spots, and giving a more sudden transition to the Hertzian affected section of the
stiffness curve.

Another interesting finding from the same study showed that, differently from TE, vibration was almost
entirely insensitive to wear in both unloaded and loaded cases, at low speed. This was attributed to the fact
that the proportion of the STE due to tooth deflection is still relatively small, but in fact it is only the
dynamic tooth load, giving this deflection, which gives rise to vibration. At low speed there is no inertial
resistance to rotation, so the driven gear can simply absorb the GTE by relative torsional motion, with almost
no change in the GM spring force, even for the loaded case where the static load is almost constant. It could
be expected that for DTE the much greater angular accelerations involved might prevent the driven gear
from simply “moving out of the way” and thus force tooth deflection and increased vibration. This was
actually found in [3] for the higher harmonics of gearmesh. Unfortunately, the encoders mounted at the time
of this first test had a low resonance preventing reliable measurements of TE at speeds higher than 2 Hz (i.e.
DTE) and their comparison with the vibration.

3.2 New results from the spur gearbox

As mentioned above, the new measurements were for a different gear ratio, and the gears were hardened
and ground, to mitigate against surface distress. Moreover, they were reduced in face-width from 20 mm to
5 mm to reduce the gearmesh stiffness proportionately. The tests are to check the effects of the simulated
half tooth-root crack described in section 2. It should be noted that the gearbox test rig is non-ideal (and non-
typical) because the shafts are relatively long and slender (to give access inside the casing), but this means
that the TE tends to be dominated by shaft deflections rather than tooth defections, making it difficult to
detect changes in tooth stiffness, such as result from a crack. The tooth stiffness is at least an order of
magnitude greater than the shaft stiffness. Both TE and vibration acceleration were measured over a range of
speeds and loads, but speeds of 2 Hz and 20 Hz, and loads from zero (nominal) to 20 Nm are presented here.
There was a small friction load corresponding to nominal zero, which was sufficient to keep the gears in
contact, and allow measurement of the GTE at low speed.

Figure 3 shows the measured TE, synchronously averaged with respect to the pinion, for loads of 0, 5, 10,
15 and 20 Nm, for four different conditions:

1) Original TSA at 2 Hz

2) Original TSA at 20 Hz

3) Filtered TSA at 2 Hz

4) Filtered TSA at 20 Hz

Two (identical) rotational periods are shown. Bandpass filtering was performed to remove the masking
effect of the gearmesh (GM) components and the first two harmonics of the input shaft speed, and so shaft
harmonics from the 3rd to the 13th were retained in the TE signals. It was checked that the main effect of the
crack was additive rather than multiplicative (modulation of the GM harmonics) so the signals were lowpass
filtered just under half the GM frequency to enhance additive impulses from the crack, having components
above the first two rotational harmonics, but removing modulation sidebands along with the GM harmonics.

Considering first the unfiltered results at low speed in Fig. 3(a), the increasing load gives a corresponding
increase in the gearmesh component, but no change in a shaft speed component, which is likely due to a
small eccentricity of the pinion. The TE for zero load could be taken as the GTE for this gear. The increasing
GM component with load corresponds to the static deflection component of the STE.

For the equivalent results at 20 Hz, in Fig. 3(b), it is seen that the DTE is substantially different from the
STE, at least with respect to the GM component. This can be explained by the fact that the GM frequency
(540 Hz) is very close to a resonance of the system. This interpretation is also consistent with the fact that the
increased GM component is dominated by the first harmonic, whereas that in Fig. 3(a) has many GM
harmonics.

The filtered low speed results in Fig. 3(c) reveal the effect of the crack, at about 50 degrees along the
scale, although the effect becomes less evident with increasing load. With this knowledge, it will be seen that
the crack can also be detected in the unfiltered signal in 3(a), though only at the lowest load.
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Figure 3: Comparison of original and filtered TE measurements
(a) Original TE, 2 Hz (b) Original TE, 20 Hz (c) Filtered TE, 2 Hz (d) Filtered TE, 20 Hz



The situation is very similar for the high-speed results in Fig. 3(d) (and 3(b)), and it is quite remarkable
that once the effect of the resonance on the GM component is removed, the STE of Fig. 3(c) and DTE of 3(d)
are very similar, at least for the lowest two loads. This illustrates one of the advantages of TE rather than
vibration (including torsional vibration) as a diagnostic parameter, since the effects of operating conditions
are greatly reduced.

The unexpected reduction in TE with increase in load gave rise to speculation as to the cause, and it was
realised that it must be due to the fact that the “crack” has actually started slightly closed with respect to the
undamaged gear, and the effect of increasing load is to counteract this with increasing tooth deflection under
load. This is the opposite to what is expected to happen in the case of a genuine natural crack, where it has
been demonstrated [5] that there is a tendency for the crack to be permanently open, in the unloaded
condition, because of the plastic deformation at the crack tip which is an intrinsic part of crack development.
The reason for the “crack” closure in this case is undoubtedly because of relief of residual stresses from heat
treatment when the slot was machined, but this should never occur with real crack development, where STE
due to loading would be in the same direction as the original GTE.

The change in TE as a result of tooth deflection is not easy to see, even from the filtered results in
Fig. 3(c) and (d), but Figure 4(a) and (b) show a zoom of the differential TE in the vicinity of the crack. This
represents the difference with respect to the curve at the highest load (20 Nm), but with reversed sign so as to
show the increase of deflection with load. This is seen to be monotonic and close to linear. The
corresponding linearised compliance can be derived from the deflection vs load curves in Fig. 4(c, d). These
differ by only 33%, and indicate that it may be possible to estimate gearmesh stiffness from DTE as well as
STE, even where measurements cannot be made at low speed.
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It is interesting to compare the (differential) compliance values in Fig. 4 with the typical value given for
total stiffness by Smith in [6] as “A generally accepted figure for the mesh stiffness of normal teeth is 1.4
x10% N/m/m”, which works out in this case to be 7 x 10’ N/m, or 14 um/kN in terms of compliance. This
constant value (per unit facewidth) is based only on the bending stiffness component, and is independent of
scale for a given shape of tooth since the stiffness varies directly with the cube of the depth, and inversely
with the cube of the length. The values in Fig. 4 represent the differential compliance (additional deflection
for the same load), which would be 5.18 and 6.89 um/kN, respectively. In Ref. [7], an estimate is made of
the change in stiffness of the toothmesh due to cracks of various sizes, using FEM and an improved
simplified method, which agree. For their largest crack, which extends to 48.4% of the tooth thickness, and
which has a sharp tip, the increase in compliance is 33% in the single tooth pair zone and 25% in the double
tooth pair zone. Considering that the “crack” in the current results has a depth of 50%, and is actually a slot,
it is likely the increase in compliance would be greater than those from [7], giving good agreement with the
results from Fig. 4.

It is interesting to compare these TE results with those from response accelerations. Figure 5 shows
synchronously averaged signals (over two rotation periods) at zero and 20 Nm load, and 2 and 20 Hz input
shaft speed. Only the response at highest speed and highest load shows the tooth root crack. Although not
shown here, even the responses at 20 Hz and 15 Nm did not show the crack. From Fig. 5(d) it appears that
the effect of the crack is mainly multiplicative (local amplitude modulation) so it could be that the resonance
near the GM frequency has also amplified the effect of the crack.
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Figure 5: Synchronously averaged acceleration signals for two speeds and two loads
(a, b)) ONm (c,d) 20 Nm (a, ¢) 2 Hz (b, d) 20 Hz

It is quite possible that further signal processing could extract evidence of the crack from more of the
response signals, but the main point with respect to this paper is that the TE and vibration responses give
quite different information about a tooth root crack, with perhaps the main point being that it only excites a
vibration response when teeth are deflected, and therefore not under zero load. The GTE, on the other hand,
does show the crack at zero load, in this case because the “slot” had actually closed because of relief of
residual stresses. However, in the case of normally developing cracks, they would be partially open because
of plastic deformation at the crack tip, and would open further under load, this being detectable by
measurement of STE and DTE, the latter at higher speeds, where it would not be possible to measure the
GTE.

The fact that information was obtainable, from the measured TE, of toothmesh stiffness, even at higher
speed where the GM frequency excited a resonance, emphasises the fact that the TE is measured right at the
source, whereas vibration response measurements at different measurement points would all be different, and
correspond to different (possibly time-varying) transmission paths.

4 Conclusion

This paper gives a number of examples of how measured gear TE can be useful in gear diagnostics, as an
alternative, or supplement, to vibration measurements. It explains how GTE, STE and DTE can be measured
if it is possible to run the machine at low speed and low load (GTE), low speed and high load (STE) and high



speed and high load (DTE). An earlier paper demonstrated some of the characteristics for generalised
distributed wear and pitting of the teeth, giving changes on tooth profiles, whereas the current paper shows a
number of advantages, compared with vibration measurement, for the critical case of a tooth root crack. Of
particular interest was that it was possible to obtain estimates of the change in toothmesh stiffness (actually
compliance) due to the crack, and indirectly of the toothmesh stiffness itself. The latter would probably
require comparison with simulations of the cracked tooth, for example with an FE model.

Potential advantages of using TE for gear diagnostics are:

1) The measurement is closer to the source, and less disturbed by transfer function effects than vibration
responses, which not only vary considerably between different positions, but can also be time-varying.

2) It is easier to get a good correspondence with simulations, because the torsional parts of simulated
systems are simpler, and affected by fewer resonances than lateral vibrations, so model updating should be
simpler.

3) The measurement of GTE at different times during the life of a gearbox, as well as giving a more direct
measurement of wear, will make possible the inclusion of more accurate versions of this parameter in
simulation models, including those giving lateral vibrations as outputs.

The technique does require the mounting of accurate encoders on at least the input and output shafts of
the gear transmission, but does not necessarily require them to be mounted on all shafts [3], which can be
difficult for internal components. However, the inclusion of such encoders is already implemented in some
machines, for operational purposes, and this is likely to increase with the wider implementation of the
Internet of Things.
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Abstract

The analysis of the squared envelope spectrum (SES) is one among the most used tools for bearing diagnosis.
It can easily reveals the characteristic frequencies related to the bearing fault [1, 2]. Actually, the envelope is
estimated through a demodulation process in a selected frequency band. The proper choice of the latter is really
challenging in a complex environment [3]. In addition to that, the frequency of the bearing fault is likely to
be masked by deterministic components. This can jeopardize the efficiency of classical techniques [3, 4, 5].
In this paper, a new approach for bearing diagnostic is proposed. It is based on a recently proposed order
tracking technique using the H., filter [7]. In details, the method starts by computing the squared envelope
(SE) of the raw signal over the full demodulation band without prior processing. Next, the SE is modeled in a
state space using a trigonometric series expansion. Last, an H., estimator is designed to extract the amplitude
of each harmonic related to the bearing fault signature. This estimator is well convenient to track the order
of bearing faults, particularly in the presence of deterministic components (i.e. the noise). Since this noise is
neither white nor Gaussian, the traditional Kalman filter order tracking is compromised [8, 9, 10]. Contrary
to the Kalman filter, the H. filter is based on the minimax optimization. The minimax approach leads to the
minimization of the estimation error for the worst possible amplification of the noise signal. More interestingly,
no prior knowledge about the statistical properties of the noise signals is required [11, 12]. The efficiency of
the proposed approach is demonstrated on simulated and real-world vibration signals in nonstationary regimes.

Keywords: H.. filter, state space modelling, order tracking, squared envelope, bearing diagnosis, vibration
signal, variable speed condition.

1 Introduction

Rolling element bearings are among the most widely used elements in rotating machines. Because of their
common role to carry high loads, bearings are likely to be exposed to sudden failures causing system out-
age. Thus, there has been an increasing interest in developing appropriate techniques for signal denoising and
incipient fault detection. Due to their non-invasive nature and their high reactivity to incipient faults, the devel-
opment of vibration-based techniques has spiked the interest of the scientific community [1]. In this context,
envelope analysis has long been recognized as a powerful bearing diagnosis technique. Typically, it consists
of a bandpass filtering step in a frequency band wherein the impulsive response is amplified, followed by a
demodulation that extracts the signal envelope. The spectrum of the envelope reveals the desired diagnostic in-
formation, including the repetition frequency of the fault as well as possible modulations. It has been shown in
[2] that it is preferable to use the squared envelope instead of the envelope as the latter is likely to introduce ad-
ditional interfering components in the envelope spectrum. Since that time, the envelope spectrum was replaced
by the squared envelope spectrum (SES) which has become the benchmark technique for bearing diagnostics.
A powerful solution to this issue was proposed through the spectral kurtosis [16] (and some derived tools such
as the kurtogram [17], the fast kurtogram [3], etc.) which provides an entirely blind way of identifying the
best demodulation band according to the impulsivity criterion. Despite its remarkable relevance in machine



signal analysis, the efficiency of the spectral kurtosis is compromised in many situations; for instance, in the
presence of energetic deterministic part or the presence of multiple impulsive sources or strongly in nonstation-
ary conditions. This paper comes in this context aiming at providing a new way to address bearing diagnostic
based on tracking bearing characteristic orders (i.e. fault frequencies referenced to the shaft frequency) in the
squared envelope, without the need of eliminating the deterministic component neither to filter the signal. The
method uses the fact that the SE signal comprises a cyclic patterns related to bearing fault. From this observa-
tion, the SE signal is described in the state space model using a trigonometric series expansion. Then, an H..
filter is designed to track bearing fault order components. This approach is different from the classical Kalman
filter based order tracking. The latter is a widespread method used to track sinusoidal components [8, 9, 10],
assuming that the exegeneous noises that affect the state model are white and Gaussian with known statistics.
In current situations, those assumptions are not valid. Indeed, the meshing components that mask the bearing
ones are neither white nor Gaussian. To address this issue, an H.. filter is proposed. The latter minimizes the
estimation error for the worst possible amplification of the noises. This leads to a minimax optimization where
no prior knowledge about the statistical properties of the noises is required [11, 12].

The proposed approach is presented in this paper as follows. In Section 2, the SE of a discrete vibration signal
is described in the state space model using a trigonometric series expansion. In Section 3, the methodology to
design an H.. filter is exposed. In Section 4, the proposed approach is first applied to a simulated vibration sig-
nal. Then, it is applied to analyze real-life vibration signals acquired from a wind turbine under nonstationary
conditions. Conclusions of this paper are given in Section 5.

2 State space modeling of the squared envelope signal
Condider the discrete measured vibration signal as follows:

yIk| = yr[k] + v, k] + D[K] (1)

where y,[k] is the signal related to the bearing vibration, y,[k] is the meshing signal and b[k] is the signal
composed of all the exegeneous vibrations such as the background noise for all k = 1,--- N. N is the number
of signal samples. The meshing signal, in the case of a tooth crack, exhibits amplitude and phase modulations
[6]. The corresponding signal in nonstationary regimes can be written as:

Velk] = K(@[K]) Y an[K]e/ e/ )

in which x(wl[k]) is a modulation function depending on the machine regime, ®[k] = 27 f,[k] is the shaft
angular speed and f, is the machine rotating frequency, a,, and ¢,, are respectively the amplitude and phase
modulations, 6,, is the instantaneous meshing angular displacement and j is the complex number such as

j? = —1. Concerning the bearing vibration signal, it exhibits a series of impulses which can be modelled as [1]:
d
yrlk] = w(ok)MK] Y Aidlk— [T:£]] 3)
i
in which:

e M([k] is the load distribution function for an inner-race under radial load. In stationary conditions, this
function is periodic at the shaft rotating period [18];

e A; is the amplitude of the ith impact so that A; = A + 0A;. A is the mean value of the distribution and §A;
is a zero-mean random part with oy its standard deviation;

e T; is the instant of apparition of the ith impact;

o [ is the damping response that depends on the damping factor and the resonance frequency of the bearing
structure;

e d is the number of impacts resulting from the bearing fault;



e f; is the sampling frequency;
e [-] stands for the integer part of a decimal number.

Since the bearing’s rolling elements are subject to slipping phenomena, the time of occurence from one impact
to another is not constant. This time exhibits a random part and, as mentionned in [1], can be modelled in

stationary conditions as:
T; =iT + 6T; “)

where T is the time isntant between two consecutive impacts and 07; is a random variable with a Gaussian
distribution. This modelling is no longer valid in nonstationary conditions. In this context, Borghesani et al.
[19] and Abboud et al. [20] have written the instant of impact occurrence as follows:

T,':l(l'gd—l—59,') )

in which 6, is the angular period of the bearing fault and 86, is a zero-mean Gaussian distribution.
The squared envelope of the measured vibration signal, which is of interest in this work and denoted SE, is
given as follows:

SE[k] = E{y[k]y[k]} (6)
= E{Or[k] +yg k] + BIK]) (3-[k] + yg [k] + bIK]) } )
where a is the conjugate of the complex number a and E{-} stands for the expectation symbol.

In this paper, it is assumed that the bearing, the meshing and the noise signals are mutually not correlated.
Hence, the squared envelope becomes:

SE[k] = E{y.[k]y,[K]} +E{ye[k]y,[k]} + E{b[k]b[k]} ®)
= E{yr [k]y_r [k]} + I’l[k] )

where n[k] = E{y,[k]y,[k]} +E{b[k]b[K]} is considered as a noise signal. Otherwise, the SE can be expressed
using the autocorrelation function (ACF) denoted by %. The latter, applied to the bearing signal y, in equation
(3), can be written as [20]:

d
Rk, j] = (A* + 03 K> (k] )M*[k] Y E{glk— [T;£,], j]} (10)
i=1

where gk, j| = I[k]I[k — j]. By writing this function in the angular domain, one gets:

QU

Rlkas J] = (A% + 03) & (@ [ka)) M2 [ka) ) E{2[ka — [6:Na]. j]} (11)
i=1
with X the angular transformation of the time variable x, k, the sample index in the angular domain, Na the
angular sampling frequency and 6; the angle instant of the ith impact occurrence. Refering to equation (5), the
latter is modelled as 6; = i6; + 0 6; [22]. Thus, the ACF becomes:

Rlka, j] = (A% + 03) K (@[ka) )M ko]

M=~

E{g[ka - ku,i - (Sku,i; J]} (12)
1

where k,; ~ [i6;N, | is the angular sample of the ith impact occurrence and dk,; ~ [ 66;N, | is a random integer.
The above equation of ACF has been proven by Abboud et al. in [20]. By taking advantage of this equation,
the SE, using the ACF, can be expressed as:

SE[ka] = %[ka,j = O] +ﬁ[ka] (13)
= (A2 + 62 (w[ks)) M [ka] f E{glka — ka,i — 8kais j = O]} + filky] (14)

i=1
= (A’ +03) R (w[ka]) M k] iﬂz{iﬂ [ka — ka,i — ka,i)} + filkq) (15)



Assume that the random variable k, — k,; — 8k,; has a probability density function f[0k,;] centered at
kq — kg, ; with a constant standard deviation. According to the law of the unconscious statistician [15], the above
equation is written as:

SElks = (A>+ Gf%)f(z(w[ka])Mz [Ka] ' 2[ka —ka,i — 8kq i) f6ka i) +7ilky] (16)

M=
[\gl&

I
-
I
-

= (A*+03) K (w[k,])M P ® f)[ka — kai] + k] (17)

=
=
'[:?“

I
—_

SElke] = (A®+0})&*(o[ka])M? k]

'M&

Il
—_

Slka — ka] + i[ka] (18)

in which ® stands for the convolution symbol and s[k,] = (h> ® f)[k,] is the convolution between the function
h? and f. The function M?>[k,| is deterministic and can be approximated by a Fourier series such as M?[k,| =
Y, As[ky)el¥slkalgisOrlkal where Ay and w; are respectively the sth variable amplitude and phase of the Fourier
series and 6, is the angular period of the shaft. In same way, the sum in the SE formula can also be expressed
by Y4, slka —kai] = X, p:[ka]e’® kol gJz0alka] with p, and @, respectively the zth variable amplitude and phase of
the Fourier series and 6, the angular period of bearing fault. This leads to:

SE[k,] = (A2 + 62)k? 9{{21 ej(% (Ka]+9:[ka]) . (0u ka]£:56, [kaD} + i[kq] (19)

where R{.} defines the real part of a complex number. In this paper, all the components related to the shaft
angular period are not of interest. Therefore, the SE is written as:

SElka] = (440 (0k)R{ Y Aolka]p:[ics)e’ Vol t otk g @ulke)y 4y i (20)
s=0,z
!
~ Z ] €08 (204[ka] + - [ka)) + v[kd] (21)
in which o [k,] = (A% + 62) K2 (®[ka)) Ao [ka] p:[kals O:[ka] = Wolka] + @;[k,] are respectively the zth amplitude

and phase of the Fourier series, v[k,| is the noise comprising the initial noise 7i[k,] and all the components
related to the shaft angular period 6, [k,] and [ is the higher order of the series. The latter defines the number of
the bearing component of interest in the estimation procedure. In the state modelling approach that is proposed
in this paper, v[k,] is the so-called measurement error or measurement noise.

At this stage, the detection of the bearing fault is reduced to the estimation of the amplitude ¢, and the phase
¢, of the zth order component. This estimation can be done using a linear or a non-linear filtering approach.
However, the non-linear approach are subject to a divergence issue. To obtain a linear model, the SE signal is
presented in the following form:

SElk] = Y bl [ka)x:[ka] + v[kd] (22)

where:

o hky) = ( cos(z64[ka]) sin(z64[ka]) )T € R?*! is the zth measurement vector. R stands for the ensem-
ble of the real number and (-)” for the transpose symbol. In the rest of this paper, the lowercase symbols
in bold stand for vectors and the uppercase ones in bold stand for matrices;

o x[ka) = ( o[kq]cos(.[ks]) o [ky]sin(9:[ka)) )T € R?*! is the zth state variable.

Using equation (22), the estimation of the amplitude and the phase of the Fourier series reduces to the estimation
of the state variable x,. In this context, the simultaneous estimation of x, leads to write the SE as:

SE[ka] = h" [ka)x[k) + v[kd] (23)



in which hlk,) = ( ki [ks] -~ ] [ki] )T € RV and x[k,) = ( xi[ks] -+ xi[kd] )T € R?!1 are respec-
tively the measurement vector and the state variable. Assuming that the angular period of the bearing fault is
known, the detection of the latter is reduced to the estimation of the state variable x[k,]. In this context, it is
proposed to estimate x[k,] in a recursive manner using a state space modelling approach.
For this reason, the SE signal is described in a state space. That is to say the dynamic of the state variable has
to be defined. In this paper, all parameters include in the state variable x[k,] are supposed to follow, roughly
speaking, a random walk so that:

xlk, + 1] = x[k,] + wlk,] (24)

where w[k,| is a random or deterministic signal with bounded energy. Equations (23) and (24) form the state
space model of the SE signal. From the latter, an H.. filter is designed in the next section for the state variable
estimation.

3 H.filter order tracking

Considering equations (23) and (24), the H., filter will be designed to estimate some arbitrary linear com-
bination of the state, say:

$Tka) = h" [ka]%[k] (25)
where £[k,| satisfies the following recursion:
&lka] = %lka — 1]+ glka] (SE[ka — 1] = " [ka — 1]lks — 1]) (26)

where g[k,] is the H. gain and X[k,] is the estimate of x[k,]. The state variable is estimated for any v|[k,]
and w(k,] of bounded energy.
Let e[ky| = s[ka] — S[kq] be the estimation error, then the H., gain is found by minimizing the following cost
function given by [12]:
2
Y1 llelkd]|

ettt + 28 1 (Iwhkal It + Ivikal 13- )

where (e[1],wlk,],v[ks]) # (0,0,0), e[1] represents the initial error, P[1] > 0, @ > 0 and R > 0 are positive
definite weighting matrices, N is the number of samples and ||e[k,]||s = e[ka]” Se[k,]. This can be interpreted as

J=

(27)

the energy gain from the unknown disturbances P~'/2[1]e[1] and {Q~?*wlk,], R~/ *v[k,] i\; _, to the estimation
error {e[k,|}} _,. It is quite clear that if the ratio in (27) is small then the estimation is better, and vice versa.
However, this ratio depends on the quantities e[1], w[k,] and v[k,| which are unknown. In this context, the worst
case is considered below:

Sup J<l1/y (28)
e[1],wlka],v[kd]
where ”Sup” stands for the supremum and ¥ is the performance bound. Otherwise, the goal of the H.. problem
is to find an estimation {§ [ka]}i\: _, that minimizes the worst-case energy. This is equivalent to minimize the
following scalar quadratic form:

N N N
Jr=e 1P [1]e[1] +k2 wik.)T Q 'wlk,] +kZ vk TR W[k, —yk): elka)” elky] (29)
=1 =1

azl

so that J¢ > 0 for all vectors e[1], for all nonzero signals w[k,] and v[k,] of bounded energy.

Giving the cost function Jy, the worst case minimization is reduces to minimize J; in respect to $[k,] and to
maximize Jy in respect to e[1], wik,] and v[k,] for all k, = 1,--- ,N. This leads to a minmax optimization
formulated in such a way that:

{$lka]}p _, = arg (msjnemgf_v(lf)) (30)

This optimization problem can be solved by the well known Lagrange mutliplier approach. The solution to the
above optimization is given by the theorem quoted below [11, 12, 14].



Theorem 1 Let vy > 0 be the user-specified performance bound. Then, there exists an Hw estimation for s[k,| if
and only if there exists a symmetric positive definite matrix P[k,] € R**? that satisfies the following discrete-
time Riccati equation:

P[ka] :P[ka_l]r[ka_l}""g (3D

when
_ -1
F[ka] = (121 - YhT[ka]h[ka]P[ka] "‘h[ka}R 1hT [ka]P[ka]) (32)
and I»; € R¥*? is the identity matrix.
Then, the H.. gain g[k,] € R**! is given by:

glka) = Plkq]T[k, — 1]h[k]R ! (33)

It should be noted that for some weighting matrices P[1], @ and R the performance criterion in (28) is achieved
if and only if the performance bound 7 satisfies the following inequality:

y<R! (34)

Since 7y defines the noise level attenuation or the performance bound, it should be as high as possible. And,
it has been shown in a previous paper [7] that when ¥ is greater than its optimal value, the matrix P is not
symmetric positive definite. Otherwise, when ¥ tends to zero, the H.. filter is not constrainted. Then, it is
equivalent to the standard Kalman filter for which R and Q are defined respectively as the covariance matrix of
the measurement noise and the state noise.

4 Application

4.1 Synthetic signal analysis

Here, a synthetic signal is presented to evaluate the performance of the proposed approach in estimating
bearing order components. The signal is composed of the bearing, the meshing and the noise signal. They
represent respectively 20%, 30% and 50% of the synthetic signal energy. The non-stationary condition is simu-

lated using a non-linear rotating frequency varying between 5 Hz and 30 Hz such as f,[k] = 5+25sin (g(%:lli)
for 1 <k < N where N is the number of samples. The time duration of the signal is 5 s.

Concerning the meshing signal, sampled at the frequency f; = 10 kHz, it is computed using equation (2) and
contains five meshing components. The latter is composed of the 45th and 49th shaft order component with
amplitude and phase modulations. The generation of these modulations is presented in details in Appendix A.
About the bearing signal, it is generated using equation (3) in which the resonance frequency and the damping
factor are respectively equal to 4 kHz and 2000.

The rolling bearing considered is subject to a local defect occurring on the outer-race. Its characteristic
order, ball-pass-order on the outer-race denoted BPOO, is equal 8.7 times the rotating frequency with a slight
random variation. Last, the additive noise is generated using a white Gaussian noise modulated by the rotating
frequency.

The different contributions of the signal are displayed in Figure 1. It can be seen in the SES of the raw signal
(Figure 1 (g)) that the bearing fault order is masked by deterministic components. Thus, the proposed approach
is applied to track the order component of the bearing fault. The number of order harmonic of interest / is equal
to 15. Also, the parameters of the filter take the following values: R =1, Q@ = 0 x I5;, ¥ = 0.9R~! and the filter
initial values are P[1] = Iy and x[1] = [ 1 --- 1 ] € R¥*!. The choice of Q is motivated by the fact the
coefficients of the trigonometric series expansion are assumed to be constant. This means that the state noise
wlk] is null forall k =1,--- ,N.

The result of the estimation provided by the H.. estimator for the choosen parameters is presented on Figure 2.
There, the number of peaks estimated by the proposed approach correponds to the expected ones, i.e 15 peaks.
Moreover, the deterministic components present in the SES of the raw signal have been greatly attenuated.
Besides of that, some peaks, with lower energy level, appear around the bearing order components. This is due
to the fact that the H.. filter, like all type of filter, don’t atteanuate uniformely all the frequencies outside the



w
=3

25
~ &
Z o0 B
E e
< z

N
—

5 4 i i
0 1 3 4 5 0 1 2 1 5
Time [5] Time [s]
(@) (b)
4 10 : ‘
2 Ll | i1
5
N>: . %z
] o
- — kI b 2
< E
4 | | -5 PR R
o 1 2 3 1 3 -10; : S L . !
Time [s] Time [s]
©) (d)
6000 05
5001 4
0.2
N 4000 o
£ ) %
Z 2015
2 3000 =
H -]
g 0 = 01
(£ 2000 2
<
1000 B 0.05
0 0 ‘|||||II||||..
; 3 0 50 100 150 200
Time [s] Shaft orders [evts/rev]
(e 16
0.5
0.4
n
203
o
=
202
Es
<

Shaft orders [evts/rev]

(2)

Figure 1 — Synthetic vibration signal: (a) Rotating frequency, (b) Meshing signal, (c) Bearing signal, (d) Com-
plete vibration signal, (e) Time-frequency representation, (f) SES of the bearing signal and (g) SES of the
complete signal.



band of interest.

To evaluate the performance of the proposed approach, the signal-to-noise ratio is calculated by the following
formula snr = 10 x log,, <%) where s is the SE related only to the bearing signal and § is its
estimate. When the bearing signal is totally influenced by the meshing and the noise signal, that is the worst
case estimation, the estimation error is §[k] — s[k] = b[k]. In this case, the snr is equal to —6 dB and defines
the lower limit of the performance bound. On this basis, it can be stated that all estimations provided by the
proposed approach should have a snr greater than —6 dB. It follows that a higher snr leads to a better estimation.
For this first simulation, after a 200 Monte-Carlo simulations, the estimation error leads to a snr equal to 1.48

dB. This value is greater than the performance bound and corroborates the quality of the estimation displayed
on Figure 2.

Influence of the fault frequency incertitude

In the results presented above the frequency (or order) of the bearing was exactly known. In real situations,
this frequency is known with uncertainty. This can be due (i) to the fluctuation of the shaft rotating frequency,
(ii) to the imperfection of the speed sensor or (iii) to the sliping phenomena of the bearing rolling’s elements. In
this section, the influence of the uncertainty of the bearing fault order on the estimation quality is investigated.
Thus, the snr is evaluated for different values of uncertainty on the bearing fault order. This uncertainty varies
from 0 % to 5 % of the real value of the order of the bearing fault. The snr obtained in the range of the
uncertainty is displayed on Figure 3. There, the snr remains constant when the uncertainty varies from 0% to
2.5%. This is interesting for the bearing health monitoring since the uncertainty on a potential fault frequency
can reach 2% in real situations as mentionned by Randall and Antoni [1]. Beyond this value, the snr decreases;

thus the quality of the estimation is degraded and the proposed approach is no longer robust to track the bearing
order components.
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Figure 2 — Estimation of the SES of the bearing sig-
nal provided by the H.. filter. Here, the uncertainty
on the bearing fault order is equal to zero.

Figure 3 — Signal-to-noise ratio (snr) evolution
against the uncertainty on the bearing fault order.

4.2 Experimental signal analysis

This subsection deals with signals acquired from a 2 megawatts wind turbine high speed shaft on which a
condition monitoring system is installed. The bearing has an inner race fault which is increasing in severity
across the 50-day period. At the end of the test, the bearing was inspected and a crack has been identified in the
inner race. Acceleration signals were recorded on a daily basis (one signal per day) together with tachometer
signals, over a 6 s duration each with a sampling frequency equal to 97656 Hz. The nominal speed of the
bearing shaft is 1800 rpm (30 Hz). Note that the speed variability has reached 15 % of the nominal speed

in some records; the reason why the regime is considered nonstationary. The theoretical fault frequencies
referenced to the shaft frequency are as follows:

e Ball pass order on outer-race: BPOO = 6.72;

e Ball pass order on inner-race: BPOI = 9.47;



e Ball spin order: BSO = 1.435;

e Fundamental train order: FTO = 0.42.

More information can be found in [21]. In this section, the proposed approch is applied to track the order
components locolated at i x BPOO, i x BPOI, i x BSO and i x FTO where i = 1,2, 3. The parameters of the H..
filter take the following values: R =1, Q = 0 x I3 and Y = 0.95 and the filter initial values are P[1] = I3 and
x[1] = [ 1 - 1 ] € R®*!. To monitor the health state of each component of the bearing during the 50-day
periods, the energy of each order component is evaluated. Figure 4 shows the evolution of this energy during
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the 50 days. Concerning the order components located at i x FTO and i x BSO with i = 1,2, 3, their energy
remains constant till the 49th day where an amplification is observed. This may be related to a degradation
of the bearing train and rolling elements at the end of the test. About the BPOO components, their energy
is almost constant and negligible compare to that of the FTO and BSO. Therefore, the bearing outer-race is
healthy. Otherwise, the energy of the order components located at i x BPOI increases along the days. This
amplification is related to the evolution of the inner-race fault severity. A significant jump in the energy can
be seen from the 30th day. According to the inspection done after the 50th day, a crack in the inner-race has
been noticed at the 50th day. Thus, the proposed order tracking approach is efficient to detect earlier a bearing
fault. Based on the bearing order component estimation provided by the H., filter, different indicators can be
designed to monitor bearing health state.

5 Conclusion

In this paper, an order tracking technique was proposed to diagnose a bearing fault under a nonstationary
condition. The proposed method consists of estimating a certain number of bearing order components whitout
removing the deterministic components. The method described the squared envelope signal in the state space
model using a trigonometric series expansion. Then, an H. filter is designed to track bearing fault order com-
ponents. Firstly, the theoretical foundation of the proposed approach has been described in details. Secondly, a
synthetic signal has been generated to evaluate the performance of the proposed approach. It has been shown
that the approach was able to track the bearing order components without removing the deterministic compo-
nents. Moreover, the performance of the proposed approach remains stable for an uncertainty error on bearing
orders less than 2.5%. Finally, the efficiency of the proposed approach has been demonstrated with wind turbine
vibration signals under a nonstationary condition. The order components related to the bearing fault has been
estimated by the proposed approach throughout 50-days of measurement. A fault on the bearing inner-race has
been successfully detected earlier at the 30th day. In terms of perspective for this research, the authors will
work on the design of a robust H.. filter to deal with a large uncertainty on the order of the bearing fault.
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A Synthetic meshing signal generation

The meshing signal is composed of five components and presented as follows:

5
velk] = k(e[k]) Z YemlK] (35)
m=1
where yg ;, is the mth meshing component. The latter is defined by the expression below:
Yem[k] = Am[K](1+an [k]) e O (36)
in which:
® a, is the amplitude modulation of the mth meshing component;

e A, is the amplitude of the mth meshing component so that it is a random value comprises between 0 and
1 and k(w[k]) = @?*[k]/max(®[:]) is the modulation correponding to the variation of the regime in which
o is the angular speed of the machine;

e O[k] =2mt;Y*_, f,[c] is the instantaneous angular displacement of the shaft rotating at frequency f,. f is
the sampling period;

10



e 0, corresponds to the mth order of the meshing signal. It takes respectively the following values:45,
2 x 45,3 x45,1.089 x49 and 2 x 1.089 x 49.

It is well known that when a fault appears on a gear tooth, the resonance frequency of the gear structure is
excited by an impulse [6]. The generated impulse signal modify the shape of the amplitude modulation so that
the latter can be described by a series of impulsive. Each impulse is modeled by a narrow bandwidth gausian
function. This function is defined by as below:

ext[k] = Ze_%(W) (37

i

where Ll; is the center of the Gaussian function determined by the time instant for which the impulse occurs on
the gear tooth and o defines the width of the Gaussian function. In this simulation ¢ = 1073, Since the gear
attenuates the impulse generated by the fault, a transfert function is included in the model so that the amplitude
modulation becomes:

amlk] = pm X s[k] ® ext[k] (38)

in which s[k] = =8 (=1)ts gy (27‘[ f,(fi) (k— l)ts) is the transfert function of the gear structure and p,, is a

random value comprises between 0 and 1. f(g) and f,(fs) are respectively the damping factor and the resonance
frequency of the gear structure. They are respectively equal to 5000 and 4000 Hz.
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Abstract

The purpose of this paper is to investigate the possibility of estimating Francis hydroelectric turbine modal
parameters in transient conditions by focusing on resonance regions generated by the interaction of a structural
mode with a frequency-variant harmonic pressure pulsation. Especially when numerous modes are in the
same bandwidth, this method separates them by exciting only matching mode shapes. To extract a specified
harmonic from the signal, the resonance retrieval is done using Order Tracking method. A classical ambient
modal identification algorithm is then used to feature the isolated mode. Furthermore, using the phase-shift
between measured locations, modes can be localized and shape determined.

List of Symbols
i Complex unit o Discrete pulsation k € [1,Ny]
diaglA]  Diagonal matrix of vector A X x  (Ngx 1) Estimated frequency response in @y (C)
<A|B> Complex inner product of A,B X (Ngx 1) Theoretical frequency response in @y (C)
AT Transpose of A hyr  Modal transfer function of mode r in @y (C)
A* Conjugate of A pr Scaled FFT of modal Excitation in wy (C)
IA| Determinant of A €, (Nsx1) Scaled FFT of channel noise in @y (C)
o Kronecker Symbol E;  (Ngx Ng) Theoretical density matrix in ey (C)
Ng Number of sensors s1 )  First singular value of Ej
Ny Number of frequency samples
@,  (Ng x 1) Theoretical mode shape of mode r (C in FDD)
d (Ns x n) Global modal matrix for a system of n modes @,  (Ng x 1) Estimated mode shape of mode r
MAC Modal Assurance Criterion Br  Characteristic real scalar value of mode r
MAC,,,  Threshold MAC in E-FDD @,  Natural pulsation of mode r
0, (44 Ng x 1) Parameter vector of mode r & Damping Ratio of mode r
6 (4+ Ng x 1) Modal parameter vector as a variable S, Modal force of mode r
Z(0) Negative Log-Likelyhood Function Ser PSD Error for mode r

1 Introduction

Design and exploitation of hydroelectric turbines relies on the knowledge of their dynamic behavior. This
enables one to generate and validate models to either get a good assessment of life duration or plan predictive-
based maintenance. Two sources of information are useful to properly characterize the mechanical behavior of
a structure: numerical simulations and experimental data processing. Giving high computing power, the first



source could give a whole and detailed analysis of the behavior in any expected regime through Computational
Fluid Dynamics (CFD) and Finite Element Analysis (FEA) but needs to be validated by the second to be
reliable. It is a straightforward consequence of the strong assumptions made to reduce computational burden
and model the highly turbulent characteristics of the flow. The second approach relies on in-situ measurements
to extract dynamic features [1].

The increase of computational power over years allows getting more accurate simulations for startup
regimes [2, 3], no-load or part-load configurations [4, 5, 6] and even hydrodynamic damping estimations [7].
However, the results still show discrepancies in structural parameters due to deviations from real operating con-
ditions: rotating machinery [8], fluid-structure interaction added mass, damping and stiffness [9, 10], cavitation
influence [11, 12, 13] or boundary condition sensitivity [14]. On the other hand, experimental characterization
is highly fragmented, but in general closer to reality for a given measured operating condition. The features ob-
tained from experimental data relie on statistical models [15, 16], indirect measurements [17], time-frequency
analysis [18], but can also be obtained by modal parameter identification using Operational Modal Analysis
(OMA) [19] or Experimental Modal Analysis (EMA) [20]. In addition, the experimental hydraulic instabil-
ity study can be used to compare different computational turbulence models [21, 22, 23]. Typically, the two
sources of information (simulations and experiments) are crossed to obtain a hybrid representation of the dy-
namic behavior, which is used to obtain accurate load levels and allow a better prediction of fatigue [24]. Those
predictions are used to assess the runner life duration and reliability of the capacity [25, 26, 27].

One of the problems with experimental analysis is the cost of data acquisition. To reduce financial burden
of measurements, the idea is to extract a maximum of information from transient records instead of several
stationary records, which would make the measurement less time-consuming. Furthermore, the processing
of transient records allows obtaining real structural parameters of highly damaging regimes [23, 28] (what
numerical analysis still struggles to perform, as aforementioned). Our goal is to determine whether a signal
processing methodology is able to extract precise and suitable features from these transient measurements.
For this, a combined methodology using Order Tracking, OMA and Phase-Shift Analysis is implemented and
performed on a case study. The case study data come from a medium-head Francis Turbine in Quebec (Canada).
The paper first presents the theoretical background, including literature and the different OMA tools to be used.
Afterwards, the model is tested on the case study of an operational runner prototype.

2 Resonance Detection Using Phase-Shift Diagrams

Resonances are usually found with the study of experimental correlograms where the amplified regions
are treated as Operating Deflecting Shape (ODS). But there is another alternative to detect resonances with
more confidence: Phase-Shift Analysis (PSA) [29, 30]. Resonance amplitudes are time-dependent and phases
are relative to a reference in experimental data, but the modal phase-shift from one sensor to another is a
theoretical time invariant absolute quantity that is specific to each mode. Especially, when a harmonic (time-
variant pulsation) and a mode (almost constant pulsation) intersect with the same phase-shift, the observed
ODS is very likely the resonance of the only excited mode. This resonance can be extracted and processed with
OBMA through a Single Degree of Freedom (SDoF) formulation (Section 3 & 4). Once the mode has been
detected, it is possible to feature its shape: the mode shape is assumed to be the nodal diameter that fits the best
the modal phase-shift (e.g. [18] in which a self-excited vibration of a hydroelectric runner is studied during
load rejection). It is also possible to determine the shape by identifying the pattern of the exciting harmonic,
particularly if this last comes from a well-known phenomenon (vortex rope [27, 31, 32, 33, 34], Rotor-Stator
Interactions (RSI) [26, 27, 31, 35, 36]).

3 Order Tracking Procedure

Once PSA and resonance mapping is achieved, it is still required to extract accurate damping ratios and
frequencies, and eventually other modal properties (modal force efc.). In order to do this, identification algo-
rithms are implemented to process multi-channel resonance signals. The first pre-processing step is to extract
the resonance component and isolate it from the rest of the signal. This is the purpose of Order Tracking.
This class of method gathers all the tools able to extract one harmonic from the signal by shifting the time



domain to a harmonic one, called order domain. Orders, measured in times per revolution, are analog to fre-
quencies. Order Tracking is a classical and very used diagnosis tool for rotating machineries. There are four
main techniques that are commonly used: direct method using Fourier Transform of a time series (FS), Angular
Resampled-based Order Tracking (AD), Time- Variant Discrete Fourier Transforms (TVDFT) and Vold-Kalman
filters (VK).

FS extracts the n — th harmonic from a signal by tracking the X [nay x| response with a short-time Fourier
transform at each time step, where @y is the runner angular velocity at time step k. This procedure is highly
biased due to tapering, leakage effects and bandwidth control. In the classical approach with constant time
intervals, low rotating frequencies are less accurate than higher ones. If time intervals are non-constant, some
power spectral density rescaling issues rise and must be taken into account.

Another technique relies on an adaptative Fourier transform with settable kernel [37]: the kernel of the an-
alytic exponential function tracks the frequency of interest. Consequently, a precise targeted order is extracted.
In early works, the kernel orthogonality was lost and a compensation matrix had to be introduced to partly fix
the problem. This issue is now easily fixed by introducing a change of variable in the integration domain, and
gives a Velocity Synchronous Fourier Transform [38]. Vold-Kalman (VK) Bank Filters can extract orders from
a signal with an instantaneous analysis instead of an averaging procedure [39]. Consequently, VK filtering is the
most accurate technique in terms of resolution but entails a heavy computational burden, that is irreconcilable
with industrial applications.

AD is a resampled-based method that avoids any leakage effect and phase issues [40]. The asynchronous
time series are turned into synchronous time series (constant A instead of Ar) by the means of interpolation
and tachometer record (Computed Order Tracking [41]). Then, a short-time Fourier transform is performed
on the resampled signal, with intervals corresponding to one runner revolution (so that the spectrum resolution
coincides with orders). Intervals are neither overlapped nor windowed. An order spectrum is obtained for each
studied revolution. Each of those revolutions is converted into frequency by averaging the rotational speed
over the lap. It can be noticed that the lower the studied dynamic, the weaker the quasi-static assumption over
a revolution, the higher the response estimation quality. The bias of AD comes from both interpolation and
synchronous interval split. Interpolation bias is due to interpolating method (e.g. linear, quadratic, splines)
and shaft torsion that induces tachometer signal fluctuations. The issue with synchronous interval split is that
each interval must represent exactly one revolution, that is not necessarily the case. Most of those biases can
be reduced if data are recorded with a extensively high sampling frequency compared to the structure natural
frequencies. For the purpose of this paper, the classical COT-based AD will be used, because the data sampling
frequency is far higher than the natural frequencies of studied modes.

4 Operational Modal Analysis

Few has been done in the field of OMA for hydroelectric runner dynamic featuring. Gagnon et al. used this
technique to characterize guide-vane behavior for different operating conditions [19]. The same point is made
for EMA for which the study achieved on a runner obtained results that were in well agreement with simula-
tions, but for experimental setting not representative of actual operating conditions [20]. Moreover, in many
cases EMA cannot be implemented and when it is possible, suffers from major drawbacks like experimental
set-up cost or structural size and complexity. The point of OMA is to extract modal parameters from output-
only measurements containing both unknown excitation and response of the system. When those signals are
extracted with Order Tracking, the procedure is called OBMA (Order Based Modal Analysis) [40, 42, 43, 44].
OMA is of interest for several reasons: it is fast in terms of computing effort and measurement (mere sensors
replace excitation set-up), ambient excitation is appropriate to linearize the dynamic behavior and so on.

OMA techniques are divided into different classes: they can process in the time domain (TD) or frequency
domain (FD), and can be parametric or non-parametric [45]. TD approaches are straightforward, and are
generally parametric. They mainly study the auto-regression degree with (AR)MA-(X) models [46] and Sub-
space Identification technics [47] or the output correlations between channels (Polyreference, LSCE, Subspace
Identification, ERA) [48]. Frequency approaches can be parametric (Polymax or Polyreference) [49] or non-
parametric (Pick- Peaking, (E)-FDD) [50, 51]. Non-parametric methods often rely on Single Degree of Free-
dom (SDoF) theory, so that a pre-processing step is mandatory to separate modal contributions.

In OBMA, Polymax model has typically been implemented as identification support [40, 42]. However,



Polymax does not seem to be the best candidate for such an identification, because parametric models always
generate spurious modes (due to noise and numerical bias). Furthermore, the model order is always difficult
to define (methods are based on stabilization diagrams or parsimony principle through the minimization of
criteria, e.g. Akaike and Bayesian Information Criterion, AIC or BIC). In order-tracked signals, it is easy
to know in advance the number of excited modes, which allows using non-parametric methods. Thus, the
authors propose to perform the following procedure: different modes are decomposed into SDoF responses and
bandlimited using a partial E-FDD procedure. Then, each mode is identified using a classical ambient SDoF
transfer function with a maximum likelihood estimator.

4.1 SDoF Separation

SDoF separation is performed using a modal coherent criterion applied on the singular vectors of the dis-
crete spectral density matrix. The classical input-output relation of density matrices under the condition of
white-noise input, low damping and uncoupled modes, can be developed according to the Heaviside partial-
fraction expansion theorem in the vicinity of its modal pulsations [52, 53].

Ei|o~0, ~ P diag [ﬁr6 ] o’ (D

(&)™

Eq. 1 shows that the excitation density matrix is diagonal, and thus the output density matrix E is equivalent
to a diagonal one. The change of basis is done with the modal matrix ® = (@, ...9,). The diagonal matrix
contains only one non-zero term expressed as the contribution of the investigated mode through (f,,&,, ®,),
respectively a characteristic scalar value, the damping ratio and the natural pulsation of mode r. The Kronecker
symbol &, is 1 for the r — th position of the diagonal matrix, else 0. In the vicinity of a natural pulsation, the
associated mode is the only contributor to the global dynamic of the system. The associated mode shape is
@, r —th column of ®. In other terms, it is shown that the Singular Value Decomposition of the experimental
density matrix in the vicinity of a mode returns only one dominant singular value. The associated singular
vector in @ = , (within the limit of frequency resolution) is the mode shape estimator. The set of the first
singular values {s; s} is called Complex Modal Identification Function (CMIF) and is a unilateral representation
of the previous spectral density functions. The resonance function of each SDoF is identified from the CMIF
thanks to a discriminating criterion, the Modal Assurance Criterion (MAC) [54]. MAC varies from O to 1 as
the modal coherence increases. It compares the degree of agreement of two vectors:

< @il >*
<Qilpi><ojlo;>

This criterion is able to separate two uncoupled close modes and discriminate spike noises. Brinker et
al. set the threshold to MAC,;,, = n/+/Ns, where n is an integer so that MAC,;, is close but lower than 1, and
Ns the number of studied sensors [55]. If MAC(@,, @ i) > MAC;y,, where @, is the shape estimator and @ ja
singular vector of the CMIF, then s [@;] belongs to the resonance function of the SDoF. This ensures to select
a bandwidth with high modal coherence. Figure 1 shows an example of the use of MAC. The E-FDD theory
shifts back in time domain to make the identification. But this procedure is a bad damping estimator, especially
in the case of short signals [56]. For this reason, the identification support is different and presented in the next
subsection.

A last point can be raised about the E-FDD limits: this procedure is only proper to separate uncoupled
signals. In the case of coupled modes, it is unable to differentiate modal contributions. In future works, a
Frequency-Domain Blind Source Separation developed by Castiglione et al. should be used instead [57]. FD-
BSS is able to separate coupled modes with an impressive accuracy, and relies on a more rigorous mathematical
approach.

MAC(9:,9;) = (@)

4.2 Identification Using Maximum Likelyhood

After being extracted using AD method and bandlimited with MAC, the Ng experimental frequency re-
sponses are concatenated into a vector X « and are modelled with the classical SDoF response described in
eq. (3, 4), where X is the theoretical response vector, A, is the modal transfer function depending on modal
parameters (@,,&,) and py, €; are the normalized Fourier transforms of excitation and noise respectively.
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Figure 1: Modal contributions are framed using MAC, which compares the agreement level between two mode
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The associated Negative Log-Likelihood Function (NLLF) is given in eq. (5), where Ny is the number of
point per channel, E;[0] the theoretical SDoF density matrix arising from eq. (3) and |E;[0]| the determinant
of the density matrix ; the analytical determination of both determinant and inverse matrix of E[8)] is far from
being trivial, and described in [58]. 8, = (®;, &, Sy, Ser, @) is the parameter vector, including natural pulsation,
damping ratio, modal force, PSD error and mode shape. 0 is the parameter variable, used to estimate 6,. The
NLLF is minimised using a Nelder-Mead algorithm [59]. A such identification method was chosen because it
shows the best asymptotic properties.

Nf Ny .
Z£(6) = NsNgin(n) + Y In(|Ex[0)]]) + ) X;E, '[6]Xx Q)
k=1 k=1

5 Case Study

The studied measurements come from a vertical medium head Francis hydroelectric runner exploited in
Quebec, Canada. This facility was chosen because the turbine was designed and is operated by two partners
of the current project. The measurement data were recorded during a slow transient from no-load overspeed
to stop. Two blades separated with an angle of 111° were instrumented with strain gauges. Intrados were
instrumented with three strain gauge rosettes, located in the band junction to blade leading edge and trailing
edge, and in the middle crown-blade weld, as shown in Figure 2. Extrados were instrumented with two uniaxial
gauges, one close to the crown, the other close to the band. The locations are the same from one blade to
another to ensure a redundant signal. Accelerometers and pressure sensors are located in different points
(blade, structure and penstock) and sensors are also installed on the shaft to record torque, flexion and thrust.
The rosette and uniaxial gauges are oriented in agreement with the expected strain flow direction, .e. in the
direction of the principal stresses.

An analysis of experimental correlograms (amplitude of short-time Fourier transforms) and absolute phase-
shift spectra between redundant sensors was made first. Some examples are shown in Figures 3 and 4, related to
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Figure 2: Strain gauge location on the instrumented blades. Circles represent rosette gauges, triangles represent
uni-axial gauges.

both sides of the crown (time and frequency axes are empty for the purpose of clarity). When the windowing is
long enough, correlograms show five ODS. Several modes can be contained inside. A clear resonance of mode 1
is detected on the intrados in the lower part of the diagram (below blade passing frequency signature, abusively
denoted "RSI”) ; the other resonances are in the upper part. Phase-Shift spectra are amplitude-filtered, and
show only phases associated with a high enough correlogram. They show four single-mode bands and a multi-
mode band, due to multiple phase-shift detection. Resonance of mode 2 is detected on both sides, and mode
3 is vaguely detected on the extrados. Only one mode of the multi-shifted band is excited by a harmonic, thus
leading to a SDoF resonance. Table 1 summarizes all the detected modes in the range [0, 100]Hz, and reports
the related resonant harmonic index. Phase-shifts are averaged over the region where the mode is found.

In the studied data, all the time series are recorded with an extensively large sampling frequency, and the
use of AD technique to extract harmonics should be straightforward. The next subsections present typical case
studies based on previous identified modes.

Mode Reference | Frequency [Hz] | Phase-Shift x w[rad] | Harm. Order
1 18.0 0 13
2 28.0 +3/4 42
3 50.0 +1/7 63
4 91.0 +1/9 0
5 58.0 +6/7 61

Table 1: Experimentally Detected Modes

5.1 Identification Example: Shaft Torsion Mode with f, = 18H

The first mode to be studied, mode 1, is excited by the 13 — ¢tk harmonic of the rotating speed. This
corresponds to the blade passing frequency. Such an excitation can come for instance from the spiral case intake
or the drat tube elbow that can create a stationary disturbance that is seen by the rotating runner each time a blade
passes in front of the intake or the draft tube direction. The investigation of torsion measurements shows that
the studied mode is a natural torsion mode of the shaft line. What is observed on blades is only the propagation
of shaft natural vibrations. Thus, all the runner is excited with the same phase, and the nodal diameter is 0, that
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is confirmed by the absence of phase-shift between blades. An axial thrust pulsation is measured on the shaft,
and indicates that the inflow to the runner is not symmetric to the guide vane orientation [31]. Examples of
extracted resonances are shown in Figure 5. The MAC narrows the bandwidth with a threshold MAC;;,, = 0.875,
as depicted in Figure 6. The maximum likelihood estimator raises optimal parameters, shown in Table 2 and
Figure 7.a.

Natural Frequency | Damping Ratio Modal Force PSD Error
fo [Hz] S [%] S [ms*/Hz] Se [1 S/Hz]
17.43 1.26 2.22E6 1.73E-2

Table 2: Torque Mode Featuring

The shape relative amplitudes are the same on the two blades, as testifies Figure 7.a.. The mode shape
is in phase opposition from leading edge to crown, and is not spotted neither on trailing edge intrados or on
band extrados signals. That attests a ND — 0 ”’in umbrella”, as depicted in Figure 7.b. The modal force is very
difficult to extract and is likely very biased. The bias on damping ratio mainly depends on experimental data.
The leakage and tapering bias due to the windowing is avoided thanks to COT-based AD. However, the global
uncertainty level remains likely high because of the unknown excitation.

5.2 Results

Table 3 shows the result of the identification process performed on all detected resonance harmonics. The
information presented is: the exciting harmonic (indexed on the rotating frequency), the most likely nodal
diameter, the Signal-to-Noise Ratio (SNR), the bandwidth and the associated method (MAC or SENS for sensi-
tivity analysis) and the modal parameters. Except for the torsion mode, resonance signals have a low SNR that
renders impossible the use of MAC, because the singular value spectrum is still buried in noise. Instead, a sen-
sitivity analysis was made on modal parameters as a function of the bandwidth. The selected band corresponds
to the parameter convergence. This method gives wider bands (around ten times the width of a MAC selected
bandwidth), where noise has a significant influence. Rather, MAC criterion selects a narrower frequency band
with very few noise. The two methods return quite equivalent results. The experimental data reveals five iso-
lated modes numbered from 1 to 4 in Figure 4, and a multi-mode band. Amongst the 4 well-separated modes,
only the first 3 are excited by a harmonic and then identifiable. Into the multi-mode band, one mode is excited
by a harmonic. It is thus possible to feature it, but the SNR is particularly low. Notice that the first mode of
table 3 is the torsion mode featured in table 2.

6 Conclusion

This paper shows that Francis runner structural modes can be identified from ambient vibration data dur-
ing transient conditions. These modes have been successfully extracted and identified through an enhanced
OBMA technique (E-OBMA). E- OBMA combines three existing techniques and takes benefit from the best
of each: Order Tracking separation quality, MAC bandlimiting rigor and maximum likelihood accuracy. This
work shows that experimental transient data contains accurate frequency information that can be used to assess
numerical model validity. The presented results are the first effort in creating OMA strategy tailored for Francis
runners. The E-OBMA still has to be validated on an analytical case, which is now being developed. The Order
Tracking quality should be evaluated in conjunction with EMA sine-sweep excitation theory. Also, further
improvements will make possible the uncertainty quantification which is a major stake in signal processing.
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Identification BandWidth Modal Parameters
Mode Nodal Diameters Bandwidth (Hz) Frequency (Hz) Modal Force (ms*/Hz)
Harm. Index SNR (dB) Method Damping ratio (%) PSD Error (1 s/Hz)

1 0 1.5 17.43 2.22E6
13 7.4 MAC 1.26 1.73E-2
2 1 8 28.71 3.31E5
42 1.8 SENS 3.26 1.18E-3
3 3/5 9 49.84 1.40E6
63 1.9 SENS 1.67 8.00E-4
Multi. 6 12 59.35 4.31E6
61 0.96 SENS 2.30 2.00E-3

Table 3: OBMA Identification Results
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Abstract

Performing condition monitoring under time-varying operating conditions is challenging. The varying
operating conditions impede the ability of conventional fault diagnosis methods to detect damage on rotating
machine components such as bearings and gears. This paper investigates a new method for identifying
diagnostic rich frequency bands under time-varying operating conditions. This method uses the order-
frequency spectral coherence and a feature, which is dependent on the cyclic order of interest and the
frequency resolution of the spectral coherence, to decompose the signal into a feature plane. Thereafter, the
spectral frequency and the spectral frequency resolution that maximise the feature plane are used to design a
bandpass filter. The bandpass filter extracts a diagnostic rich signal, which can be analysed by using the
squared envelope spectrum or the synchronous average. The proposed method is compared to the fast
kurtogram on a numerical gearbox dataset as well as on an experimental gearbox dataset, with very
promising results obtained.

1 Introduction

Effective fault diagnosis techniques are important for expensive assets such as wind turbines, because this
can result in early detection of faults, their characteristics can easily be understood (e.g., which component is
damaged) and subtle changes in the damage (i.e. deterioration) can be monitored. Many rotating machines
inherently operate under time-varying operating conditions, which impede effective fault diagnosis. Hence, it
is important to use condition monitoring techniques that are able to diagnose damaged machine components
under time-varying operating conditions.

Damaged rotating machine components such as bearings result in periodical excitations of the structure
at a rate dependent on the kinematic characteristics of the component (e.g. ball pass order of the outer race,
shaft rotation). This angle-dependent periodical excitation of the time-invariant structure generates signals
that can be approximated as angle-time cyclostationary [1]. Abboud et al. [1, 2, 3] extended the suite of
conventional time and angle cyclostationary techniques to time-varying speed conditions with tools such as
the Order-Frequency Spectral Coherence (OFSCoh) being one of the most powerful fault diagnosis
techniques for bearings under varying speed conditions.



However, in condition monitoring it is usually desired to utilise simple metrics or representations for
making decisions (e.g. a spectrum is preferred instead of a time-frequency spectrum). Hence, the enhanced
envelope spectrum and the even more powerful Improved Envelope Spectrum (IES), both calculated from
the spectral coherence or the spectral corelation, can be used to diagnose the machine. For the IES, it is very
important to select carefully the integration band to ensure that the IES has an optimal signal-to-noise ratio.
This means that it is important to be able to identify frequency bands that are rich with diagnostic
information. Identifying diagnostic rich frequency bands is also important for calculating the synchronous
average and the squared envelope spectrum [4].

The spectral kurtosis and the related kurtogram are effective for identifying frequency bands with much
impulsive information [5, 6]. This is very appropriate for diagnostics, because bearing damage [4, 5] and
gear damage [7] result in vibration signals containing bandlimited impulses. However, the kurtogram is
sensitive to transients not related to the condition of the machine and it is not possible to investigate the
optimal frequency band to detect damage associated with a specific cyclic order. Recently, new methods
such as the infogram [8] and the IESFOgram [9] have been proposed for identifying frequency bands that are
rich with diagnostic information by improving the shortcomings of the kurtogram.

A new method is investigated in this paper that is able to identify a frequency band that contains
diagnostic information related to a specific machine component under time-varying operating conditions.
This has a significant advantage over conventional methods, because incipient damage components that are
normally masked by other dominant signal components and distorted by time-varying operating conditions,
can be extracted from the signal and used to diagnose the machine. The performance of this method is
compared to the Fast Kurtogram on numerical gearbox data as well as on experimental gearbox data, both
acquired under time-varying operating conditions.

The outline of this paper is as follows: In Section 2, the proposed method is presented, whereafter it is
investigated on phenomenological gearbox data in Section 3 and experimental gearbox data in Section 4. In
the last section, Section 5, some conclusions are extracted and some recommendations are made for future
investigations.

2 Methodology
2.1 Overview of the methodology

An overview of the methodology is presented in Figure 1. The measured vibration signal and the
corresponding rotational speed (or phase) is given as inputs, whereafter an Order-Frequency Spectral
Coherence (OFSCoh) is calculated for a specific window length. A feature is extracted from each frequency
band of the calculated OFSCoh. This process is repeated for the set of window lengths under consideration,
whereafter a feature plane is constructed. The feature plane contains the value of the feature for different
combinations of centre frequencies and window lengths (or frequency resolutions). Thereafter, the feature
plane is maximized to obtain the parameters of a bandpass filter. This bandpass filter is used to extract a
signal that is rich with diagnostic information from the original signal, whereafter the filtered signal can be
analysed to infer the condition of the machine component.

For a given a

Window length i

Feature plane

WL1 i

Signal ——x— ] Calculate ] WwL2 | Maximise Filter the Bandpass
: Calculate the feature for Feature WL 3 feature plane to signal with filtered
Rotational i OFSCoh each spectral vector [T 1T |wL 4 find bandpass bandpass filter signal
speed frequency band T w s filter parameters

Construct feature plane for each window length considered

Figure 1: The proposed method for identifying frequency bands that are rich with diagnostic information.
The subsequent sections give detailed information on each step in the proposed method.



2.2 Order-Frequency Spectral Coherence (OFSCoh)

The impulses generated by components such as bearings are periodic in the angle domain, while they
manifest in the time-invariant frequency bands. This means that the OFSCoh can be used to identify the
resonance bands that are excited at specific cyclic orders. The OFSCoh [2]

Su(a, f)
Na, )= 3
7ola, f) (5.0,/) 5. Rk (1)
provides a two-dimensional view of the modulating frequencies (i.e. cyclic orders) and their carriers (i.e.
spectral frequencies) in the signal x(t). The Order-Frequency Spectral Correlation (OFSC) [2]
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is used to calculate the OFSCoh in Equation (1). The expectation operator is denoted E, the Fourier
transform is denoted F,, and ®(W) denotes the phase of the shaft during the measurement time period W. The
instantaneous phase of the shaft is denoted 6. It is easier to detect non-dominant components by using the
OFSCoh as opposed to the OFSC.

Estimators need to be used to calculate the OFSCoh for the measured data, with the Welch estimator as
proposed in Ref. [2], used in this work. The Welch estimate of the OFSCoh is denoted y«(a, f; Af), where Af
is the frequency resolution that is used to obtain the estimate.

2.3 Frequency Band ldentification (FBI)

It is possible to use a one-dimensional metric such as the kurtosis to identify the frequency band of
interest. However, one-dimensional metrics do not allow different signal components to be distinguished
from one another, which may result in a frequency band to be identified that is not necessarily of interest.
Hence, a more advanced metric is required.

2.3.1 Feature extraction

Ref. [4] uses a metric to quantify the quality of the Squared Envelope Spectrum (SES). If their metric is
large, it means that the diagnostic information is dominant with respect to the noise level in the SES, while a
small metric indicates that it could be difficult to detect the cyclic components in the SES. The authors
estimated the noise level with the median because the median is robust to outliers generated by the cyclic
components in the SES.

We used this metric as inspiration for designing the feature to identify the frequency band of interest,
with the following feature obtained for the cyclic order set {os}: i

(oA = Y e SADT @)
m!:medzan(\ Yl [3A)] )
The numerator contains the squared magnitude of the spectral coherence for a specific window length Af.
The denominator contains the median function, which is calculated for the squared magnitude of the spectral
coherence and is used to estimate the noise level in the OFSCoh. The following points are important
considerations when calculating the feature for practical signals:

1. The analytical cyclic orders may be different from the actual cyclic orders due to slip and therefore
the maximum of a range of [0.9as, 1.1 a4] is calculated to estimate the numerator.

2. The median of the squared magnitude OFSCoh cannot be calculated at a=as and therefore it needs to
be estimated from the discrete OFSCoh data. Hence, the median of the squared magnitude of the
OFSCoh in the range of [os -1, a5 +1] is used to estimate the denominator.

This feature also has similarities to the feature used by the IESFOgram [9]. In the latter method the ratio

of the signal components in the IES are calculated with respect to the mean of the IES in the predefined
bandwidth.




2.3.2 Feature plane construction and maximisation

The feature is calculated for each frequency band in the OFSCoh. The Welch estimator of the OFSCoh
depends on a number of parameters, namely, the window length, the window overlap as well as the number
of points used to calculate the FFT. It is best to use an overlap longer than 75% of the window length,
however, the window length needs to be determined prior to the analysis. It is also necessary to estimate the
frequency bandwidth and not only the centre frequency for designing the bandpass filter parameters. Hence,
the following procedure is used to simultaneously optimise the centre frequency and frequency bandwidth of
the frequency band of interest: Firstly, the OFSCoh is calculated for a specific window length, whereafter the
feature is calculated for each spectral frequency band in the OFSCoh. This process is repeated for each
window length under consideration, whereafter the feature plane is obtained. The frequency band parameters
are identified by finding the centre frequency and frequency bandwidth that maximise the feature plane. This
is a very similar procedure to the kurtogram and the infogram, but instead of using the short-time Fourier
transform, the OFSCoh is used, and instead of maximising a scalar value (e.g. spectral kurtosis), the
maximisation is done for a set of cyclic orders. This allows the optimal frequency band to be determined to
detect a set of cyclic orders.

The identified frequency band parameters can be used to calculate the IES or to extract a bandlimited
signal. In this work, we used the frequency band parameters to design a bandpass filter, whereafter the
bandpass filtered signal is interrogated. The bandpass filtered signal can subsequently be analysed with
techniques such as the Synchronous Average (SA) [10] and the Squared Envelope Spectrum (SES) [3].

2.4 Computational aspects

Even though real-time condition monitoring is rarely required in practice, it is still necessary to provide
answers in a reasonable time. The Welch-based estimator of the OFSCoh has very good bias and variance
properties, but is very expensive to calculate for large datasets, especially for high rotational speed
applications. If the cyclic orders of interest are known a priori, it is possible to only estimate the OFSCoh for
specific cyclic orders; however, even this may be impractical for complex gearboxes found in wind turbines
and helicopters, which may have many cyclic orders of interest. Fortunately, there has been very exciting
developments in this field, where fast (and faster) estimators of the spectral correlation are proposed, which
could make this method significantly faster to be calculated [11, 12].

3 Numerical gearbox data

In this section, we investigate the method and compare it to the kurtogram on data generated from a
phenomenological gearbox model. In the next section, an overview is given of the model and the generated
data, whereafter the Fast Kurtogram (FK) is used on the dataset in Section 3.2. The results of the proposed
method are presented and discussed in Section 3.3.

3.1 Phenomenological Gearbox Model (PGM)

The Phenomenological Gearbox Model (PGM) proposed in Ref. [3] is used to generate a casing vibration
signal. The casing vibration signal
x(8) = x, () +x,, () +x,(0) )
contains a bearing component Xy(t), a random gear component x4(t) and a broadband noise component Xa(t).
The generalised synchronous average can be used to attenuate the deterministic gear components attributed
to the meshing of gears as described by Abboud et al. [3] and therefore they are not included in this model.
The bearing component is generated by bearing damage on the outer race

x,(0) = M((0)-h()® Y 4, -6(t—T,) 5)

where T« denotes the time-of-arrival of the kth bearing impulse, which incorporates the varying speed
conditions and the slip. The amplitude of the kth impulse, denoted Ay, is sampled from a uniform distribution.
The raw bearing impulses are filtered through the structure, which is assumed to have an impulse response



function of a single degree-of-freedom system hy. The modulating function M(w(t)) = w? is used to simulate
the varying amplitude induced by time-varying operating conditions and is assumed to be the same for all
signal components for the sake of simplicity.

The random gear component

%,y (1) = M (1)) T, (1) ® {e(z) 33, -sin(k : jw(z)dz + 0, ﬁ (6)

is attributed to gear damage and contains the random variable ¢(t) which is sampled from a zero mean, unit
variance normal distribution, and By and ¢« are, respectively, the amplitude and the phase of the kth harmonic
of the component. There are K,y harmonics in the vibration signal. The noise component
x, (1) =M (w(1))-&(1) @)

is generated by a zero mean Gaussian distribution with its amplitude dependent on the rotational speed of the
system. The natural frequency of the impulse response function of the bearing and the gear components are 7
kHz and 1.3 kHz respectively. The fundamental cyclic order of the distributed gear damage is 1.0 shaft order,
while the fundamental cyclic order of the outer race bearing damage component is 4.12 shaft orders.

A single dataset is investigated in this paper with the time-varying speed profile w(z) and the different
signal components shown in Figure 2. This system operates under constant load conditions.
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Figure 2: The speed profile, the casing vibration signal and the bearing and random gear components of the
phenomenological gearbox model are presented.

The varying speed conditions result in the amplitude and the instantaneous frequency of the signal
components to be dependent of time. The relative magnitudes of the components were chosen so that the
dominant distributed gear damage component impedes the ability to detect the bearing component. Hence,
the focus of the subsequent investigations is to highlight how the proposed method can be used to detect
weak components in the presence of dominant components and to show that it is possible to distinguish
between the two. In the next section the kurtogram is investigated on the generated dataset.

3.2 Application of the Fast Kurtogram (FK)

The Fast Kurtogram (FK), developed in Ref. [6], is a faster estimator of the kurtogram than the conventional
short-time Fourier transform-based estimator and is used in this work. The kurtogram is based on the spectral
kurtosis [5], a very useful technique to identify frequency bands that contain transient information (as
typically seen by bearing and gear damage). The FK is applied to the casing vibration signal (see Equation
(4)) of the PGM with the result shown in Figure 3.



The FK is maximum at a frequency band with a centre frequency of 1328.12 Hz. This is the frequency
band associated with the distributed gear damage component. The frequency band of the bearing damage at

7.0 kHz can also be seen in Figure 3; however, its magnitude is significantly smaller than the magnitude of
the gear component.

Max. at F' =1328.12 Hz, AF" =156.25 Hz
15

Level

<t

10 36 62 88 114 140
Spectral frequency [kHz]

Figure 3: The kurtogram of the PGM’s vibration signal.

The implication of this is that without careful consideration, only the dominant impulsive frequency band
will be detected by the FK, with a non-dominant frequency band easily missed in the condition interrogation
process.

This is corroborated by the results of the Squared Envelope Spectrum (SES) seen in Figure 4. The SES of
the raw signal (i.e. without bandpass filtering the signal) and the SES of the filtered signal contains the same
information. The fundamental component of the distributed gear damage at one shaft order and its harmonics
are clearly seen in both spectra, while the bearing component is not seen.

(a) Raw signal (b) Bandlimited signal
0.06 1
0.10 1
9p) 2 0.04 1
5 g
< I. i -
0.05 0.021
0.00 ‘ , , 0.00 , ,
5] 10 15 5 10 15
Shaft orders Shaft orders

Figure 4: The Squared Envelope Spectrum (SES) of the raw vibration signal and of the bandlimited signal
obtained with the Fast Kurtogram (FK) for the PGM.

It is important to emphasise that due to the statistical characteristics of the distributed gear damage
component, it is not possible to remove it using cepstrum pre-whitening or the generalised synchronous
average [3]. The proposed method is investigated in the next section.

3.3 Application of the proposed method

The proposed method is applied with the procedure discussed in Section 2, with the bearing and gear
being monitored for damage. Therefore, the feature, calculated with Equation (3), is calculated for the gear
with {a}={1.0, 2.0, 3.0} (denoted a=1.0 in the figures) and for the bearing with {a}={4.12, 8.24, 12.36}
(denoted a=4.12 in the figures), which result in two feature planes that are maximised independently. The
feature plane of the gear and the bearing are shown in Figure 5(a) and Figure 5(b) respectively.

It is evident that the feature plane is clearly very dependent on the cyclic order that is used. Large values
are obtained in Figure 5(a) in the region of 1.3 kHz, while large values are obtained in Figure 5(b) in the



region of 7 kHz. The optimal value for the gear in Figure 5(b) differs slightly from the analytical value,
because the gear component is very dominant, which results in the different blocks to have features with very
similar values, i.e. any of the blocks, could be used for detecting the gear.

The SES of the raw and bandlimited signals of the two signal components are shown in Figure 6. The
SES of the bandlimited gear signal, presented in Figure 6(b), does not improve the SES of the raw signal,
presented in Figure 6(a), because the gear component is already very dominant in the SES.
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Figure 5: The feature plane obtained with the proposed method for the gear component (a) and the outer race
bearing component (b) of the PGM. The colour scales are not the same in the two plots.

A significant improvement can be seen for the SES of the bearing component. The bearing component
cannot be detected in Figure 6(c), but after identifying the appropriate frequency band with the proposed
method, it is possible to obtain a SES that clearly highlights the damaged bearing component as seen in
Figure 6(d).
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Figure 6: The Squared Envelope Spectra (SES) of the raw and bandlimited signals are shown for the gear
component in (a) and (b) and for the outer race bearing component in (c) and (d) for the PGM.



This highlights the benefit of using the proposed method; if the signal component is dominant in the
spectrum then the kurtogram can lead to similar results (as seen when comparing the results in Figure 4(b)
and Figure 6(b)). However, the proposed method has sufficient flexibility to identify frequency bands for
signals with low signal-to-noise ratios as well.

4 Experimental investigation

In this section, the proposed method is investigated on an experimental dataset. A brief overview of the
experimental data is given in Section 4.1, whereafter the FK is applied to the dataset in Section 4.2 and the
proposed method is investigated in Section 4.3.

4.1 Overview of the experimental dataset

The method is applied and verified in this section on an experimental gearbox dataset that has been
acquired in the Centre for Asset Integrity Management (C-AIM) laboratory at the University of Pretoria. The
experimental setup contains three helical gearboxes, an alternator and an electrical motor. The alternator and
the electrical motor were used to induce the time-varying speed and load conditions shown in Figure 7 on the
monitored gearbox. One of the helical gearboxes was damaged with the damaged gear shown in Figure 8(a)
and operated for approximately 20 days whereafter the tooth failed as shown in Figure 8(b). A vibration and
a tachometer measurement, taken after approximately five days of testing, are used in this paper. The gear
rotates at 1.0 shaft order, while the pinion rotates at 1.85 shaft order. More information on the experimental
setup can be found in Ref. [13].
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Figure 7: The operating conditions during the measurement period.
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Figure 8: The gear of the helical gearbox with the seeded fault before the fatigue experiment (a) and after the
fatigue experiment was completed (b).



4.2 Application of the Fast Kurtogram (FK)

The FK is applied on the dataset with the decomposition shown in Figure 9. Very large values are seen in
the higher frequency bands. This is attributed to the presence of bandlimited transients that manifest at the
frequency band 8-12 kHz at a cyclic order of approximately 5.5 shaft orders.
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Figure 9: The kurtogram of the experimental gearbox dataset.

The SA is used to interrogate the presence of damage on the gear in Figure 10. The SA of the raw and the
bandlimited signals are shown in Figure 10(a) and (b). It is not clear from the raw signal in Figure 10(a) what
the condition of the gear is, but the transients that are retained by the bandpass filtering process dominate the
synchronous average and make it especially difficult to infer the condition of the machine from the result in

Figure 10(b).
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Figure 10: The Synchronous Average (SA) and the Squared Envelope Spectrum (SES of the raw and the
bandlimited signals are shown as obtained with the Fast Kurtogram (FK). The damaged gear tooth is located
at approximately 135 degrees in the SA plots.

The SES of the raw and the bandlimited signals are also investigated in Figure 10. Three peaks are
observed in the SES of the raw signal; the components at 5.72 and 11.44 shaft orders are attributed to the



transients in the signal and the component at 9.12 shaft orders is attributed to the alternator’s shaft being
slightly unbalanced which resulted in periodical excitations. After, the filtering process, only the transient at
5.72 shaft orders and its harmonics are retained. Hence, it is evident from the results that the kurtogram fails
to recognise the important frequency band for diagnosing the gear.

4.3 Application of the proposed method

The proposed method is applied on the same signal as investigated in the previous section. The gear and
the pinion are monitored and therefore the decomposition is performed for {os}={1.0, 2.0, 3.0} shaft orders
(denoted o=1) and {os} = {1.85, 3.7, 5.55} shaft orders (denoted 0=1.85), respectively. The feature plane is
shown in Figure 11 for the two monitored components, where it can be seen that the feature planes are
dependent on the cyclic order of interest, however, the identified frequency bands may not necessarily be
completely separated. It is completely reasonable that the same cyclic order band is optimal for different
mechanical components and therefore care should be taken to interpret the statistics (e.g. kurtosis) of the
bandlimited signals.
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Figure 11: The feature plane obtained with the proposed method. The feature plane of the gear is shown in
(a) and the feature plane of the pinion is shown in (b).

The SA in Figure 12 do not clearly reveal damage on either the gear or pinion with only small peaks seen
at 135deg for the gear. This is attributed to the fact that the damage is still small and that helical gears are
used with large contact ratios. Hence, the synchronous average is ineffective for detecting the incipient gear
damage.

The SES of the raw and bandlimited signals in Figure 13 perform significantly better than the SA for the
gear and the pinion. It is possible to see that there is a clear 1.0 shaft order component, which is attributed to
the damaged gear. In contrast, the SES of the healthy pinion does not contain any dominant components at
1.85 shaft orders, which is indicative that the pinion is healthy. Hence, it is possible to use the proposed
method and the SES to detect the incipient gear damage in the presence of dominant frequency components
and time-varying operating conditions.

5 Conclusions

In this paper, a new method is investigated for identifying frequency bands that are rich with diagnostic
information. The method uses the spectral coherence and a very carefully designed feature to allow specific
frequency bands to be detected which can be analysed using the squared envelope spectrum and the
synchronous average.

The method is evaluated on two datasets; the first one is a numerical gearbox dataset that simulates
bearing damage and gear damage under time-varying speed conditions. The results indicate that it is possible
to identify the appropriate frequency band to identify the cyclic components of interest, while the fast
kurtogram only identifies the frequency band with the most impulsiveness. Similar results are obtained on
the experimental dataset where incipient damage was present on the gear of a helical gearbox. The fast
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kurtogram maximised on frequency bands with strong impulsive content, with the incipient gear damage
only detected by using the proposed method. It was also found that the synchronous average is not very
effective for incipient gear damage detection and the squared envelope spectrum performs significantly
better.
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Figure 12: The Synchronous Averages (SA) of the raw and the bandlimited signals, obtained with the
proposed method, are shown. The result for the gear is shown in (a) and (b), while the result of the pinion is
shown in (c) and (d).
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Figure 13: The Squared Envelope Spectra (SES) of the raw and the bandlimited signals, obtained with the
proposed method are shown. In (a) and (b) the results for the gear are shown, while the results for the pinion
are shown in (c) and (d).

In future investigations, the method will be compared to the more recent developments in the informative

frequency band identification field (e.g. infogram) and the suitability of this method for fault diagnosis under
time-varying operating conditions will be investigated on more datasets. It is also suggested that the spectral
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coherence needs to be estimated with the fast or faster spectral correlation instead of the Welch estimator
used in this work. This would improve the computational efficiency of the proposed method.
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Abstract

Despite rarely being made explicit, signal models (and assumptions) for gear vibration have been fundamental
in the development of both condition monitoring and operational modal analysis techniques. The analysis (for
condition monitoring) or the removal (for OMA) of the dominant gear-meshing component is in fact dependent
on the assumption on the number, location and patterns of the corresponding spectral harmonics. This paper
discusses in detail the common modelling choices and their consequences for condition monitoring and OMA.
The traditional gearmesh-carrier/shaft-modulated model is analysed and two main limitations of current
models are highlighted: the additive assumption on the two gear modulating functions and the regularity of
their effect on different gearmesh harmonics. The paper uses experimental gear signals to prove the validity of
the newly introduced assumptions and to assess their practical significance.

1 Introduction

Gearbox condition monitoring has often been based on simple signal models. Empirical signal models are used
as a first approximation of the vibration signal to justify and guide the development of diagnostic signal
processing techniques. For this purpose, they are preferred to more detailed physical models (e.g. FEM or
lumped parameters) due to their generality and ease of implementation. Empirical signal models aim at
reproducing the overall properties of vibration signals, retaining the main time and frequency features that are
observed in real signals and can be used for condition monitoring. Despite not requiring the fine-tuning of
structural and geometric parameters typical of detailed physical models, correct assumptions on the phenomena
generating the vibration are fundamental in developing appropriate empirical signal models.

In the case of spur gears, the main source of vibration comes from the time-varying meshing force generated
at the contact point between the pinion and driven gear teeth. The most widely accepted gear-signal model is
therefore represented as [1]

y(@) = h(t) ® g(t) )

where the gear-related component y(t) of a measured vibration signal results from the convolution
(symbol &®) of the system impulse response h(t) with the gear-meshing forcing function g(t). As usual in
rotating machines [2], the true nature of this signal has a hybrid time-angle definition. However, for nominally
constant speed, the approximation of linearity between time and angular domain is often assumed. In this case,
the easiest way to represent the signal in the frequency domain is probably to define (with approximation) the
system transfer function H(f) = F{h(t)} in an equivalent shaft-order domain, adopting the approximate
relationship f = Qf; where f; is the average (and almost constant) shaft speed of a reference gear (in this study
we will always use the pinion/input shaft) and Q is the order coordinate of the same shaft. In this case we can
rewrite eg. (1) in the order domain as:

Y(Q) = HQf1) - G(D). )

In the case of perfect and healthy teeth, the contact force g(t) is theoretically expected to show a gearmesh
fundamental frequency (i.e. for a pinion with Z; teeth G(Q) # 0 only for Q = kZ;), but in practice even
imperfections in the manufacturing stage result in tooth-to-tooth variations. These variations are expected to
be even more accentuated in the case of localised gear faults (e.g. tooth crack) and are modelled as gear-
synchronous modulations of the gearmesh harmonics.



The excitation g is usually modelled in time or in the angular domain 6 of the reference shaft (in this case
shaft 1) as an amplitude/frequency modulated signal, where the carrier is represented by the dominant
gearmesh harmonics and the two modulating functions are synchronous with the two shafts. Actual explicit
mathematical expressions of AM/FM signal models are rare, and many studies focus on the simpler AM case
only. In this paper we will mainly focus on the implications that arise for condition monitoring and OMA in
considering an AM/FM model. A full analytical discussion will be provided for AM-only models, including
limitations of common assumptions and further issues encountered when dealing with actual signals. However,
considerations on FM and AM/FM models will be provided, without the explicit formulation of full AM/FM
signal models (due to their cumbersome expression), but keeping in mind all the major and minor spectral
components arising from the combination of all modulating functions.

2 Secondary sidebands

The simplest model of the gear force (often implicitly considered in many condition monitoring studies)
includes two purely amplitude modulation components:

9() = () - {a(6) + b(6)} ©)
where:
e () is the gearmesh-periodic dominant effect of the tooth-meshing
c(8) = ) Cpelt? @)
h

with Z; representing the number of teeth of the gear on shaft 1,

e a(0) and b(0) are a shaft-periodic amplitude modulation functions due to irregularities among the
teeth of shaft 1 and 2 respectively (and/or geometric/misalignment issues on the same shaft)

a(0)= ) Age¥® and b(0) = ) Brelt (5)
k k

where T = Z; /Z, is the gear ratio.
Such AM signal is usually represented as:

g(6) = Z Z CpA el (hZa+08 | Z Z C, By el (hZ2+k)T0 )
h k h k

This formulation shows the main feature of AM gear models: the presence of sidebands around the
gearmesh harmonics at orders hZ; + k (effect of shaft 1) and hZ; + tk (effect of shaft 2).

Such a simplified model already poses risks for OMA. In fact, the removal of these harmonics is often
considered straightforward by means of established synchronous averaging techniques, using encoders
installed on both shafts (or at least on a reference shaft). In most cases, shaft-1 and shaft-2 sidebands are thus
removed separately by synchronous averaging over the respective periods. Even in a number of highly rigorous
approaches, only one or a few combined periods of the two gears are used for these synchronous averaging
operations. This “grand-period” is defined as the interval between the meshing of the same tooth pair, and
equivalent to Z, periods of shaft 1 or Z, periods of shaft 2.

However, considering the physical nature of the AM functions a(6) and b(6), a multiplicative model is
much more justified, i.e. there is no reason why carrier and modulations should be treated differently and a
three-term multiplication is more appropriate. This results in the modification of eq. (3) into the following:



9(6) = c(6) - a(d) - b(6) (7)

with a consequent proliferation of sidebands:

g(®) = Z Z Z ChAkB{,ef(h21+k+r{’)6. ©
h k *

Under this modelling assumption — and actually also for model (3) —, the fundamental period of the signal
is the “grand-period”. However, differently from model (3) the signal shows a vast number of secondary
sidebands hZ; + k + ¢, with k, £ # 0 (in addition to the £ = 0 and k = 0 primary sidebands present also in
the previous model). These secondary sidebands are expected to have (in the spectrum of the excitation) a
lower amplitude (as the zero-frequency component of the modulation signals must be dominant to ensure
positive-only modulating functions), but they could still significantly compromise OMA attempts based on the
assumption that noise dominates the spectrum of the vibration signal, once the primary sidebands are removed.

An experimental test to verify the extent of this effect has been carried out on the UNSW spur-gear test-
rig. The test-rig is composed of a speed-reducing spur gear pair (Z; = 27 and Z, = 44) powered by an electric
drive and connected to a magnetic particle brake. The set of gears (module 2 with 5 mm face width) are built
in mild steel, and surface hardened. A gear crack was simulated by means of an artificial slot on the pinion
starting at the base of the tooth and reaching the centreline with an angle of 45°. The test rig was operated with
constant speed and load (10 Hz /10 Nm on the input shaft) and a vibration signal was measured by means of a
B&K4396 accelerometer, installed on the top of the casing in proximity of the DE input-shaft bearing. The
signal was sampled at a rate of 100 kSamples/s for a duration of 101 s, sufficient to ensure the observation of
22 “grand-periods”. In addition, a phase-reference signal was obtained synchronously to the vibration signal,
thanks to an encoder with 1000 pulses/rev installed on the NDE of the pinion shaft.

The vibration signal was order-tracked ensuring that an integer number of samples N, was taken within
a gearmesh period, thus also ensuring integer numbers of samples Z; Ny, in a revolution of shaft 1 and Z, Ny,
in a revolution of shaft 2. Residuals were obtained following two synchronous averaging (SA) procedures: the
first was the traditional approach which removed all harmonics of shaft 1 and shaft 2 (primary sidebands of
the gearmesh harmonics), whereas the second used the entire grand-period as reference for the synchronous
averaging, thus removing all primary and secondary sidebands.

The results are shown in Figure 1. The raw order-tracked spectrum clearly shows a significant amount of
gearmesh harmonics and sidebands, which are only partly removed by the traditional SA approach. Whereas
the low-frequency range (up to 10-15 gearmesh harmonics) seems mostly unaffected by the presence of
secondary sidebands, in the range from 15 to 30 gearmesh harmonics the removal of the primary harmonics
still leaves a large quantity of discrete components, which are identified as secondary sidebands.
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Adding frequency modulation to the model, the considerations made so far become even more relevant.
Even taking pure frequency modulation, the signal consists of

9(0) = c(6 + ¢(6) +¥(6)) (9)

where ¢(08) and y(0) are the phase modulations introduced by shaft 1 and 2, respectively:
- jkZig
B©O) =) el and  P(©) = ) W% (10)
k k
This signal can be expressed as a Fourier Series as:

7
j inz,| e D, ek Wy sze))
g(6) = E C,e/h7(0+0(O)+h () = z :Che] 1< +Y Drekliy, wie )
h h

The Bessel expansion of such signal (too cumbersome to report in this paper and whose details are of little
significance) is composed of a large series of harmonics, at all the multiples of the fundamental frequency
obtained from the “grand period”. Moreover, whereas the bandwidth of AM sidebands is expected to keep
constant for each carrier harmonic, the bandwidth of FM sidebands grows proportionally to the harmonic order
of the carrier [3], potentially amplifying this phenomenon at high orders.

A detailed analysis of the motivation (AM, FM or mixed) of the high-frequency location observed for
strong secondary side-bands is outside the scope of this paper, but a preliminary sensitivity analysis (varying
shaft speed) indicates that the phenomenon has a stable location in the frequency domain (independent of



speed), rather than in the order domain. This suggests that the relevance of the secondary harmonics is linked
to a dynamic amplification due to the system transfer function, rather than an FM bandwidth problem.

3 Irregularity of the sideband patterns

According to the AM model of eq. (3), each sideband-pattern should repeat identically at each carrier
harmonic. This is simply explained by the convolutive nature of the spectrum of an amplitude modulated
signal. For instance, simply dividing each set of sidebands G(hZ; + k) = C, Ay by the corresponding carrier
harmonic €y, the following equivalence should be obtained:

G(hZ, +k)  G(WZy+k)
Ch B Ch’

Vhh' €Z (12)

This ideal property is explicitly at the basis of Ref. [4], which proposed a multi-carrier demodulation
method, but partially and implicitly adopted by most studies which arbitrarily use the first or second harmonic
for demodulation.

This concept is challenged in this section using a vibration signal measured on the same gearbox as
discussed in the previous section, albeit with healthy 20 mm face width gears and a transmission ratio of 19/52.
The test was operated at 20 Hz with a load of 20 Nm (all measured on the pinion/input shaft). The sampling
frequency was set at 100 kHz for a total duration of the acquisition of 10 s.

The order-tracked signal was split into frequency bands corresponding to the neighbourhood of the first 4
gearmesh harmonics and the different sidebands patterns were shifted to overlap with each other. All sideband
amplitude coefficients were divided by the corresponding gearmesh harmonics amplitude coefficient, in order
to compute an amplitude ratio. The amplitude ratio of those patterns is reported in Figure 2.
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Figure 2. Sideband amplitude patterns of the first 4 gearmesh harmonics. 20 Nm - 20 Hz test.

This result shows how the patterns are massively different even disregarding their phase, which should
also coincide after normalisation by the carrier harmonics. Two possible explanations for such behaviour were
suggested: amplifications due to the system transfer function, or dominant frequency-modulation effects.



The first option was further investigated trying to remove the transfer function effect by means of cepstral
liftering [5], [6]. An exponential lifter was applied, with a cut-off angular quefrency of 0,7 radians,to the
original spectrum and the result was used to remove the short-quefrency transfer function effects. The result
of the liftering operation and the “normalised” spectrum are shown in Figure 3 (a-b) respectively.
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Figure 3. Removal of the TF effect: (a) short-pass liftering operation, (b) normalised spectrum.

Despite the good result in terms of spectral liftering, the problems observed in Figure 2 continue to be as
severe in the normalised spectrum harmonics reported in Figure 4.
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As the shape of the FM patterns of a multi-carrier modulated signal do not seem to match with the ones
observed in Figure 2 and Figure 4, the authors are of the opinion that, despite possibly contributing to the
difference among the sideband patterns, other phenomena (unmodelled in the current approach) must be
influencing the vibration signal. FM multi-carrier modulation in fact usually results in sideband patterns
showing a similar “shape”, yet with a bandwidth proportional to the carrier harmonic order.

A possible explanation of the differences in the sideband patterns could be found in the different roles
played by two different root-cause mechanisms resulting in gear vibration: geometric and static transmission
error (each potentially resulting in a separate AM/FM modulated signal, with different carrier and modulation).
The first is due to profile irregularities, whereas the second is due to the angular dependence of the gear-
meshing compliance under load. An additional test was therefore executed at very low load (~1.5 Nm, just
enough to maintain contact between the gear teeth) and speed (2 Hz), where geometric transmission errors
were expected to dominate. Since under these operating conditions significant electrical noise was present in
the lowest frequency range, in this case harmonics 2-5 were analysed.
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The patterns shown in Figure 5 are much more consistent, even if discrepancies are still present, thus
supporting the idea of a potential two-mechanism root-cause of the observed pattern inconsistency.

In order to investigate more deeply the origin of the pattern inconsistencies observed in the vibration signal,
the sideband distribution of the transmission error signal is also studied, in a low-speed and low-load test. As
illustrated in Figure 6, the pattern distributions have been plotted for the two cases of a heathy and a faulty
gear. The transmission error is computed as the relative difference between the rotation of the input and output
shafts. The pattern shown for the sidebands of the healthy gear is almost as consistent as that obtained with the
vibration signal, although differences persist in the amplitudes of the sidebands. However, in the case of the
faulty gear, the distribution of the sidebands is quite similar for all the sidebands of every gearmesh harmonic.
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4 Conclusions

This study has highlighted two major limitations in the current modelling (and assumptions) of gear
vibration signals. Neglecting secondary sidebands has been shown to be not always reasonable, and strong
discrete components were still observed in the spectrum of a gear signal after removing the primary sidebands
by means of traditional synchronous averaging procedures. This problem, which could bias the identification
of system transfer functions with OMA approaches, is easily solved if it is possible to observe a sufficient
number of “grand-periods”. In practice this could be possible for a series of machines operating at reasonably
constant speed, but might be impractical for complex transmissions with more than one stage or planetary
arrangements (very long grand-period).

Experimental evidence also casts doubts on the validity of AM and even AM/FM models of gear vibration
signals, and suggests the possibility of multiple forcing functions (with different spectral distribution) acting
simultaneously to create complex modulations. In particular, the geometric vs static transmission error
components seem to be potential candidates for future investigations.

Significant investigative efforts are required to clarify these issues and give rise to more reliable models,
in turn enabling new and more effective condition monitoring and OMA approaches.
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Detection sensitivity study of local faults in spur gears based on realistic

simulations
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Abstract:

The dynamic response of gear transmissions holds essential information for the recognition of an incipient
fault and its propagation. A realistic and validated dynamic model is used to predict the vibration regime of
gear transmissions [1]-[2]. This model was validated experimentally for both healthy and damaged
conditions [1]. A great virtue of a model is the ability to examine each phenomenon separately and to isolate
its contribution to the dynamic response. The model considers the nonlinear behavior of the gear mesh
stiffness, integrating the geometric profile errors of the gears. The scattering in the data, which is generated
by the random factor of the simulated surface roughness, simulates the reality better than data of an ideal
profile. The ability to determine what is possible to monitor for each surface roughness is not trivial and

cannot be achieved experimentally, due to the immense span of cases to consider.

This work presents an analysis of spur gears transmissions that can be separated into two integral but still
different studies. The first study examines the effect of the operating conditions, including speed load and
surface roughness, on the vibration signature of a healthy gearbox. The two main evidences from this study
are related to the levels of the gear mesh frequencies (GMF) and to the sidebands (SB’s) in the spectra, which
are caused by the frequency modulation (FM) of the rotational speed. It was found that there is a strong
dependency of the energy at the gear mesh frequency on the applied load. Figure 1.a presents the total
GMF's energy for different rotational speeds (R1 is the lowest speed, R3 is the highest speed) under different
loads (L1 is the lowest load, L4 is the heaviest load). It is noticeable that under the same rotational speed, the
total GMF’s energy sharply rises as load increases. On the other hand, it was found that the total spectral
energy of the FM sidebands sharply rises as speed increases, but is not affected by load. Figure 1.b shows
the spectral energy of the FM SB’s for different speeds under different loads around the first six harmonics
of the GMF. As for the influence of the surface roughness [3], it was found that a coarser surface roughness
tends to obscure the effects of load and speed on the signature due to the gears profile error. Furthermore,
the energy level of the FM sidebands sharply rose as the surface roughness got coarser, while the energy

level of the GMF's barely changed due to the surface roughness.
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Figure 1: total energy against rotational speed and load of the (a) GMF’s (b) FM sidebands around the first six GMF's

The second study examines the expression of local tooth faults in the vibrations signature. Load effects and
other AM phenomena including eccentricity and misalignment may obscure the expression of local tooth
faults. The comprehensive study of the effects of the operating conditions on the signature was necessary in
order to fit a robust and sensitive monitoring process for the local faults detection capability. The optimal
process should reflect the expression of the fault in the signature, while extinguishing the effects of the
operating conditions, which are not related to the fault itself. The difference signal removes from the
synchronized vibrations signal the GMF’s components that are strongly affected by load, and components
which are related to AM phenomena. Hence, the difference signal let us focus on the fault expression while
diminishing the effects of the operating conditions. Figure 2.a shows the RMS level against kurtosis, both of
the difference signal, for five different fault severities (where “Fault 1” is the least severe fault and “Fault 5”
is the most severe fault). It can be seen that a separation of the faulty conditions from the healthy condition
can be achieved for most faults severity levels, due to the significant differences in their locations on the
graph. Besides the analysis of the difference signal, we can also utilize the total spectral energy of the FM
sidebands. For each random signature, the total energy of the FM sidebands can be calculated and be
compared to the healthy condition by statistical distances. The statistical distance may determine whether
the examined signature can be attributed to the healthy population or not, meaning that a separation of the
faulty condition from the healthy condition may be achieved. It was found that the detection capability is
clearer when examining the spectral energy of the FM sidebands around the gear mesh frequencies
overlapping the natural frequencies of the gearbox. Figure 2.b presents the Mahalanobis statistical distances
(D) of the total FM sidebands energy around the GMF harmony which was found to be the most affected by
the natural frequencies of the gearbox, against the level of the fault severity level. A Mahalanobis distance of
D = 10 was determined to be the threshold for excluding a signature from the healthy population [4]. It can
be seen that a separation of most of the local faults was achieved, as well as ranking of the three most severe

faults.
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Towards a better understanding of helical gears vibrations —
dynamic model validated experimentally

Silverman, N; Dadon, I; Bortman, J; Klein, R

In order to simulate the vibration signature of gears, an accurate calculation of the gear mesh
stiffness (GMS) is required. The time varying GMS, which is the main excitation that determines
the dynamic response of transmissions’ vibrations, is well understood for spur gears, but that of
helical gears was less investigated. Although there is work dedicated to helical gears vibrations, a
comprehensive analysis of their GMS compared to spur gears and their time and spectral domains
have yet to be made. This paper deals with the dissimilarities and provides a better understanding
of helical gears behavior, as they are a key component in many complicated and costly machines.
With this new knowledge a more educated approach to diagnostics might be achieved.

The main difference between spur and helical gears is in the contact line pattern. In spur gears the
contact line is parallel to the tooth’s base and so calculating the GMS in any given moment is
rather easy. Helical gears on the other hand have a diagonal line of contact which makes the
moment applied by the meshing gear in respect to the tooth’s base change along the tooth’s width.
To overcome this challenge a ‘multi slice’ method is utilized [1-4], in which the helical tooth is
divided into many infinitesimally narrow slices which are treated each as a spur tooth. The total
helical tooth stiffness is the sum of all those spur slices.

For the purpose of simulating the vibrations of helical gears a fourteen degree of freedom spur-
teeth dynamic model [5] was upgraded to include helical gears a well. The dynamic equations and
stiffness calculation were not changed and thus are discussed only briefly. The focus is dedicated
to the modeling of the contact line using the multi slice method and other adjustments made to the
model.

The challenge with the slice method is determining how many slices are in mesh at every given
time, along with determining their mesh “height” (distance from the tooth’s base). The solutions
found in the literature are rather complicated and require knowing niche data about the gears, such
as the transverse operating pressure angle, which are often not provided by the manufacturer. In
contrast, the method suggested in this work is based on only a few common parameters such as
the gears module, number of teeth and the involute profile.

The model was validated by an experiment conducted on a helical gearbox and recorded with a
tri-axial accelerometer. The signals were compared in terms of their load and RPM dependency
and exhibited a similar behavior, as can be seen in Figure 1. After obtaining a healthy baseline, a
broken tooth case with three severity levels was studied. The fault severities were removal of 25%
of the tooth’s width in a diagonal line, removal of 50% and a missing tooth (Figure 1). This kind
of diagonal material removal was chosen because when helical teeth breaks it happens in a pattern
parallel to the contact line. The light and medium fault were challenging, but the missing tooth



was seen clearly, mainly in the Kurtosis and Crest Factor of the difference signal. The statistical
distances of the SA spectrum around the first and fifth GM harmony proved to provide better
sensitivity, and showed clear detection of various fault severities, mainly in the tangential
direction. A calculation of the Z-score index around the first GM even showed capability of
ranking by fault severity (Figure 2).

q

Figure 1: Three level of fault severity. Left to right: removal of 25% of the tooth’s width, removal of 50%, and a missing tooth.
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Figure 2: The Z-Score index for each GM harmony. Notice the first harmony which shows fault ranking and the fifth, which shows
detection even at the smallest fault.
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Abstract

The sudden growth of damages can cause catastrophic failure of structures or mechanisms that lead to un-
planned shutdowns of machines and production lines. If a damage remains undetected and reaches a critical
size, sudden collapses and failures can happen. To overcome these problems, it is essential to detect these
damages before they reach their critical state. The presence of damages can alter the structure which reduces
the bending stiffness and modify the modal parameters and the natural frequencies. One of the most suitable
monitoring methods to define the presence of damage and assess the structure is vibration based structure health
monitoring (VBSHM). The objective of the work is to localize and quantify the damages with the considera-
tion of eigenfrequencies of healthy and tested structures. Hence, a methodology for damage identification in
structure using frequency shift coefficient (FSC) is presented. Numerical finite element models (2D and 3D)
are performed and correlated to obtain a damage library for the cantilever beam structure. Based on the cost
function, Young’s modulus of 2D and 3D models are iteratively updated to closely match the frequencies of
the reference beam. The approach also quantified geometry damage with vibration measurements on cantilever
beams, which is related to an equivalent bending stiffness reduction by the use of FSC. The effect of severity
of the damage is considered. Finally, the result is validated numerically through the identification of geometry
damage.

1 Introduction

Damages or cracks are inevitable in aerospace, aeronautical, mechanical and civil structures during their
service life. Any changes in the structures such as material, physical or geometrical properties which affects
their performance are considered as damages. The study of damages is an important perspective in order
to ensure safety or to avoid any serious losses. Sudden occurrence of damages in the structure can cause
catastrophic failure and reduction in load carrying capacity. However, it is necessary to improve the durability
and reliability of structure as expressed in the design and maintenance specifications. The presence of the
damage makes local stiffness vary in the structure and it also affects the mechanical behavior and performance
of the structure. However, preventing the formation of damages is almost impossible as they propagate along
the structure due to fluctuating stress or fatigue conditions. If these cracks remain undetected and reach a
critical size sudden collapse can happen. Indeed, damage identification has significant life safety implications.

Structure Health Monitoring (SHM) is an efficient way for the diagnosis of the constituent’s materials or
structures. SHM involves the integration of sensors, data transmission, computational techniques, and pro-
cessing ability to respond the behavior of a structure. Consequently, it aims to provide maintenance services
throughout the life of the structure. Nowadays, structural damages are identified by Non-Destructive Testing
(radiographic, ultrasonic testing, X-ray, eddy-current etc.) [1]. Vibration based structural health monitoring
(VBSHM) is one of these categories based on the fact that a loss of stiffness caused by damages affects the
dynamic response of the structure. VBSHM consists of five levels (existence, location, type, extent and prog-
nosis) [2] which are efficient and widely accepted because of their ability to monitor and detect damage from
global testing of the structure.

Many researchers from the last few decades, natural frequencies of a damaged structure are found as an
identification parameter for both damage location and size. The first study developed by Cawley and Adams
[3] depends on the shift of more than one frequency that could yield the location of the damage. In a review



of the literature, Salawu [4] found that the natural frequencies are a sensitive indicator to detect the damage
in the structure. The important technique is analyzing the changes (shifts) in natural frequencies in a structure
with and without damage. Hilmy et al. [5] have presented frequency shifting as a function of damage evolution
for a plate structure. The method proves shifting of the natural frequency is greater at higher frequency values
and determines the location of the void damage. Messina et al. has proposed Damage Location Assurance
Criterion (DLAC) [6] and after extended to Multiple Damage Location Assurance Criterion (MDLAC) [7] to
measure the frequency variation due to damage between experimental and numerical values correlation. More
recently, a method proposed by Serra et al. [8] demonstrates a correlation of 2D and 3D FE models to identify
the typical damages (like hole, crack, notch) based on numerical and experimental study. Masoumi and Ashory
[9] presented numerical and experimental studies to localize cracks.

In this paper, an approach for damage identification by using the frequency-shift coefficient is proposed.
This method was first introduced by Silva and Gomes [10] for solving the damage detection problem. The
method requires numerical models as a function of damage position and size for the frequency shift. First,
vibration based strategy is used with detection, localization and classification (Size/Severity/Geometry) of
damages. The study is followed by simulating a beam in commercial software (COMSOL, MATLAB) as a
numerical case and 2D and 3D FE models are correlated to obtain geometry damage properties (size, location
and severity...). Finally, numerical example is validated in order to localize and quantify geometry damage.

2 Cantilever beam bending vibration background

The eigenvalue problems and the analytic formulas concerning the modal parameters of a cantilever beam
were described by the partial differential equation of the linear model with viscous damping as:

3%v(x ov(x 2?2 d%v(x
M(x)a(tz’t) +C) ét’t) +M<E1(x)a(xz”)> — Fx,1) )

where v(x,7) is the transverse deflection, M(x) is the mass per unit length, C(x) is the damping coefficient,
EI(x) is the bending stiffness and F(x,t) is the external force per unit length of the beam. The equation of the
motion for dynamic systems are easily obtained from Newton’s second law. This gives an equation for each
degree of freedom within the system. When discretized, the equation of the motion may take the following
matrix form:

MR} + [CHX} + [K|{X} = {F} @)

where [M] is the mass matrix for the system, [C] is the damping matrix and [K] is stiffness matrix, {X}, {X},
{X} are vectors containing acceleration, velocity and displacement in all degree of freedom of the model; and
{F} contains external forces actuating in the system. If we assume free motion and negligible damping, one
possible solution for the equation is:

{x}i = {y}isin(wit — 6;) 3)

y; are the amplitudes for each mode shape, @; are the natural pulsations (in rad.s~!) of vibration for each
mode shape and 6; are phase angles. The natural frequencies (in Hz) are given by f; = % The following
equation is obtained for the healthy case:

(K] — @} [M))y; =0 4)

Damage to the structure changes its dynamic response. Therefore, natural frequencies and natural modes
are changed. The equation of a damaged case can be expressed as:

(K] — (@?)*[M])y; =0 (5)

2.1 2D Finite element model

The studied model is a cantilever beam, which has two degrees of freedom, a vertical translation y and a
rotation 0,. As can be seen in (Figure 1) this beam is divided into equal size of N elements and N + 1 nodes.
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Figure 1 — Cantilever beam model. (a) 2D Finite element model; (b) element properties

In 2D FE Model, the damage is represented by an elemental stiffness reduction coefficient ¢; which is the
ratio of the stiffness reduction to the initial stiffness. The stiffness matrix of damaged beam is defined as a sum
of elemental matrices multiplied by reduction coefficient by the following equation:

[Ka] (1-a)[Ki] (6)

1

N
1=

where K, is global stiffness matrix for damaged beam, K; is elemental stiffness matrix, N is number of
elements, and ¢; is a reduction coefficient , which varies from 0 to 1 for the damaged structure. The value of ¢;

= 0 indicates a healthy structure.

2.2 3D Finite element model

Simulation of damaged beam structure is performed using COMSOL multiphysics software. The damage
model is built and the mesh is 3D tetrahedron element. The number of mesh is controlled by the software and
depends on the shape of the structure, thus it changes with the size of the crack. A high meshing density is
applied near the damaged area mainly to have the behavior correctly modeled.

Figure 2 — 3D finite element mesh of the beam with damage

Geometry case (rectangular) is studied in order to quantify the severity of the damage. Figure 2 shows the
meshed beam zoomed near the damaged area and width of the crack is set to 0.5 mm while the height is a
parameter. The sensitivity of the 3D model is determined by mesh size. As the mesh is finer the model is more
sensitive but computing cost is higher.

3 Frequency shift coefficient based strategy

The first type of modal method for damage detection relied on changes in dynamic properties of the structure
and particularly natural frequencies. Any changes in the properties of the structure, such as reduction in stiffness
will cause changes in the natural frequencies. One of the important advantages of natural frequency is that it can
be quickly and easily conducted when measurements required. Classical measurements procedure can be used
for the determination of experimental resonant frequencies. In this context, the frequency shift criterion is first
presented by Silva and Gomes [10] for damage identification problems. The technique requires experimental
measurements or numerical solution for the frequency shifts as a function of size and position of damage The



frequency shift coefficient (FSC) is defined as:

FSC:argmin<\/;1\i<W> |) and Ri:?:, @)

i=1

where m is the total number of modes, X refers to the tested case, A refers to the reference case, f* is the
unknown beam frequencies, fl-h is healthy beam frequencies and i is denotes modes indices.

It is well known that the presence of damages modifies dynamic parameters and behavior of the structure.
The location, classification and size of damages in the structure are identified by changes in the vibration
parameters. At first, a set of reference state frequencies are identified. Numerical correlation of 2D and 3D
FE models is performed to fit the frequencies with the references. Then, in the 3D FE model, the damage was
materialized as a geometrical discontinuity of rectangular considering the position, type, size, geometry of the
damage. At the same time, the damage was materialized as a local reduction of bending stiffness in an element
for the 2D FE model. Finally, numerical correlation result will specify the position, size, depth and geometry
of the damage from the damage library.

4 Numerical rectangular geometry damage identification

The numerical simulation test is performed to verify the efficiency of the proposed VBSHM strategy. A
cantilever steel beam was taken into consideration for the numerical test and beam properties are given below
in Table 1. A beam 2D FE model was divided into equal size of 100 elements and each element size is 10 mm.

Beam Properties Value
Length (L) 1000 mm
Width (W) 24.9 mm
Height(H) 5.3 mm

Young’s modulus (E) 210 GPa
Mass density (p) 7850 kg/m’>
Poisson’s ratio (v) 0.33
Table 1 — Beam dimensions and properties

However, 2D-3D model correlation is done for the damage geometry (rectangular) by using software COM-
SOL with MATLAB. The modal responses of the structure were generated using FE models before and after
the damaged case. The first seven modes are retained. The criterion is employed as a tool for identification of
the damage by measuring frequencies. The final goal of correlation is to localize and quantify the severity of
geometry damage that can link to the percentage reduction in stiffness of a beam structure.
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Figure 3 — 2-D clamped free beam plan with rectangular damage

A detailed 2D beam view as shown in Figure 3. The damage case is tested for position 350 mm with width
(Wd) and the height (Hd) of damage are 1 mm and 3 mm respectively. Meanwhile, the FSC is computed for
every position and severity, in order to illustrate its variations.

In Figure 4, the FSC is shown as a function of tested position and severity where color levels represent the
FSC values. The minimum value (coordinates and value of the minimum) allows the identification of given
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Figure 4 — FSC as a function of tested position and severity. The red circle indicates the severity and position identified
by the algorithm.

damage in 2D clamped free beam. In this case, a defect of 68% severity localized at 350 mm is found : the
position is thus well identified by the FSC and the identified severity corresponds to the parameters chosen for
the rectangular damage. These values relate to the other damages properties and information about the size and
type. In addition, Table 2 shows the identified damage properties for this particular case of rectangular damage.
This is one item of the damaga library the presented strategy is intended to build.

Type | Rectangular
Position 350 mm
Width 24.9 mm
Length 1 mm
Height 3 mm
Severity 68 %

Table 2 — Geometry damage properties

5 Conclusion

This paper presents a method to identify damage in structure by using natural frequencies. The formulation
of the method based on stiffness reduction has been validated with the localization and quantification of the
rectangular geometry damage in beam like structure. The simulation correlation with COMSOL and MATLAB
are presented and the robustness of the present method is examined. A numerical example with 3D geometry
damage case is identified. Based on natural frequency, the damage localization and quantification is accurate
because of the sensitivity of the frequency shifts to the damage states. Both 2D and 3D models of the beam were
used to link the size of damage to the reduction in stiffness. Geometrical damage properties were successfully
accomplished by linking FE models. In the future, more experiments and simulations should be investigated in
order to validate the methodology in real cases.
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Abstract

Using a flexible manipulator for grinding process in situ has become a cost effective engineering service in the
recent years, especially for repair and refurbish of mechanical systems and components. In comparison with
traditional rigid robot manipulators, the flexible manipulator has proved its efficiency in terms of accuracy and
facility. However, because of its compact and flexible structure, concerns arise regarding its dynamic behavior
during a grinding process. This paper proposes a method using an ARX (autoregressive with exogenous
excitation) model for experimentally analyzing the vibrations of a flexible robot during a grinding operation in
different cases: Single Input-Single Output (SISO) and Multi Input—=Multi Output (MIMO). Simultaneously, a
dynamometer allows for triaxial input force measurement while three accelerometers mounted at the end effector
record the vibration outputs. Due to the Operational Modal Analysis (OMA), the dynamical properties of the
robot can be identified directly during operation. The results have shown that the ARX model is efficient for
analyzing the operational vibration in complex systems with multi degrees of freedom and multi directions. The
determination of modal parameters and identified Frequency Response Functions (FRFs) enable to predict the
dynamical behavior of the system and to simulate the vibration in real working conditions. Further studies on
inverse problem are promising for estimating the excitation forces while these later are not available and not
practically measured in industrial applications.

Keywords: Operational modal analysis, flexible manipulator, grinding process, ARX model, transfer functions,
force identification.

1. Introduction

Nowadays robots sufficiently conduct manifold manipulation works with a high degree of autonomy and
rigorousness. Portable manipulator systems are regarded as an effective and profitable solution for the
automation maintenance tasks on large hydroelectric equipment. The SCOMPI (Super COMPact robot Ireq) was
developed at IREQ (Hydro Quebec’s research institute) and is particularly designed with flexible links and
flexible joints for working in the hard-to-reach areas or confined spaces of hydraulic turbines in a hostile
environment [1]. Because of its flexible structure, vibration problems of Scompi become crucial since producing
chatter and bad surface finish. A numerical simulation [2] has been constructed in MSC/Adams in different
configurations included impact force, sinusoidal and operational forces. There is a great number of researches
that focus on identifying the modal parameters of the system in order to understand the dynamical behavior of
robot [3-7], and estimate the operational forces from the actual accelerations measured on the robot [8].
Knowing a system’s frequency response function is a key to many system analysis and control synthesis

1



methods [9]. The main problems are due to the fact that these modal parameters are changing with the robot
motion and position and thus a time-varying method is proposed for studying this kind of non-stationary
structure [10, 11]. Researchers are particularly interesting to identification of continuous-time system by using
discrete data [12].

This paper presents a technique to identify the modal parameters as well as the transfer function of Scompi robot
by applying the Autoregressive with eXogenous input (ARX) model [12-14]. This method reveals a convenient
and advantageous for Operational Modal Analysis of structures (OMA), which allows for determining
operational modal model excited by ambient noise and vibration. The modal parameters are estimated and
identified by applying straightforward method such as Ordinary Least Squares (OLS) [12], [15]. The results are
validated by another approach based on updated Auto Regressive (AR) model in [4] and shown a great accuracy
of identified modal parameters. This study enables us to predict the dynamical behavior of Scompi for
identifying excitation forces during operations of grinding and consequently improve the quality of the surface
finish.

2. Auto Regressive Exogenous Excitation model (ARX)

The ARX model [12-15] is a primary choice because of its simplicity. It has been applied to numerous practical
applications especially in control systems. However, critical motivation for choosing the ARX model, is its
correlation to the state space model [16-19] which can be implemented for inverse problem with the aim of
reconstructing the excitation forces acting on vibrating structures [8], which is impossible to obtain from direct
measurement in the real systems. The ARX model is a convenient model to obtain the general relation between
input and output signals for different cases, such as Single Input — Single Output (SISO) or Multiple Input —
Multiple Output (MIMO), which can reliably represent the dynamic properties of the system. Figure 1 illustrates
the block diagram of ARX model.

e(t)

DYNAMIC .
SYSTEM O i

3

Figure 1. Block diagram of ARX model

This model has a simple structure and strong robustness. It is very efficient when the noise is low. However,
when the noise is large, the order of the model must increase to compensate the impact to system identification
precision from noise [18].

Examine a c¢ dimensional vector input u(t) and a d dimensional vector output y(t) of a Multiple Input and
Multiple Output (MIMO) system.

The ARX model can be described as a linear difference equation:

yO+AyE-)+.. +A y(t-n,) = But)+Bu(t-1)+.. +B, u(t- n,)+e(t) Q)
where:
A;—are d x d matrices and

B; —are d x ¢ matrices.



The general ARX model can be rewritten in the polynomial form:

A(@)y(t)=B(a)u(t) +e(t) )
where:

A@=1 +Ag" +Aq"+ ..+A g™ (3)

B(a)=B,+ B,g"+B,g*+..+B, g™ (4)

The model (2) is an ARX model where AR refer to the Autoregressive part A(q)y(t) and X refer to the extra
input B(g)u(t) called the exogenous input. y(t) is considered as the output of the model while u(t) is the input to
the model and e(t) is innovation term at the time t. A(q) and B(q) are polynomials in the delay operator q* and
N, Ny are the model order of A(q) and B(q) respectively. A(q) is a matrix whose elements are polynomials in .

This results in Matrix Fraction Description (MFD).

Defining the parameter matrix:

0=[A, A, .. A, B, B, .. BT )

We may rewrite (2) as a linear regression:

y(t)=0"4(t) +e(t) (6)

If we consider N consecutive values of the responses from y(k) to y(k+N-1), the model parameters can be
obviously estimated by least square method [15] by minimizing the norm of e(t):

® =argmin [%kilﬂe(t)”j =argmin (%kil”}’(t) - 9T¢(t)||2] (7)

After obtaining the measured force and acceleration signals on all channels, the model ARX can be used to fit
the data. The ARX model creates a regressive connection between the input vector u(t) and the output vector y(t)
through a residual vector e(t). By applying the least square method, the modal parameters matrices A and B can
be estimated. In vibration measurement application, it can be seen that force (input) and acceleration (output) are
normally synchronized, thus the two parts may be modeled with the same order n, = ny,.

Once the model parameters of the system are identified, the state matrix can be determined as in the form of
autoregressive parameters:

-A -A -A .. -A
| 0 0 0
(naxnb)= O I 0

(8)

0 O 0 I 0

There is a remarkable coincidence that the poles of model are also the roots of characteristic polynomial of the
state matrix. Consequently, the continuous eigenvalues, system natural frequencies and damping rates of the
structure can be calculated for each pole by using the subsequent standard equations:

Eigenvalues: [V,1]=eig(A) 9
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Frequencies: f
2r

(10)
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Damping rates: =
ping & 27t

(11)
When the modal parameters are estimated, we can construct the transfer function which is regarded as the
frequency response function of the system. All the system can be described by linear constant coefficients and
represented by transfer functions that are “rational polynomial in g”.

ﬂ:qw B,g*+B,q* +.. +B, q™

G =
@ A(q) I+AQ" +Aq%+ .. +A g™

(12)

with ny is the transport delay.

3. Application to a flexible manipulator during grinding process
3.1 Brief introduction of the SCOMPI robot

The proposed approach is now implemented to the portable robot Scompi. Figure 2 presents the structure of
Scompi, which is used for repair tasks in Hydro Quebec power plants, particularly for grinding or welding jobs
[1]. Because of its compact and flexible structure, the question is raised up from its dynamical behavior under
operating conditions. Hence, the flexibility of the joints and links needs to be taken into consideration, which
might affect the stabilization of robot at the end effector during operational process [4]. The aim of Scompi is to
achieve both a high Material Removal Rate (MMR) and a polished surface finish with great precision. However,
because of the portable and lightweight design, undesired chatter vibrations can appear during machining
process which produces an undesirable waviness surface. Therefore, the monitoring of its modal parameters as
well as the transfer functions of the structure in the grinding operation are necessary for minimizing vibration at
the end effector while controlling chatter phenomenon and improve the quality of grinding surface.

Figure 2. Scompi robot

3.2. Presentation of the Experimental setup

As can be seen from figure 3, a Scompi robot is tested under real grinding operation. Due to the interest in
typical dynamic behavior of the robot at the end effector, the Scompi is set to its home configuration. Three
accelerometers are mounted at the end effector in triaxial directions X, Y and Z. Meanwhile, a Kistler table



dynamometer CH8408 is placed under the work-piece for measuring the forces. The power is set up at 1500 W
and grinding motor is rotated at a constant speed of 3225 (rpm) for conducting each single grinding pass within
12 seconds. A multi-component dynamometer is used for measuring the grinding forces in three directions at the
tool piece contact point. After obtaining the measured signals from dynamometer and accelerometers, we
acquired them to the frequency rate of 512 (Hz) (Figure 4, 5).

4

Figure 3. Overall configuration of the experimental setup
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Figure 4. Measured acceleration signals during grinding process.
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Figure 5. Measured force signals during grinding process.

Taking three measured acceleration signals in X, Y and Z directions, by applied Fast Fourier Transform (FFT)
analysis, we can easily see the measured signals in both time and frequency domain as shown in Figure 6. As



indicated, there are some significant frequencies in frequency domain such as 53.9 (Hz) - the first harmonic; 93.7
(Hz); 106.2 (Hz) - the second harmonic; 146.8 (Hz) and 200.8 (Hz).

03 | X:53.97 -

Y:0.2408 X:146.8

Y:0.3177

X: 200.8
Y:0.2065

|
X: 106.2

Y:0.1506

02 |

Ax (mis2)|

o1 |
X: 93.75

¥:0.1168

0 2 a 6 8 10 50 100 150 200 250

Time (s) Frequency (Hz)

Y:0.495 X:199.9

Acc (mis2)
|Ay (m/s2)|

Y:0.3579

Time (s)

a
10

X:146.8
Y:0.00127

15 [ X:53.13
Y:0.001677

|

X:106.3 X:200.8
Y:0.0005218 ¥:0.0005039

Acc (m/s2)
1Az (mis2)|

X:93.75
Y:0.000627

ittt sl uA._m._..u_.un.mme.mhh_L.‘.L o

Time (s) Frequency (Hz)

Figure 6. Time domain and frequency domain of the acceleration signals in three directions.

4. Results and discussion

Operating in a tridimensional space, the ARX model is applied on Scompi structure to fit the measured signals
on each direction (S; — Fy); (S2 — Fy); (Ss — F,) for constructing frequency stabilization in different cases: Single
Input — Single Output (SISO) and Multi Input — Multi Output (MIMO). The figures 7-10 demonstrated the
frequency stabilization diagrams up to 250 (Hz) with a model order up to 100 where all the interesting
frequencies may be observed. The model order is chosen at 100 for computation of the modal parameters with
low uncertainties. In addition, another stabilization given in figure 11 is computed by MODALAR based on
updated AR model [4] with an aim of validation between two approaches. The 53.75 (Hz) electric frequency of
grinding and its harmonics are clearly revealed in the stabilization diagrams.
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Figure 10. Frequency stabilization diagram in MIMO case (three inputs and three outputs)

Synthetically, the natural frequencies and damping ratios are estimated directly from the frequency stabilization
diagram of MIMO case, where all the excited frequencies can observed clearly in multi directions. Figure 12
illustrated the stabilization diagrams of damping ratio with 95% uncertainties. The natural and harmonic
frequencies identified by two methods with their damping ratio are given in the table 1. The harmonic

frequencies are identified with their damping rates close to zero.

Model order

Frequency (Hz)

Figure 11. Frequency stabilization diagram by MODALAR

Figures 13-21 present the transfer functions identified by ARX model at the order 100. The identified transfer
function from the working condition is crucial for the assessment of the robot dynamics and for further

simulations under different loadings.
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Mode M1 M2 M3 1% harm M 4 M5 M 6 M7
Frequencies (Hz) - ARX 142 24.4 28.2 53.3 61.2 66.2 94 101.5
Frequencies (Hz) - AR 12.7 24.6 28.2 54.2 60.1 66.2 93.9 101.3
Damping (%) - ARX 11.5 3.7 3.3 0 3.4 2.7 0.2 15

Mode 2"harm | M8 M9 M 10 3%harm | M11 | 4"harm | M12
Frequencies (Hz) - ARX 106.3 111.7 147.5 149.2 159.5 200.4 212.6 224.6
Frequencies (Hz) - AR 106.3 113.5 147.3 149.1 159.5 201.3 213.8 225.1
Damping (%) - ARX 0 0.6 0.2 0.2 0 0.2 0 0.7

Table 1. Identified frequencies and damping ratios

By comparison to the identified frequencies by MODALAR based on updated AR model [4] shown in table 1,
the approach reveals high accuracy identified natural and harmonic frequencies with their damping ratios.
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Moreover, frequency response function is directly identified from grinding operation based on ARX model. The
results are better observed on the X and Y directions, this can be explained by the configuration of Scompi when
working in horizontal surface to perform the grinding task.

5. Conclusion

This work is a part of an ongoing research program on investigating vibration problems of flexible manipulator.
The frequencies, damping ratios and operational FRFs can be constructed and most excited modes are revealed
during the grinding process. In this paper, operational FRFs of a structure are identified directly from measured
signals via an ARX model. The results illustrated the sensibility of the acceleration in the X and Y directions
while the contrary is proved in the Z direction with low magnitudes of the FRFs. Furthermore, as damping of the
grinding process and equivalent stiffness are in command of cutting stability, so their identification is crucial to
predict and avoid detrimental chatter occurrence. In the ongoing research, the inverse of ARX model will be
applied in order to estimate the excitation force in the working conditions, with the integration of phase and
coupling between directions. The interest lies in the reconstruction of excitation forces that gave rise to measured
response signals based on ARX model. This approach is expected to serve for monitoring and vibration control
design of the robot during machining operation.
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Abstract

In this paper, a methodology is presented to obtain average representative forces exerted by the load inside a
tumbling mill on the different faces of the lifters and liners, which are directly related to its power consumption.
The methodology is based on the use of virtual sensors included in DEM simulations combined with signal
processing and allows obtaining the magnitude of the forces based on the angular position of the lifters as the
mill rotates. The methodology is validated by comparing numerical and experimental results obtained from a
test bench mill. The variables considered are the power, movement of the load inside the mill, and average
forces. The latter are experimentally measured using instrumented lifters specially designed for this task. The
results obtained show differences in the magnitude of the average forces in specific angular positions,
depending on the operating conditions of the mill. These differences explain the behavior of power
consumption with respect to operating conditions reported in the literature.

1 Introduction

Tumbling mills are critical machines of the mining industry. They are used to reduce the size of mineral
particles, and their operation has associated high economic costs. The grinding of minerals requires high energy
consumption and represents the most expensive stage in the production of metals. The economies of scale and
the decrease in the grade of the ores, has led to the development of large grinding mills that currently reach
throughput of 80,000 - 100,000 ton/day with powers of up to 28 [MW] [1][2].

The main component of the mill is the horizontal hollow cylinder called drum, inside which the ore is
grinded (Figure 1a). The drum rotates on its axis and is delimited at its sides by two ends through which occurs
the entry and exit of the material, respectively. Fixed to the inner wall of the drum are the coatings, composed
by liners and lifters. The liners protect the drum from wear due to contact with the particles, while the lifters
transmit the energy associated with the rotation of the mill to the load, producing its movement inside the mill.
The comminution of the mineral occurs due to the contact forces that are generated between different particles
and between particles and the internal surfaces of the drum.

The liners and lifters wear out over time as a result of the continuous contact with the particles inside the
mill. The replacement of these elements constitute the primary maintenance operations and generate high costs
associated not only with the purchase of replacement parts and labor but also with production losses during

a) Lifter Liner b) Cataracting S

Charge path

b inside the mill P8¢

trayectory

Cascading
, y
7 Rotation
Discharge Impact 153
Feed point (¢)
Charge
Mill shell Toe (6;) shape

Figure 1: Tumbling mill. (a) General view of the drum. (b) View of the load inside the drum.



maintenance works. In addition, the continuous wear of the coatings produces changes in the power
consumption and throughput of the mills.

While rotating, the drum lifts the grinding load along one side of the mill until reaching the point called
shoulder of the load, as shown in Figure 1b. In this position, the particles located near the lifters begin to move
independently of the movement of the drum and then fall describing free fall movements called cascade type
or cataract type. The particles that describe cascade movements from the shoulder characterize by falling
continuously, while those that describe cataract movements do so in the form of waves driven by the lifters. In
the movement that describes the load inside the mill, a set of relevant angular positions, measured with respect
to its axis of rotation, are identified: the position of the shoulder (6,), the position of the point of impact (¢,)
and the position of the toe (6,). The point of impact corresponds to the highest position at which the particles
fall from the shoulder on the opposite end of the mill ring. The position of the toe is where the lifters begin to
lift the load after it falls from the shoulder.

Figure 1b presents an example of the disposition of the particles inside the mills, showing the shape and
trajectory of the load, the position of the toe, of the shoulder, and the point of impact. The shape of the load
corresponds to the shape adopted by the set of particles that do not fall in free fall (cascading or cataracting)
while the mill rotates, which commonly compares to the shape of a kidney bounded at its ends by the toe and
the shoulder. Most of the particles fall from the areas near the shoulder on the internal surface of the shape of
the kidney, describing a cascade-type movement, as can be seen in Figure 1. The lifters lift a portion of the
particles in the shoulder to higher positions and then fall on the toe or the coatings of the drum near the toe
describing a cataract movement. The lifters that leave the position of the shoulder drag small portions of
particles that become independent from it gradually, forming waves of particles that are thrown into the free
space inside the drum. The formation of these waves then depends on the passage of the lifters out of the shape
of the load and, therefore, the impacts of the particles that describe a cataract movement on the area near the
toe are not continuous, but linked to the movement of lifters. The trajectory of the load corresponds to the free
fall movement that describes the particle that reaches the point of impact.

The Discrete Elements Method (DEM) is a numerical methodology that describes the behavior of granular
materials. It allows simulating the movement of each of the particles forming the grinding load inside the mill
by modeling the interactions between the different particles and between particles and surfaces, and solving
the equations of motion of each particle. DEM has been used by multiple researchers to study tumbling mills
focused on, for example, the analysis of the load movement [2][3][4][S1[61[71[8][9][10][11][12][13][14][15]
[16][21][23][26][27][28][32][33][34][45], the study of wear of coatings [2][14][15][30][43][44] and the
modeling of the comminution process [16][S][8][17][18][19][20][22][31][35][37]1[38][39][40][41][42]. This
paper focuses on analyzing the power requirements of the mills, a topic that has also been discussed in the
literature [13][14][45][49][21][24][25][26][29][33]. Different from other researches, this is done by
determining the average forces exerted by the particles on the lifters and liners as a function of the angular
position in which they are located. Some studies relate globally the behavior of the load with the contact forces
by using different methods [47][48][49][50][51][52][54][55][56]. The correlation between the average forces
and the power obtained in this work allows identifying the physical phenomena that explain the observed
power variations as a function of the operating conditions.

2 Test bench: SetupD100

The analyses are carried out based on a laboratory scale mill, called SetupD100, shown in Figure 2a. This
mill consists of three main components: the ring, a back cover, and a front cover. The ring is a hollow cylinder
representing the drum of the mill with lifters mounted on its inside. The ring and lifters are made of technyl.
The ring has an internal diameter of 945 [mm)], an internal length of 60 [mm] and is delimited at its ends by
the back and front cover, respectively. Both covers are made of acrylic. The back cover is gray, while the front
is transparent, which allows observing the movement of the load while the mill runs. The mill is connected to
the electric drive by a drive shaft in a cantilever arrangement. The drive includes a frequency converter that
allows controlling the speed of rotation.

2.1 Lifter geometry

The internal geometry of the mills is one of the main aspects to analyze in order to understand the behavior
of the load inside the mill. It is defined mainly by the number of lifters (Ny;) and their geometry. Figure 2a

shows the dimensions of the lifters installed in the test bench mill.
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Figure 2: (a) Vie of the Setup D100. (b) Dimensions of the lifters.

2.2 Operating conditions

The rotating speed and fill level of the mill define its operating condition. The numerical and experimental
analyses presented in this paper consider 81 different combinations of speed and fill levels presented in Table
1.

The rotation speed of the mill is defined as a fraction of its critical speed (N). The critical speed of a mill
(N,) corresponds to the speed of rotation from which the load begins to centrifuge, adhering to the internal
surfaces of the drum. It is calculated as [47]:

42.3
¢ = /D (1)

The critical speed of the SetupD100 is 4.556 [rad/s], and the 9 speeds analyzed vary from 55% to 95% of
it.

The fill level (J,) is the fraction of the internal volume of the mill that is occupied by the grinding load.
The SetupD100 has an internal volume of 0.0396 [m’] and is filled with 11 [mm] diameter steel balls. The 9
fill levels analyzed range from 25% to 45% of the mill’s internal volume, with 2.5% jumps

3 Numerical modeling of the SetupD100

The numerical model of the test bench consists of two main components: a geometric model and a contact
model. The geometric model represents the surfaces of the mill with which the particles come into contact,
while the contact model describes the interactions between the particles located inside the mill and the
components of the geometric model, and between different particles.

3.1 Geometric model of the SetupD100

The geometric model used in this investigation is composed of 3 elements: the ring and the two covers. In
the geometric model, the ring and the lifters are considered as a single element. Figure 3a shows the three
components of the geometric model, and Figure 3b shows a view of the load inside the mill together with the
cartesian system used as a reference for the analyses.

Fraction of the Rotation speed, .
critical speed [rad/s] Fill level Mass, [ke]
55% 2.506 25% 46.25
60% 2.734 27.5% 50.87
65% 2.961 30% 55.49
70% 3.190 32.5% 60.12
75% 3.418 35% 64.74
80% 3.645 37.5% 69.37
85% 3.874 40% 73.99
90% 4.101 42.5% 78.61
95% 4.329 45% 83.24

Table 1: Operating conditions.
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Figure 3: (a) Components of the geometric model. (b) Cartesian reference system.

3.2 Contact model

The particles inside the mill can contact other particles, the covers, or the ring. This means the existence
of three different contact types: steel-steel contact between the steel balls, steel-acrylic contact between the
steel balls and the acrylic covers, and steel-technyl contact between the steel balls and the ring. The contact
models used in DEM allow calculating the forces associated with the contacts to which all the particles are
subject, but for this, it is necessary to define the physical parameters that characterize all possible contacts.
These parameters are the static friction coefficient, the dynamic friction coefficient, the coefficient of
restitution, and the coefficient of rolling resistance. Table 2 shows the values of the contact parameters used
in the DEM simulations.

3.3 Power due to the movement of the load inside the mill

Considering the SetupD100 operating as shown in Figure 3b, it can be noted that in any instant of time,
not all particles are in contact with the internal surfaces of the mill. It is also noted that a particle can be in
contact with the internal surfaces of the mill in more than one point (maximum three) and that there is a given
number of contacts (1) between particles and internal surfaces of the mill.

Now, consider a particle that is in contact with one of the internal surfaces of the mill, and that this contact
i occurs in a position 7 with respect to the axis of rotation of the mill. Let F, be the force exerted by the particle
on the point of contact i, as shown in Figure 4a:

f; = rx,i£+ ry,ij’\ (2)
E=F,i+F,] 3)

T,=7xF )

Finally, taking into account the n existing contacts between particles and internal surfaces of the mill during
a time instant, the torque associated with the movement of the parti