MODELLING THE DAMPING AT THE JUNCTION BETWEEN TWO SUBSTRUCTURES BY NON-LINEAR MODELS : IMPROVING THE MODEL AND SPEEDING THE RESOLUTION

KEHR-CANDILLE Véronique

Onera (Châtillon, France), Department of Materials and Structures

We are interested in the modelling of the damping at the level of the junction between two substructures. In previous works [1],[2], we have represented the connection by a simplified model, which takes into account both dissipative and non-linear aspects of the junction. We used Bouc-Wen and Dahl models, which were adapted to be inserted in a finite element system.

In the present work, we use the generalized Iwan-Jenkins model (combination of springs and dry friction elements, see figure 1 below). This model makes it possible to better simulate non-linear damping behaviours observed in experiments. Moreover, the differential system obtained with the Iwan-Jenkins model, can be solved using the notion of sub-differential, which is a powerful mathematic tool to solve non-smooth differential systems [3], [4].

The initial tool presented in [3] is adapted to solve differential systems with several degrees of freedom. Numerical simulations including the Iwan-Jenkins model are presented. A comparative study between different algorithms (Runge-Kutta, differential inclusions) is shown. A comparison between numerical simulations and experimental results is also presented.

		т
_^^^]	
_^^^	_	
	7	

Figure 1 : Generalized Jenkins model

[1] V. Kehr-Candille, *Modelling the Damping et the Junction between Two Substructures*, Journal of Aerospace Lab, Issue 14 (September 2018)

[2] V. Kehr-Candille, *Identification of hysteretic systems for damping modelling*, proceedings of ISMA 2018 International Conference on Noise and Vibration Engineering, september 2018, Leuven (Belgium)

[3] C.L. Lamarque, J. Bastien, F. Bernardin, *Non-smooth Deterministic or Stochastic Discrete Dynamical Systems*, ed. Wiley (2013)

[4] J. Bastien, G. Michon, L. Manin, R. Dufour, *An analysis of the modified Dahl and Masing models : Application to a belt tensioner*, Journal of Sound and Vibration **302**(2007) 841-864