Effects of the Particle Swarm Optimization parameters for structural dynamic monitoring of cantilever beam
Xiao-Lin Li  1@  , Roger Serra  1  , Julien Olivier  2  
1 : Laboratoire de Mécanique Gabriel Lamé
Institut National des Sciences Appliquées - Centre Val de Loire : EA7494
2 : Laboratoire dÍnformatique Fondamentale et Appliquée de Tours
Institut National des Sciences Appliquées - Centre Val de Loire : EA6300, Institut National des Sciences Appliquées - Centre Val de Loire : EA6300

Nowadays, particle swarm optimization (PSO) algorithm has become a widespread optimization method. However, it is well known that its main parameters (inertia weight, two learning factors, velocity constraint and population size) have a critical effect on its performance. Currently the effects of PSO parameters on structural health monitoring have not been comprehensively studied. Therefore, in this paper, the PSO algorithm is used for damage detection assessment of a cantilever beam, and the simulation results are used to analyze the effects of PSO parameters. There are five levels for each parameter in our experiment, mean fitness value and success rate for each level are used as criteria to measure the convergence and stability of the PSO algorithm. Considering the effect of population size on CPU time, a trade-off strategy is presented to further determine the selection of population size.

Keywords:
Particle Swarm Optimization, Parameter Selection, Structural Damage Detection, Cantilever Beam.
References:
[1] J. Kennedy and R.C. Eberhart,Particle swarm optimization, Proceedings of IEEE international conference on neural networks, 1995.
[2] M. Jiang, Y. P. Luo and S. Y. Uang, Particle Swarm Optimization - Stochastic Trajectory Analysis and Parameter Selection , Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, 2007.
[3] Y.T. Dai, L. Q Liu, Y. Li, An Intelligent Parameter Selection Method for Particle Swarm Optimization Algorithm, Computational Sciences and Optimization (CSO), 2011.
[4] R. Serra, J. Olivier, Apport de l'optimisation par essaims particulaires pour la détection de modifications structurelles à partir des propriétés dynamiques, Congrés Français de Mécanique 2017.


  • Poster
Online user: 57